mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-12-23 17:41:41 +00:00
parent
57c384420e
commit
15353d1938
726
c.html.markdown
726
c.html.markdown
@ -16,15 +16,15 @@ memory management and C will take you as far as you need to go.
|
|||||||
```c
|
```c
|
||||||
// Single-line comments start with // - only available in C99 and later.
|
// Single-line comments start with // - only available in C99 and later.
|
||||||
|
|
||||||
/*
|
/*
|
||||||
Multi-line comments look like this. They work in C89 as well.
|
Multi-line comments look like this. They work in C89 as well.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
// Constants: #define <keyword>
|
// Constants: #define <keyword>
|
||||||
#define DAYS_IN_YEAR 365
|
#define DAYS_IN_YEAR 365
|
||||||
|
|
||||||
// Enumeration constants are also ways to declare constants.
|
// Enumeration constants are also ways to declare constants.
|
||||||
enum days {SUN = 1, MON, TUE, WED, THU, FRI, SAT};
|
enum days {SUN = 1, MON, TUE, WED, THU, FRI, SAT};
|
||||||
// MON gets 2 automatically, TUE gets 3, etc.
|
// MON gets 2 automatically, TUE gets 3, etc.
|
||||||
|
|
||||||
// Import headers with #include
|
// Import headers with #include
|
||||||
@ -34,11 +34,11 @@ enum days {SUN = 1, MON, TUE, WED, THU, FRI, SAT};
|
|||||||
|
|
||||||
// (File names between <angle brackets> are headers from the C standard library.)
|
// (File names between <angle brackets> are headers from the C standard library.)
|
||||||
// For your own headers, use double quotes instead of angle brackets:
|
// For your own headers, use double quotes instead of angle brackets:
|
||||||
#include "my_header.h"
|
//#include "my_header.h"
|
||||||
|
|
||||||
// Declare function signatures in advance in a .h file, or at the top of
|
// Declare function signatures in advance in a .h file, or at the top of
|
||||||
// your .c file.
|
// your .c file.
|
||||||
void function_1(char c);
|
void function_1();
|
||||||
int function_2(void);
|
int function_2(void);
|
||||||
|
|
||||||
// Must declare a 'function prototype' before main() when functions occur after
|
// Must declare a 'function prototype' before main() when functions occur after
|
||||||
@ -48,374 +48,373 @@ int add_two_ints(int x1, int x2); // function prototype
|
|||||||
// Your program's entry point is a function called
|
// Your program's entry point is a function called
|
||||||
// main with an integer return type.
|
// main with an integer return type.
|
||||||
int main() {
|
int main() {
|
||||||
// print output using printf, for "print formatted"
|
// print output using printf, for "print formatted"
|
||||||
// %d is an integer, \n is a newline
|
// %d is an integer, \n is a newline
|
||||||
printf("%d\n", 0); // => Prints 0
|
printf("%d\n", 0); // => Prints 0
|
||||||
// All statements must end with a semicolon
|
// All statements must end with a semicolon
|
||||||
|
|
||||||
///////////////////////////////////////
|
///////////////////////////////////////
|
||||||
// Types
|
// Types
|
||||||
///////////////////////////////////////
|
///////////////////////////////////////
|
||||||
|
|
||||||
// ints are usually 4 bytes
|
// ints are usually 4 bytes
|
||||||
int x_int = 0;
|
int x_int = 0;
|
||||||
|
|
||||||
// shorts are usually 2 bytes
|
// shorts are usually 2 bytes
|
||||||
short x_short = 0;
|
short x_short = 0;
|
||||||
|
|
||||||
// chars are guaranteed to be 1 byte
|
// chars are guaranteed to be 1 byte
|
||||||
char x_char = 0;
|
char x_char = 0;
|
||||||
char y_char = 'y'; // Char literals are quoted with ''
|
char y_char = 'y'; // Char literals are quoted with ''
|
||||||
|
|
||||||
// longs are often 4 to 8 bytes; long longs are guaranteed to be at least
|
// longs are often 4 to 8 bytes; long longs are guaranteed to be at least
|
||||||
// 64 bits
|
// 64 bits
|
||||||
long x_long = 0;
|
long x_long = 0;
|
||||||
long long x_long_long = 0;
|
long long x_long_long = 0;
|
||||||
|
|
||||||
// floats are usually 32-bit floating point numbers
|
// floats are usually 32-bit floating point numbers
|
||||||
float x_float = 0.0;
|
float x_float = 0.0;
|
||||||
|
|
||||||
// doubles are usually 64-bit floating-point numbers
|
// doubles are usually 64-bit floating-point numbers
|
||||||
double x_double = 0.0;
|
double x_double = 0.0;
|
||||||
|
|
||||||
// Integral types may be unsigned.
|
// Integral types may be unsigned.
|
||||||
unsigned short ux_short;
|
unsigned short ux_short;
|
||||||
unsigned int ux_int;
|
unsigned int ux_int;
|
||||||
unsigned long long ux_long_long;
|
unsigned long long ux_long_long;
|
||||||
|
|
||||||
// chars inside single quotes are integers in machine's character set.
|
// chars inside single quotes are integers in machine's character set.
|
||||||
'0' // => 48 in the ASCII character set.
|
'0'; // => 48 in the ASCII character set.
|
||||||
'A' // => 65 in the ASCII character set.
|
'A'; // => 65 in the ASCII character set.
|
||||||
|
|
||||||
// sizeof(T) gives you the size of a variable with type T in bytes
|
// sizeof(T) gives you the size of a variable with type T in bytes
|
||||||
// sizeof(obj) yields the size of the expression (variable, literal, etc.).
|
// sizeof(obj) yields the size of the expression (variable, literal, etc.).
|
||||||
printf("%zu\n", sizeof(int)); // => 4 (on most machines with 4-byte words)
|
printf("%zu\n", sizeof(int)); // => 4 (on most machines with 4-byte words)
|
||||||
|
|
||||||
|
|
||||||
// If the argument of the `sizeof` operator is an expression, then its argument
|
// If the argument of the `sizeof` operator is an expression, then its argument
|
||||||
// is not evaluated (except VLAs (see below)).
|
// is not evaluated (except VLAs (see below)).
|
||||||
// The value it yields in this case is a compile-time constant.
|
// The value it yields in this case is a compile-time constant.
|
||||||
int a = 1;
|
int a = 1;
|
||||||
// size_t is an unsigned integer type of at least 2 bytes used to represent
|
// size_t is an unsigned integer type of at least 2 bytes used to represent
|
||||||
// the size of an object.
|
// the size of an object.
|
||||||
size_t size = sizeof(a++); // a++ is not evaluated
|
size_t size = sizeof(a++); // a++ is not evaluated
|
||||||
printf("sizeof(a++) = %zu where a = %d\n", size, a);
|
printf("sizeof(a++) = %zu where a = %d\n", size, a);
|
||||||
// prints "sizeof(a++) = 4 where a = 1" (on a 32-bit architecture)
|
// prints "sizeof(a++) = 4 where a = 1" (on a 32-bit architecture)
|
||||||
|
|
||||||
// Arrays must be initialized with a concrete size.
|
// Arrays must be initialized with a concrete size.
|
||||||
char my_char_array[20]; // This array occupies 1 * 20 = 20 bytes
|
char my_char_array[20]; // This array occupies 1 * 20 = 20 bytes
|
||||||
int my_int_array[20]; // This array occupies 4 * 20 = 80 bytes
|
int my_int_array[20]; // This array occupies 4 * 20 = 80 bytes
|
||||||
// (assuming 4-byte words)
|
// (assuming 4-byte words)
|
||||||
|
|
||||||
|
|
||||||
// You can initialize an array to 0 thusly:
|
// You can initialize an array to 0 thusly:
|
||||||
char my_array[20] = {0};
|
char my_array[20] = {0};
|
||||||
|
|
||||||
// Indexing an array is like other languages -- or,
|
// Indexing an array is like other languages -- or,
|
||||||
// rather, other languages are like C
|
// rather, other languages are like C
|
||||||
my_array[0]; // => 0
|
my_array[0]; // => 0
|
||||||
|
|
||||||
// Arrays are mutable; it's just memory!
|
// Arrays are mutable; it's just memory!
|
||||||
my_array[1] = 2;
|
my_array[1] = 2;
|
||||||
printf("%d\n", my_array[1]); // => 2
|
printf("%d\n", my_array[1]); // => 2
|
||||||
|
|
||||||
// In C99 (and as an optional feature in C11), variable-length arrays (VLAs)
|
// In C99 (and as an optional feature in C11), variable-length arrays (VLAs)
|
||||||
// can be declared as well. The size of such an array need not be a compile
|
// can be declared as well. The size of such an array need not be a compile
|
||||||
// time constant:
|
// time constant:
|
||||||
printf("Enter the array size: "); // ask the user for an array size
|
printf("Enter the array size: "); // ask the user for an array size
|
||||||
char buf[0x100];
|
char buf[0x100];
|
||||||
fgets(buf, sizeof buf, stdin);
|
fgets(buf, sizeof buf, stdin);
|
||||||
|
|
||||||
// strtoul parses a string to an unsigned integer
|
// strtoul parses a string to an unsigned integer
|
||||||
size_t size = strtoul(buf, NULL, 10);
|
size_t size2 = strtoul(buf, NULL, 10);
|
||||||
int var_length_array[size]; // declare the VLA
|
int var_length_array[size2]; // declare the VLA
|
||||||
printf("sizeof array = %zu\n", sizeof var_length_array);
|
printf("sizeof array = %zu\n", sizeof var_length_array);
|
||||||
|
|
||||||
// A possible outcome of this program may be:
|
// A possible outcome of this program may be:
|
||||||
// > Enter the array size: 10
|
// > Enter the array size: 10
|
||||||
// > sizeof array = 40
|
// > sizeof array = 40
|
||||||
|
|
||||||
// Strings are just arrays of chars terminated by a NULL (0x00) byte,
|
// Strings are just arrays of chars terminated by a NULL (0x00) byte,
|
||||||
// represented in strings as the special character '\0'.
|
// represented in strings as the special character '\0'.
|
||||||
// (We don't have to include the NULL byte in string literals; the compiler
|
// (We don't have to include the NULL byte in string literals; the compiler
|
||||||
// inserts it at the end of the array for us.)
|
// inserts it at the end of the array for us.)
|
||||||
char a_string[20] = "This is a string";
|
char a_string[20] = "This is a string";
|
||||||
printf("%s\n", a_string); // %s formats a string
|
printf("%s\n", a_string); // %s formats a string
|
||||||
|
|
||||||
printf("%d\n", a_string[16]); // => 0
|
printf("%d\n", a_string[16]); // => 0
|
||||||
// i.e., byte #17 is 0 (as are 18, 19, and 20)
|
// i.e., byte #17 is 0 (as are 18, 19, and 20)
|
||||||
|
|
||||||
// If we have characters between single quotes, that's a character literal.
|
// If we have characters between single quotes, that's a character literal.
|
||||||
// It's of type `int`, and *not* `char` (for historical reasons).
|
// It's of type `int`, and *not* `char` (for historical reasons).
