Fix whitespace to be consistent

This commit is contained in:
Mario Viens 2020-02-29 14:01:02 -08:00 committed by GitHub
parent e57e59f5f3
commit 140e87e683
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -23,7 +23,7 @@ Always remember!
## Example of Dynamic Programming ## Example of Dynamic Programming
The Longest Increasing Subsequence problem is to find the longest increasing subsequence of a given sequence. Given a sequence `S= {a1 , a2 , a3, a4, ............., an-1, an }` we have to find a longest subset such that for all `j` and `i`, `j<i` in the subset `aj<ai`. The Longest Increasing Subsequence problem is to find the longest increasing subsequence of a given sequence. Given a sequence `S={ a1, a2, a3, a4, ............., an-1, an }` we have to find a longest subset such that for all `j` and `i`, `j<i` in the subset `aj<ai`.
First of all we have to find the value of the longest subsequences(LSi) at every index i with last element of sequence being ai. Then largest LSi would be the longest subsequence in the given sequence. To begin LSi is assigned to be one since ai is element of the sequence(Last element). Then for all `j` such that `j<i` and `aj<ai`, we find Largest LSj and add it to LSi. Then algorithm take *O(n2)* time. First of all we have to find the value of the longest subsequences(LSi) at every index i with last element of sequence being ai. Then largest LSi would be the longest subsequence in the given sequence. To begin LSi is assigned to be one since ai is element of the sequence(Last element). Then for all `j` such that `j<i` and `aj<ai`, we find Largest LSj and add it to LSi. Then algorithm take *O(n2)* time.
Pseudo-code for finding the length of the longest increasing subsequence: Pseudo-code for finding the length of the longest increasing subsequence: