2017-01-10 08:45:11 +00:00
|
|
|
|
---
|
|
|
|
|
language: Haskell
|
|
|
|
|
lang: pl-pl
|
|
|
|
|
contributors:
|
|
|
|
|
- ["Remigiusz Suwalski", "https://github.com/remigiusz-suwalski"]
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
Haskell został zaprojektowany jako praktyczy, czysto funkcyjny język
|
|
|
|
|
programowania. Jest znany przede wszystkim ze względu na jego monady oraz system
|
|
|
|
|
typów, ale ja lubię do niego wracać przez jego elegancję. Sprawił on, że
|
|
|
|
|
programowanie jest prawdziwą przyjemnością.
|
|
|
|
|
|
|
|
|
|
```haskell
|
|
|
|
|
-- Komentarze jednolinijkowe zaczynają się od dwóch myślników
|
|
|
|
|
{- Komentarze wielolinijkowe należy
|
|
|
|
|
zamykać w bloki klamrami.
|
|
|
|
|
-}
|
|
|
|
|
|
|
|
|
|
----------------------------------------------------
|
2017-01-10 09:04:14 +00:00
|
|
|
|
-- 1. Podstawowe typy danych oraz operatory
|
2017-01-10 08:45:11 +00:00
|
|
|
|
----------------------------------------------------
|
|
|
|
|
|
2017-01-10 09:04:14 +00:00
|
|
|
|
-- Mamy liczby
|
2017-01-10 08:45:11 +00:00
|
|
|
|
3 -- 3
|
|
|
|
|
|
2017-01-10 09:04:14 +00:00
|
|
|
|
-- Podstawowe działania działają tak, jak powinny
|
2017-01-10 08:45:11 +00:00
|
|
|
|
1 + 1 -- 2
|
|
|
|
|
8 - 1 -- 7
|
|
|
|
|
10 * 2 -- 20
|
|
|
|
|
35 / 5 -- 7.0
|
|
|
|
|
|
2017-01-10 09:04:14 +00:00
|
|
|
|
-- dzielenie domyślnie zwraca ,,dokładny'' wynik
|
2017-01-10 08:45:11 +00:00
|
|
|
|
35 / 4 -- 8.75
|
|
|
|
|
|
2017-01-10 09:04:14 +00:00
|
|
|
|
-- dzielenie całkowitoliczbowe
|
2017-01-10 08:45:11 +00:00
|
|
|
|
35 `div` 4 -- 8
|
|
|
|
|
|
2017-01-10 09:04:14 +00:00
|
|
|
|
-- wartości logiczne także są podstawowym typem danych:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
True
|
|
|
|
|
False
|
|
|
|
|
|
2017-01-10 09:04:14 +00:00
|
|
|
|
-- operacje logiczne: negacja oraz porównania
|
2017-01-10 08:45:11 +00:00
|
|
|
|
not True -- False
|
|
|
|
|
not False -- True
|
|
|
|
|
1 == 1 -- True
|
|
|
|
|
1 /= 1 -- False
|
|
|
|
|
1 < 10 -- True
|
|
|
|
|
|
2017-01-10 09:04:14 +00:00
|
|
|
|
-- W powyższych przykładach, `not` jest funkcją przyjmującą jeden argument.
|
|
|
|
|
-- Haskell nie potrzebuje nawiasów, by wywołać funkcję: argumenty są po prostu
|
|
|
|
|
-- wypisywane jeden za drugim. Ogólnie wygląda to tak:
|
|
|
|
|
-- funkcja arg1 arg2 arg3...
|
|
|
|
|
-- Sekcja poświęcona funkcjom zawiera informacje, jak stworzyć własne.
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
2017-01-10 09:04:14 +00:00
|
|
|
|
-- Łańcuchy znaków (stringi) i pojedyncze znaki:
|
|
|
|
|
"To jest lancuch."
|
|
|
|
|
'a' -- znak
|
|
|
|
|
'Nie mozna laczyc apostrofow z lancuchami.' -- błąd!
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
2017-01-10 09:04:14 +00:00
|
|
|
|
-- Łańcuchy można sklejać
|
2017-01-10 08:45:11 +00:00
|
|
|
|
"Hello " ++ "world!" -- "Hello world!"
|
|
|
|
|
|
2017-01-10 09:04:14 +00:00
|
|
|
|
-- Łańcuch jest listą własnych znaków
|
2017-01-10 08:45:11 +00:00
|
|
|
|
['H', 'e', 'l', 'l', 'o'] -- "Hello"
|
2017-01-10 09:04:14 +00:00
|
|
|
|
"To jest lancuch" !! 0 -- 'T'
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
|
|
|
|
----------------------------------------------------
|
2017-01-10 08:58:12 +00:00
|
|
|
|
-- Listy oraz krotki
|
2017-01-10 08:45:11 +00:00
|
|
|
|
----------------------------------------------------
|
|
|
|
|
|
2017-01-10 08:58:12 +00:00
|
|
|
|
-- Wszystkie elementy listy muszą być tego samego typu.
|
|
|
|
|
-- Poniższe dwie listy są identyczne:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
[1, 2, 3, 4, 5]
|
|
|
|
|
[1..5]
|
|
|
|
|
|
2017-01-10 08:58:12 +00:00
|
|
|
|
-- Zakresy są uniwersalne.
|
2017-01-10 08:45:11 +00:00
|
|
|
|
['A'..'F'] -- "ABCDEF"
|
|
|
|
|
|
2017-01-10 08:58:12 +00:00
|
|
|
|
-- Przy tworzeniu zakresów można określić krok.
|
2017-01-10 08:45:11 +00:00
|
|
|
|
[0,2..10] -- [0, 2, 4, 6, 8, 10]
|
2017-01-10 08:58:12 +00:00
|
|
|
|
[5..1] -- To nie zadziała, gdyż w Haskellu zakresy tworzone są domyślnie rosnąco
|
2017-01-10 08:45:11 +00:00
|
|
|
|
[5,4..1] -- [5, 4, 3, 2, 1]
|
|
|
|
|
|
2017-01-10 08:58:12 +00:00
|
|
|
|
-- indeksowanie listy od zera
|
2017-01-10 08:45:11 +00:00
|
|
|
|
[1..10] !! 3 -- 4
|
|
|
|
|
|
2017-01-10 08:58:12 +00:00
|
|
|
|
-- Można nawet tworzyć listy nieskończone!
|
|
|
|
|
[1..] -- lista wszystkich liczb naturalnych
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
2017-01-10 08:58:12 +00:00
|
|
|
|
-- Nieskończone listy mają prawo działać, ponieważ Haskell cechuje się leniwym
|
|
|
|
|
-- wartościowaniem. To oznacza, że obliczane są jedynie te elementy listy,
|
|
|
|
|
-- których istotnie potrzebujemy. Możemy poprosić o tysiączny element i
|
|
|
|
|
-- dostaniemy go:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
|
|
|
|
[1..] !! 999 -- 1000
|
|
|
|
|
|
2017-01-10 08:58:12 +00:00
|
|
|
|
-- Haskell wyznaczył pierwsze tysiąc elementów listy, ale cała jej reszta
|
|
|
|
|
-- jeszcze nie istnieje! Nie zostanie obliczona ich wartość, póki nie zajdzie
|
|
|
|
|
-- taka potrzeba.