|
||||||
int cha = 'a'; // fine
|
int cha = 'a'; // fine
|
||||||
char chb = 'a'; // fine too (implicit conversion from int to char)
|
char chb = 'a'; // fine too (implicit conversion from int to char)
|
||||||
|
|
||||||
//Multi-dimensional arrays:
|
//Multi-dimensional arrays:
|
||||||
int multi_array[2][5] = {
|
int multi_array[2][5] = {
|
||||||
{1, 2, 3, 4, 5},
|
{1, 2, 3, 4, 5},
|
||||||
{6, 7, 8, 9, 0}
|
{6, 7, 8, 9, 0}
|
||||||
};
|
};
|
||||||
//access elements:
|
//access elements:
|
||||||
int array_int = multi_array[0][2]; // => 3
|
int array_int = multi_array[0][2]; // => 3
|
||||||
|
|
||||||
///////////////////////////////////////
|
///////////////////////////////////////
|
||||||
// Operators
|
// Operators
|
||||||
///////////////////////////////////////
|
///////////////////////////////////////
|
||||||
|
|
||||||
// Shorthands for multiple declarations:
|
// Shorthands for multiple declarations:
|
||||||
int i1 = 1, i2 = 2;
|
int i1 = 1, i2 = 2;
|
||||||
float f1 = 1.0, f2 = 2.0;
|
float f1 = 1.0, f2 = 2.0;
|
||||||
|
|
||||||
int a, b, c;
|
int b, c;
|
||||||
a = b = c = 0;
|
b = c = 0;
|
||||||
|
|
||||||
// Arithmetic is straightforward
|
// Arithmetic is straightforward
|
||||||
i1 + i2; // => 3
|
i1 + i2; // => 3
|
||||||
i2 - i1; // => 1
|
i2 - i1; // => 1
|
||||||
i2 * i1; // => 2
|
i2 * i1; // => 2
|
||||||
i1 / i2; // => 0 (0.5, but truncated towards 0)
|
i1 / i2; // => 0 (0.5, but truncated towards 0)
|
||||||
|
|
||||||
f1 / f2; // => 0.5, plus or minus epsilon
|
f1 / f2; // => 0.5, plus or minus epsilon
|
||||||
// Floating-point numbers and calculations are not exact
|
// Floating-point numbers and calculations are not exact
|
||||||
|
|
||||||
// Modulo is there as well
|
// Modulo is there as well
|
||||||
11 % 3; // => 2
|
11 % 3; // => 2
|
||||||
|
|
||||||
// Comparison operators are probably familiar, but
|
// Comparison operators are probably familiar, but
|
||||||
// there is no Boolean type in c. We use ints instead.
|
// there is no Boolean type in c. We use ints instead.
|
||||||
// (Or _Bool or bool in C99.)
|
// (Or _Bool or bool in C99.)
|
||||||
// 0 is false, anything else is true. (The comparison
|
// 0 is false, anything else is true. (The comparison
|
||||||
// operators always yield 0 or 1.)
|
// operators always yield 0 or 1.)
|
||||||
3 == 2; // => 0 (false)
|
3 == 2; // => 0 (false)
|
||||||
3 != 2; // => 1 (true)
|
3 != 2; // => 1 (true)
|
||||||
3 > 2; // => 1
|
3 > 2; // => 1
|
||||||
3 < 2; // => 0
|
3 < 2; // => 0
|
||||||
2 <= 2; // => 1
|
2 <= 2; // => 1
|
||||||
2 >= 2; // => 1
|
2 >= 2; // => 1
|
||||||
|
|
||||||
// C is not Python - comparisons don't chain.
|
// C is not Python - comparisons don't chain.
|
||||||
int a = 1;
|
// WRONG:
|
||||||
// WRONG:
|
//int between_0_and_2 = 0 < a < 2;
|
||||||
int between_0_and_2 = 0 < a < 2;
|
// Correct:
|
||||||
// Correct:
|
int between_0_and_2 = 0 < a && a < 2;
|
||||||
int between_0_and_2 = 0 < a && a < 2;
|
|
||||||
|
|
||||||
// Logic works on ints
|
// Logic works on ints
|
||||||
!3; // => 0 (Logical not)
|
!3; // => 0 (Logical not)
|
||||||
!0; // => 1
|
!0; // => 1
|
||||||
1 && 1; // => 1 (Logical and)
|
1 && 1; // => 1 (Logical and)
|
||||||
0 && 1; // => 0
|
0 && 1; // => 0
|
||||||
0 || 1; // => 1 (Logical or)
|
0 || 1; // => 1 (Logical or)
|
||||||
0 || 0; // => 0
|
0 || 0; // => 0
|
||||||
|
|
||||||
//Conditional expression ( ? : )
|
//Conditional expression ( ? : )
|
||||||
int a = 5;
|
int e = 5;
|
||||||
int b = 10;
|
int f = 10;
|
||||||
int z;
|
int z;
|
||||||
z = (a > b) ? a : b; // => 10 "if a > b return a, else return b."