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
2017-01-10 08:58:12 +00:00
|
|
|
|
-- łączenie dwóch list
|
2017-01-10 08:45:11 +00:00
|
|
|
|
[1..5] ++ [6..10]
|
|
|
|
|
|
2017-01-10 08:58:12 +00:00
|
|
|
|
-- dodawanie pojedynczego elementu na początek listy
|
2017-01-10 08:45:11 +00:00
|
|
|
|
0:[1..5] -- [0, 1, 2, 3, 4, 5]
|
|
|
|
|
|
2017-01-10 08:58:12 +00:00
|
|
|
|
-- więcej operacji na listach
|
2017-01-10 08:45:11 +00:00
|
|
|
|
head [1..5] -- 1
|
|
|
|
|
tail [1..5] -- [2, 3, 4, 5]
|
|
|
|
|
init [1..5] -- [1, 2, 3, 4]
|
|
|
|
|
last [1..5] -- 5
|
|
|
|
|
|
|
|
|
|
-- list comprehensions
|
|
|
|
|
[x*2 | x <- [1..5]] -- [2, 4, 6, 8, 10]
|
|
|
|
|
|
2017-01-10 08:58:12 +00:00
|
|
|
|
-- z dodatkowym warunkiem
|
2017-01-10 08:45:11 +00:00
|
|
|
|
[x*2 | x <- [1..5], x*2 > 4] -- [6, 8, 10]
|
|
|
|
|
|
2017-01-10 08:58:12 +00:00
|
|
|
|
-- każdy element krotki może być innego typu, jednak sama krotka musi być stałej
|
|
|
|
|
-- długości. Przykładowo:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
("haskell", 1)
|
|
|
|
|
|
2017-01-10 08:58:12 +00:00
|
|
|
|
-- dostęp do elementów pary (krotki długości 2):
|
2017-01-10 08:45:11 +00:00
|
|
|
|
fst ("haskell", 1) -- "haskell"
|
|
|
|
|
snd ("haskell", 1) -- 1
|
|
|
|
|
|
|
|
|
|
----------------------------------------------------
|
|
|
|
|
-- 3. Functions
|
|
|
|
|
----------------------------------------------------
|
|
|
|
|
-- A simple function that takes two variables
|
|
|
|
|
add a b = a + b
|
|
|
|
|
|
|
|
|
|
-- Note that if you are using ghci (the Haskell interpreter)
|
|
|
|
|
-- You'll need to use `let`, i.e.
|
|
|
|
|
-- let add a b = a + b
|
|
|
|
|
|
|
|
|
|
-- Using the function
|
|
|
|
|
add 1 2 -- 3
|
|
|
|
|
|
|
|
|
|
-- You can also put the function name between the two arguments
|
|
|
|
|
-- with backticks:
|
|
|
|
|
1 `add` 2 -- 3
|
|
|
|
|
|
|
|
|
|
-- You can also define functions that have no letters! This lets
|
|
|
|
|
-- you define your own operators! Here's an operator that does
|
|
|
|
|
-- integer division
|
|
|
|
|
(//) a b = a `div` b
|
|
|
|
|
35 // 4 -- 8
|
|
|
|
|
|
|
|
|
|
-- Guards: an easy way to do branching in functions
|
|
|
|
|
fib x
|
|
|
|
|
| x < 2 = 1
|
|
|
|
|
| otherwise = fib (x - 1) + fib (x - 2)
|
|
|
|
|
|
|
|
|
|
-- Pattern matching is similar. Here we have given three different
|
|
|
|
|
-- definitions for fib. Haskell will automatically call the first
|
|
|
|
|
-- function that matches the pattern of the value.
|
|
|
|
|
fib 1 = 1
|
|
|
|
|
fib 2 = 2
|
|
|
|
|
fib x = fib (x - 1) + fib (x - 2)
|
|
|
|
|
|
|
|
|
|
-- Pattern matching on tuples:
|
|
|
|
|
foo (x, y) = (x + 1, y + 2)
|
|
|
|
|
|
|
|
|
|
-- Pattern matching on lists. Here `x` is the first element
|
|
|
|
|
-- in the list, and `xs` is the rest of the list. We can write
|
|
|
|
|
-- our own map function:
|
|
|
|
|
myMap func [] = []
|
|
|
|
|
myMap func (x:xs) = func x:(myMap func xs)
|
|
|
|
|
|
|
|
|
|
-- Anonymous functions are created with a backslash followed by
|
|
|
|
|
-- all the arguments.
|
|
|
|
|
myMap (\x -> x + 2) [1..5] -- [3, 4, 5, 6, 7]
|
|
|
|
|
|
|
|
|
|
-- using fold (called `inject` in some languages) with an anonymous
|
|
|
|
|
-- function. foldl1 means fold left, and use the first value in the
|
|
|
|
|
-- list as the initial value for the accumulator.
|
|
|
|
|
foldl1 (\acc x -> acc + x) [1..5] -- 15
|
|
|
|
|
|
|
|
|
|
----------------------------------------------------
|
|
|
|
|
-- 4. More functions
|
|
|
|
|
----------------------------------------------------
|
|
|
|
|
|
|
|
|
|
-- partial application: if you don't pass in all the arguments to a function,
|
|
|
|
|
-- it gets "partially applied". That means it returns a function that takes the
|
|
|
|
|
-- rest of the arguments.
|
|
|
|
|
|
|
|
|
|
add a b = a + b
|
|
|
|
|
foo = add 10 -- foo is now a function that takes a number and adds 10 to it
|
|
|
|
|
foo 5 -- 15
|
|
|
|
|
|
|
|
|
|
-- Another way to write the same thing
|
|
|
|
|
foo = (10+)
|
|
|
|
|
foo 5 -- 15
|
|
|
|
|
|
|
|
|
|
-- function composition
|
|
|
|
|
-- the operator `.` chains functions together.
|
|
|
|
|
-- For example, here foo is a function that takes a value. It adds 10 to it,
|
|
|
|
|
-- multiplies the result of that by 4, and then returns the final value.
|
|
|
|
|
foo = (4*) . (10+)
|
|
|
|
|
|
|
|
|
|
-- 4*(10 + 5) = 60
|
|
|
|
|
foo 5 -- 60
|
|
|
|
|
|
|
|
|
|
-- fixing precedence
|
|
|
|
|
-- Haskell has another operator called `$`. This operator applies a function
|
|
|
|
|
-- to a given parameter. In contrast to standard function application, which
|
|
|
|
|
-- has highest possible priority of 10 and is left-associative, the `$` operator
|
|
|
|
|
-- has priority of 0 and is right-associative. Such a low priority means that
|
|
|
|
|
-- the expression on its right is applied as the parameter to the function on its left.
|
|
|
|
|
|
|
|
|
|
-- before
|
|
|
|
|
even (fib 7) -- false
|
|
|
|
|
|
|
|
|
|
-- equivalently
|
|
|
|
|
even $ fib 7 -- false
|
|
|
|
|
|
|
|
|
|
-- composing functions
|
|
|
|
|
even . fib $ 7 -- false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
----------------------------------------------------
|
2017-01-10 09:10:04 +00:00
|
|
|
|
-- 5. Sygnatury typów
|
2017-01-10 08:45:11 +00:00
|
|
|
|
----------------------------------------------------
|
|
|
|
|
|
2017-01-10 09:10:04 +00:00
|
|
|
|
-- Haskell posiada wyjątkowo silny system typów, w którym każde poprawne
|
|
|
|
|
-- wyrażenie ma swój typ.
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
2017-01-10 09:10:04 +00:00
|
|
|
|
-- Kilka podstawowych typów:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
5 :: Integer
|
|
|
|
|
"hello" :: String
|
|
|
|
|
True :: Bool
|
|
|
|
|
|
2017-01-10 09:10:04 +00:00
|
|
|
|
-- Funkcje też są określonego typu.
|
|
|
|
|
-- `not` przyjmuje wartość logiczną i taką też zwraca:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
-- not :: Bool -> Bool
|
|
|
|
|
|
2017-01-10 09:10:04 +00:00
|
|
|
|
-- Przykład funkcji przyjmującej dwa argumenty
|
2017-01-10 08:45:11 +00:00
|
|
|
|
-- add :: Integer -> Integer -> Integer
|
|
|
|
|
|
2017-01-10 09:10:04 +00:00
|
|
|
|
-- Dobrą praktyką podczas definiowania wartości jest napisanie nad nią
|
|
|
|
|
-- także jej typu:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
double :: Integer -> Integer
|
|
|
|
|
double x = x * 2
|
|
|
|
|
|
|
|
|
|
----------------------------------------------------
|
2017-01-10 17:29:33 +00:00
|
|
|
|
-- 6. Wyrażenia warunkowe
|
2017-01-10 08:45:11 +00:00
|
|
|
|
----------------------------------------------------
|
|
|
|
|
|
2017-01-10 17:29:33 +00:00
|
|
|
|
-- wyrażenie warunkowe
|
|
|
|
|
haskell = if 1 == 1 then "wspaniale" else "paskudnie" -- haskell = "wspaniale"
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
2017-01-10 17:29:33 +00:00
|
|
|
|
-- wyrażenie warunkowe można rozbić na wiele linii,
|
|
|
|
|
-- ale trzeba uważać na wcięcia w kodzie
|
2017-01-10 08:45:11 +00:00
|
|
|
|
haskell = if 1 == 1
|
2017-01-10 17:29:33 +00:00
|
|
|
|
then "wspaniale"
|
|
|
|
|
else "paskudnie"
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
2017-01-10 17:29:33 +00:00
|
|
|
|
-- rozpatrywanie przypadków: oto jak można parsować argumenty z linii poleceń:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
case args of
|
|
|
|
|
"help" -> printHelp
|
|
|
|
|
"start" -> startProgram
|
|
|
|
|
_ -> putStrLn "bad args"
|
|
|
|
|
|
2017-01-10 17:29:33 +00:00
|
|
|
|
-- Haskell zastępuje pętle (których nie ma) rekurencyjnymi wywołaniami funkcji.