|
z = (a > b) ? a : b; // => 10 "if a > b return a, else return b."
|
||||||
|
|
||||||
//Increment and decrement operators:
|
//Increment and decrement operators:
|
||||||
char *s = "iLoveC";
|
char *s = "iLoveC";
|
||||||
int j = 0;
|
int j = 0;
|
||||||
s[j++]; // => "i". Returns the j-th item of s THEN increments value of j.
|
s[j++]; // => "i". Returns the j-th item of s THEN increments value of j.
|
||||||
j = 0;
|
j = 0;
|
||||||
s[++j]; // => "L". Increments value of j THEN returns j-th value of s.
|
s[++j]; // => "L". Increments value of j THEN returns j-th value of s.
|
||||||
// same with j-- and --j
|
// same with j-- and --j
|
||||||
|
|
||||||
// Bitwise operators!
|
// Bitwise operators!
|
||||||
~0x0F; // => 0xF0 (bitwise negation, "1's complement")
|
~0x0F; // => 0xF0 (bitwise negation, "1's complement")
|
||||||
0x0F & 0xF0; // => 0x00 (bitwise AND)
|
0x0F & 0xF0; // => 0x00 (bitwise AND)
|
||||||
0x0F | 0xF0; // => 0xFF (bitwise OR)
|
0x0F | 0xF0; // => 0xFF (bitwise OR)
|
||||||
0x04 ^ 0x0F; // => 0x0B (bitwise XOR)
|
0x04 ^ 0x0F; // => 0x0B (bitwise XOR)
|
||||||
0x01 << 1; // => 0x02 (bitwise left shift (by 1))
|
0x01 << 1; // => 0x02 (bitwise left shift (by 1))
|
||||||
0x02 >> 1; // => 0x01 (bitwise right shift (by 1))
|
0x02 >> 1; // => 0x01 (bitwise right shift (by 1))
|
||||||
|
|
||||||
// Be careful when shifting signed integers - the following are undefined:
|
// Be careful when shifting signed integers - the following are undefined:
|
||||||
// - shifting into the sign bit of a signed integer (int a = 1 << 32)
|
// - shifting into the sign bit of a signed integer (int a = 1 << 32)
|
||||||
// - left-shifting a negative number (int a = -1 << 2)
|
// - left-shifting a negative number (int a = -1 << 2)
|
||||||
// - shifting by an offset which is >= the width of the type of the LHS:
|
// - shifting by an offset which is >= the width of the type of the LHS:
|
||||||
// int a = 1 << 32; // UB if int is 32 bits wide
|
// int a = 1 << 32; // UB if int is 32 bits wide
|
||||||
|
|
||||||
///////////////////////////////////////
|
///////////////////////////////////////
|
||||||
// Control Structures
|
// Control Structures
|
||||||
///////////////////////////////////////
|
///////////////////////////////////////
|
||||||
|
|
||||||
if (0) {
|
if (0) {
|
||||||
printf("I am never run\n");
|
printf("I am never run\n");
|
||||||
} else if (0) {
|
} else if (0) {
|
||||||
printf("I am also never run\n");
|
printf("I am also never run\n");
|
||||||
} else {
|
} else {
|
||||||
printf("I print\n");
|
printf("I print\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
// While loops exist
|
// While loops exist
|
||||||
int ii = 0;
|
int ii = 0;
|
||||||
while (ii < 10) { //ANY value not zero is true.
|
while (ii < 10) { //ANY value not zero is true.
|
||||||
printf("%d, ", ii++); // ii++ increments ii AFTER using its current value.
|
printf("%d, ", ii++); // ii++ increments ii AFTER using its current value.