|
|
|
|
|
-- map aplikuje funkcję do każdego elementu listy:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
|
|
|
|
map (*2) [1..5] -- [2, 4, 6, 8, 10]
|
|
|
|
|
|
2017-01-10 17:29:33 +00:00
|
|
|
|
-- możesz zdefiniować funkcję for przy użyciu map:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
for array func = map func array
|
|
|
|
|
|
2017-01-10 17:29:33 +00:00
|
|
|
|
-- a następnie użyć jej:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
for [0..5] $ \i -> show i
|
|
|
|
|
|
2017-01-10 17:29:33 +00:00
|
|
|
|
-- mogliśmy użyć krótszego zapisu bez zmiany działania funkcji for:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
for [0..5] show
|
|
|
|
|
|
2017-01-10 17:29:33 +00:00
|
|
|
|
-- Do redukcji listy służy polecenie foldl (foldr):
|
2017-01-10 08:45:11 +00:00
|
|
|
|
-- foldl <fn> <initial value> <list>
|
|
|
|
|
foldl (\x y -> 2*x + y) 4 [1,2,3] -- 43
|
|
|
|
|
|
2017-01-10 17:29:33 +00:00
|
|
|
|
-- Jest to równoważne z:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
(2 * (2 * (2 * 4 + 1) + 2) + 3)
|
|
|
|
|
|
2017-01-10 17:29:33 +00:00
|
|
|
|
-- foldl składa od od lewej strony, foldr od prawej
|
2017-01-10 08:45:11 +00:00
|
|
|
|
foldr (\x y -> 2*x + y) 4 [1,2,3] -- 16
|
|
|
|
|
|
2017-01-10 17:29:33 +00:00
|
|
|
|
-- To zaś równoważne jest:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
(2 * 1 + (2 * 2 + (2 * 3 + 4)))
|
|
|
|
|
|
|
|
|
|
----------------------------------------------------
|
2017-01-10 09:06:27 +00:00
|
|
|
|
-- 7. Typy danych
|
2017-01-10 08:45:11 +00:00
|
|
|
|
----------------------------------------------------
|
|
|
|
|
|
2017-01-10 09:06:27 +00:00
|
|
|
|
-- Oto jak tworzy się nowe typy danych w Haskellu:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
|
|
|
|
data Color = Red | Blue | Green
|
|
|
|
|
|
2017-01-10 09:06:27 +00:00
|
|
|
|
-- Teraz można używać ich we własnych funkcjach:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
|
|
|
|
say :: Color -> String
|
|
|
|
|
say Red = "You are Red!"
|
|
|
|
|
say Blue = "You are Blue!"
|
|
|
|
|
say Green = "You are Green!"
|
|
|
|
|
|
2017-01-10 09:06:27 +00:00
|
|
|
|
-- Twoje typy danych mogą posiadać nawet parametry:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
|
|
|
|
data Maybe a = Nothing | Just a
|
|
|
|
|
|
2017-01-10 09:06:27 +00:00
|
|
|
|
-- Wszystkie poniższe są typu Maybe
|
|
|
|
|
Just "hello" -- typu `Maybe String`
|
|
|
|
|
Just 1 -- typu `Maybe Int`
|
|
|
|
|
Nothing -- typu `Maybe a` for any `a`
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
|
|
|
|
----------------------------------------------------
|
|
|
|
|
-- 8. Haskell IO
|
|
|
|
|
----------------------------------------------------
|
|
|
|
|
|
2017-01-13 09:10:10 +00:00
|
|
|
|
-- Chociaż obsługa wejścia i wyjścia nie może zostać wyjaśniona przez poznaniem
|
|
|
|
|
-- monad, spróbujemy zrobić to częściowo
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
2017-01-13 09:10:10 +00:00
|
|
|
|
-- Wykonanie programu napisanego w Haskellu wywołuje funkcję `main`
|
|
|
|
|
-- Musi zwrócić wartość typu `IO a` dla pewnego `a`. Przykład:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
|
|
|
|
main :: IO ()
|
|
|
|
|
main = putStrLn $ "Hello, sky! " ++ (say Blue)
|
|
|
|
|
-- putStrLn has type String -> IO ()
|
|
|
|
|
|
2017-01-13 09:10:10 +00:00
|
|
|
|
-- Najłatwiej obsłużyć wejście i wyjście, kiedy program zostanie
|
|
|
|
|
-- zaimplementowany jako funkcja String -> String. Funkcja
|
2017-01-10 08:45:11 +00:00
|
|
|
|
-- interact :: (String -> String) -> IO ()
|
2017-01-13 09:10:10 +00:00
|
|
|
|
-- pobiera pewien tekst, wykonuje na nim operacje, po czym wypisuje wynik.