|
||||||
} // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
|
} // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
|
||||||
|
|
||||||
printf("\n");
|
printf("\n");
|
||||||
|
|
||||||
int kk = 0;
|
int kk = 0;
|
||||||
do {
|
do {
|
||||||
printf("%d, ", kk);
|
printf("%d, ", kk);
|
||||||
} while (++kk < 10); // ++kk increments kk BEFORE using its current value.
|
} while (++kk < 10); // ++kk increments kk BEFORE using its current value.
|
||||||
// => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
|
// => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
|
||||||
|
|
||||||
printf("\n");
|
printf("\n");
|
||||||
|
|
||||||
// For loops too
|
// For loops too
|
||||||
int jj;
|
int jj;
|
||||||
for (jj=0; jj < 10; jj++) {
|
for (jj=0; jj < 10; jj++) {
|
||||||
printf("%d, ", jj);
|
printf("%d, ", jj);
|
||||||
} // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
|
} // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
|
||||||
|
|
||||||
printf("\n");
|
printf("\n");
|
||||||
|
|
||||||
// *****NOTES*****:
|
// *****NOTES*****:
|
||||||
// Loops and Functions MUST have a body. If no body is needed:
|
// Loops and Functions MUST have a body. If no body is needed:
|
||||||
int i;
|
int i;
|
||||||
for (i = 0; i <= 5; i++) {
|
for (i = 0; i <= 5; i++) {
|
||||||
; // use semicolon to act as the body (null statement)
|
; // use semicolon to act as the body (null statement)
|
||||||
}
|
}
|
||||||
|
|
||||||
// branching with multiple choices: switch()
|
// branching with multiple choices: switch()
|
||||||
switch (some_integral_expression) {
|
switch (a) {
|
||||||
case 0: // labels need to be integral *constant* expressions
|
case 0: // labels need to be integral *constant* expressions
|
||||||
do_stuff();
|
do_stuff();
|
||||||
break; // if you don't break, control flow falls over labels
|
break; // if you don't break, control flow falls over labels
|
||||||
case 1:
|
case 1:
|
||||||
do_something_else();
|
do_something_else();
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
// if `some_integral_expression` didn't match any of the labels
|
// if `some_integral_expression` didn't match any of the labels
|
||||||
fputs("error!\n", stderr);
|
fputs("error!\n", stderr);
|
||||||
exit(-1);
|
exit(-1);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
///////////////////////////////////////
|
///////////////////////////////////////
|
||||||
// Typecasting
|
// Typecasting
|
||||||
///////////////////////////////////////
|
///////////////////////////////////////
|
||||||
|
|
||||||
// Every value in C has a type, but you can cast one value into another type
|
// Every value in C has a type, but you can cast one value into another type
|
||||||
// if you want (with some constraints).
|
// if you want (with some constraints).
|
||||||
|
|
||||||
int x_hex = 0x01; // You can assign vars with hex literals
|
int x_hex = 0x01; // You can assign vars with hex literals
|
||||||
|
|
||||||
// Casting between types will attempt to preserve their numeric values
|
// Casting between types will attempt to preserve their numeric values
|
||||||
printf("%d\n", x_hex); // => Prints 1
|
printf("%d\n", x_hex); // => Prints 1
|
||||||
printf("%d\n", (short) x_hex); // => Prints 1
|
printf("%d\n", (short) x_hex); // => Prints 1
|
||||||
printf("%d\n", (char) x_hex); // => Prints 1
|
printf("%d\n", (char) x_hex); // => Prints 1
|
||||||
|
|
||||||
// Types will overflow without warning
|
// Types will overflow without warning
|
||||||
printf("%d\n", (unsigned char) 257); // => 1 (Max char = 255 if char is 8 bits long)
|
printf("%d\n", (unsigned char) 257); // => 1 (Max char = 255 if char is 8 bits long)
|
||||||
|
|
||||||
// For determining the max value of a `char`, a `signed char` and an `unsigned char`,
|
// For determining the max value of a `char`, a `signed char` and an `unsigned char`,
|
||||||
// respectively, use the CHAR_MAX, SCHAR_MAX and UCHAR_MAX macros from <limits.h>
|
// respectively, use the CHAR_MAX, SCHAR_MAX and UCHAR_MAX macros from <limits.h>
|
||||||
|
|
||||||
// Integral types can be cast to floating-point types, and vice-versa.
|
// Integral types can be cast to floating-point types, and vice-versa.
|
||||||
printf("%f\n", (float)100); // %f formats a float
|
printf("%f\n", (float)100); // %f formats a float
|
||||||
printf("%lf\n", (double)100); // %lf formats a double
|
printf("%lf\n", (double)100); // %lf formats a double
|
||||||
printf("%d\n", (char)100.0);
|
printf("%d\n", (char)100.0);
|
||||||
|
|
||||||
///////////////////////////////////////
|
///////////////////////////////////////
|
||||||
// Pointers
|
// Pointers
|
||||||
///////////////////////////////////////
|
///////////////////////////////////////
|
||||||
|
|
||||||
// A pointer is a variable declared to store a memory address. Its declaration will
|
// A pointer is a variable declared to store a memory address. Its declaration will
|
||||||
// also tell you the type of data it points to. You can retrieve the memory address
|
// also tell you the type of data it points to. You can retrieve the memory address
|
||||||
// of your variables, then mess with them.
|
// of your variables, then mess with them.
|
||||||
|
|
||||||
int x = 0;
|
int x = 0;
|
||||||
printf("%p\n", (void *)&x); // Use & to retrieve the address of a variable
|
printf("%p\n", (void *)&x); // Use & to retrieve the address of a variable
|
||||||
// (%p formats an object pointer of type void *)
|
// (%p formats an object pointer of type void *)
|
||||||
// => Prints some address in memory;
|
// => Prints some address in memory;
|
||||||
|
|
||||||
|
|
||||||
// Pointers start with * in their declaration
|
// Pointers start with * in their declaration
|
||||||
int *px, not_a_pointer; // px is a pointer to an int
|
int *px, not_a_pointer; // px is a pointer to an int
|
||||||
px = &x; // Stores the address of x in px
|
px = &x; // Stores the address of x in px
|
||||||
printf("%p\n", (void *)px); // => Prints some address in memory
|
printf("%p\n", (void *)px); // => Prints some address in memory
|
||||||
printf("%zu, %zu\n", sizeof(px), sizeof(not_a_pointer));
|
printf("%zu, %zu\n", sizeof(px), sizeof(not_a_pointer));
|
||||||
// => Prints "8, 4" on a typical 64-bit system
|
// => Prints "8, 4" on a typical 64-bit system
|
||||||
|
|
||||||
// To retrieve the value at the address a pointer is pointing to,
|
// To retrieve the value at the address a pointer is pointing to,
|
||||||
// put * in front to dereference it.
|
// put * in front to dereference it.
|
||||||
// Note: yes, it may be confusing that '*' is used for _both_ declaring a
|
// Note: yes, it may be confusing that '*' is used for _both_ declaring a
|
||||||
// pointer and dereferencing it.
|
// pointer and dereferencing it.
|
||||||
printf("%d\n", *px); // => Prints 0, the value of x
|
printf("%d\n", *px); // => Prints 0, the value of x
|
||||||
|
|
||||||
// You can also change the value the pointer is pointing to.
|
// You can also change the value the pointer is pointing to.
|
||||||
// We'll have to wrap the dereference in parenthesis because
|
// We'll have to wrap the dereference in parenthesis because
|
||||||
// ++ has a higher precedence than *.
|
// ++ has a higher precedence than *.