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
|
|
|
|
countLines :: String -> String
|
|
|
|
|
countLines = show . length . lines
|
|
|
|
|
|
|
|
|
|
main' = interact countLines
|
|
|
|
|
|
2017-01-13 09:10:10 +00:00
|
|
|
|
-- Możesz myśleć o wartości typu `IO ()` jako reprezentującej ciąg czynności,
|
|
|
|
|
-- które komputer ma wykonać, zupełnie niczym program komputerowy w imperatywnym
|
|
|
|
|
-- języku programowania. Akcje można łączyć przy użyciu notacji `do`:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
|
|
|
|
sayHello :: IO ()
|
|
|
|
|
sayHello = do
|
|
|
|
|
putStrLn "What is your name?"
|
|
|
|
|
name <- getLine -- this gets a line and gives it the name "name"
|
|
|
|
|
putStrLn $ "Hello, " ++ name
|
|
|
|
|
|
2017-01-13 09:10:10 +00:00
|
|
|
|
-- Ćwiczenie: napisz własną wersję `interact`,
|
|
|
|
|
-- która czyta tylko jedną linię wejścia.
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
2017-01-13 09:10:10 +00:00
|
|
|
|
-- Kod w `sayHello` nigdy się nie wykona. Jedyną akcją, która zostanie
|
|
|
|
|
-- uruchomiona, jest wartość `main`.
|
|
|
|
|
-- Aby uruchomić `sayHello`, należy zastąpić poprzednią definicję `main` przez
|
2017-01-10 08:45:11 +00:00
|
|
|
|
-- main = sayHello
|
|
|
|
|
|
2017-01-13 09:10:10 +00:00
|
|
|
|
-- Spróbujmy lepiej zrozumieć, jak działa funkcja `getLine`, której właśnie
|
|
|
|
|
-- użyliśmy. Jej typem jest
|
2017-01-10 08:45:11 +00:00
|
|
|
|
-- getLine :: IO String
|
2017-01-13 09:10:10 +00:00
|
|
|
|
-- Możesz myśleć o wartości typu `IO a` jako reprezentującej program, który
|
|
|
|
|
-- wygeneruje wartość typu `a`, poza wszystkim innym, co jeszcze zrobi.
|
|
|
|
|
-- Możemy także tworzyć własne akcje typu `IO String`:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
|
|
|
|
action :: IO String
|
|
|
|
|
action = do
|
|
|
|
|
putStrLn "This is a line. Duh"
|
|
|
|
|
input1 <- getLine
|
|
|
|
|
input2 <- getLine
|
|
|
|
|
-- The type of the `do` statement is that of its last line.
|
|
|
|
|
-- `return` is not a keyword, but merely a function
|
|
|
|
|
return (input1 ++ "\n" ++ input2) -- return :: String -> IO String
|
|
|
|
|
|
2017-01-13 09:10:10 +00:00
|
|
|
|
-- Możemy użyć tego tak jak używaliśmy `getLine`:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
|
|
|
|
main'' = do
|
|
|
|
|
putStrLn "I will echo two lines!"
|
|
|
|
|
result <- action
|
|
|
|
|
putStrLn result
|
|
|
|
|
putStrLn "This was all, folks!"
|
|
|
|
|
|
2017-01-13 09:10:10 +00:00
|
|
|
|
-- Typ `IO` jest przykładem monady. Sposób w jakim Haskell używa monad do
|
|
|
|
|
-- obsługi wejścia i wyjścia pozwala mu być czysto funkcyjnym językiem.
|
|
|
|
|
-- Każda funkcja, która wchodzi w interakcje ze światem zewnętrznym, oznaczana
|
|
|
|
|
-- jest jako `IO` w jej sygnaturze typu, co umożliwia odróżnianie funkcji
|
|
|
|
|
-- czystych od zależnych od świata lub modyfikujących stan.
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
2017-01-13 09:10:10 +00:00
|
|
|
|
-- To naprawdę użyteczna własność, dzięki której jesteśmy w stanie uruchamiać
|
|
|
|
|
-- czyste funkcje jednocześnie.
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
|
|
|
|
----------------------------------------------------
|
2017-01-11 09:21:38 +00:00
|
|
|
|
-- 9. Interaktywne środowisko programowania
|
2017-01-10 08:45:11 +00:00
|
|
|
|
----------------------------------------------------
|
|
|
|
|
|
2017-01-11 09:21:38 +00:00
|
|
|
|
-- Aby uruchomić repl (read-eval-print loop, interaktywne środowisko), należy
|
|
|
|
|
-- wpisać `ghci`. Można już programować. Do definiowania nowych wartości służy
|
|
|
|
|
-- słowo kluczowe `let`:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
|
|
|
|
let foo = 5
|
|
|
|
|
|
2017-01-11 09:21:38 +00:00
|
|
|
|
-- Do sprawdzania typów dowolnej wartości (wyrażenia) wykorzystuje się `:t`:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
|
|
|
|
> :t foo
|
|
|
|
|
foo :: Integer
|
|
|
|
|
|
2017-01-11 09:21:38 +00:00
|
|
|
|
-- Działania takie jak `+`, `:` czy `$`, są funkcjami.
|
|
|
|
|
-- Przed sprawdzeniem ich typu należy otoczyć je nawiasami:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
|
|
|
|
> :t (:)
|
|
|
|
|
(:) :: a -> [a] -> [a]
|
|
|
|
|
|
2017-01-11 09:21:38 +00:00
|
|
|
|
-- Dodatkowych informacji dostarcza `:i`:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
|
|
|
|
> :i (+)
|
|
|
|
|
class Num a where
|
|
|
|
|
(+) :: a -> a -> a
|
|
|
|
|
...
|
|
|
|
|
-- Defined in ‘GHC.Num’
|
|
|
|
|
infixl 6 +
|
|
|
|
|
|
2017-01-11 09:21:38 +00:00
|
|
|
|
-- Można nawet wykonywać akcje typu `IO ()`!
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
|
|
|
|
> sayHello
|
|
|
|
|
What is your name?
|
|
|
|
|
Friend!
|
|
|
|
|
Hello, Friend!
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
2017-01-11 09:21:38 +00:00
|
|
|
|
Pominęliśmy wiele aspektów Haskella, wliczając w to monady. To właśnie one
|
|
|
|
|
sprawiają, że programowanie w Haskellu sprawia tyle frajdy. Na zakończenie
|
|
|
|
|
pokażę Tobie implementację algorytmu quicksort w Haskellu:
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
|
|
|
|
```haskell
|
|
|
|
|
qsort [] = []
|
|
|
|
|
qsort (p:xs) = qsort lesser ++ [p] ++ qsort greater
|
|
|
|
|
where lesser = filter (< p) xs
|
|
|
|
|
greater = filter (>= p) xs
|
|
|
|
|
```
|
|
|
|
|
|
2017-01-11 09:21:38 +00:00
|
|
|
|
Haskell może zostać zainstalowany na co najmniej dwa sposoby:
|
|
|
|
|
- tradycyjnie [przy użyciu Cabala](http://www.haskell.org/platform/),
|
|
|
|
|
- nowocześnie [z pomocą Stack](https://www.stackage.org/install).
|
2017-01-10 08:45:11 +00:00
|
|
|
|
|
2017-01-11 09:21:38 +00:00
|
|
|
|
Godnymi poleceniami wprowadzeniami są wspaniałe
|
|
|
|
|
[Learn you a Haskell](http://learnyouahaskell.com/) albo
|
2017-01-10 08:45:11 +00:00
|
|
|
|
[Real World Haskell](http://book.realworldhaskell.org/).
|