|
||||||
(*px)++; // Increment the value px is pointing to by 1
|
(*px)++; // Increment the value px is pointing to by 1
|
||||||
printf("%d\n", *px); // => Prints 1
|
printf("%d\n", *px); // => Prints 1
|
||||||
printf("%d\n", x); // => Prints 1
|
printf("%d\n", x); // => Prints 1
|
||||||
|
|
||||||
// Arrays are a good way to allocate a contiguous block of memory
|
// Arrays are a good way to allocate a contiguous block of memory
|
||||||
int x_array[20]; //declares array of size 20 (cannot change size)
|
int x_array[20]; //declares array of size 20 (cannot change size)
|
||||||
int xx;
|
int xx;
|
||||||
for (xx = 0; xx < 20; xx++) {
|
for (xx = 0; xx < 20; xx++) {
|
||||||
x_array[xx] = 20 - xx;
|
x_array[xx] = 20 - xx;
|
||||||
} // Initialize x_array to 20, 19, 18,... 2, 1
|
} // Initialize x_array to 20, 19, 18,... 2, 1
|
||||||
|
|
||||||
// Declare a pointer of type int and initialize it to point to x_array
|
// Declare a pointer of type int and initialize it to point to x_array
|
||||||
int* x_ptr = x_array;
|
int* x_ptr = x_array;
|
||||||
// x_ptr now points to the first element in the array (the integer 20).
|
// x_ptr now points to the first element in the array (the integer 20).
|
||||||
// This works because arrays often decay into pointers to their first element.
|
// This works because arrays often decay into pointers to their first element.
|
||||||
// For example, when an array is passed to a function or is assigned to a pointer,
|
// For example, when an array is passed to a function or is assigned to a pointer,
|
||||||
// it decays into (implicitly converted to) a pointer.
|
// it decays into (implicitly converted to) a pointer.
|
||||||
// Exceptions: when the array is the argument of the `&` (address-of) operator:
|
// Exceptions: when the array is the argument of the `&` (address-of) operator:
|
||||||
int arr[10];
|
int arr[10];
|
||||||
int (*ptr_to_arr)[10] = &arr; // &arr is NOT of type `int *`!
|
int (*ptr_to_arr)[10] = &arr; // &arr is NOT of type `int *`!
|
||||||
// It's of type "pointer to array" (of ten `int`s).
|
// It's of type "pointer to array" (of ten `int`s).
|
||||||
// or when the array is a string literal used for initializing a char array:
|
// or when the array is a string literal used for initializing a char array:
|
||||||
char arr[] = "foobarbazquirk";
|
char otherarr[] = "foobarbazquirk";
|
||||||
// or when it's the argument of the `sizeof` or `alignof` operator:
|
// or when it's the argument of the `sizeof` or `alignof` operator:
|
||||||
int arr[10];
|
int arraythethird[10];
|
||||||
int *ptr = arr; // equivalent with int *ptr = &arr[0];
|
int *ptr = arraythethird; // equivalent with int *ptr = &arr[0];
|
||||||
printf("%zu, %zu\n", sizeof arr, sizeof ptr); // probably prints "40, 4" or "40, 8"
|
printf("%zu, %zu\n", sizeof arraythethird, sizeof ptr); // probably prints "40, 4" or "40, 8"
|
||||||
|
|
||||||
|
|
||||||
// Pointers are incremented and decremented based on their type
|
// Pointers are incremented and decremented based on their type
|
||||||
// (this is called pointer arithmetic)
|
// (this is called pointer arithmetic)
|
||||||
printf("%d\n", *(x_ptr + 1)); // => Prints 19
|
printf("%d\n", *(x_ptr + 1)); // => Prints 19
|
||||||
printf("%d\n", x_array[1]); // => Prints 19
|
printf("%d\n", x_array[1]); // => Prints 19
|
||||||
|
|
||||||
// You can also dynamically allocate contiguous blocks of memory with the
|
// You can also dynamically allocate contiguous blocks of memory with the
|
||||||
// standard library function malloc, which takes one argument of type size_t
|
// standard library function malloc, which takes one argument of type size_t
|
||||||
// representing the number of bytes to allocate (usually from the heap, although this
|
// representing the number of bytes to allocate (usually from the heap, although this
|
||||||
// may not be true on e.g. embedded systems - the C standard says nothing about it).
|
// may not be true on e.g. embedded systems - the C standard says nothing about it).
|
||||||
int *my_ptr = malloc(sizeof(*my_ptr) * 20);
|
int *my_ptr = malloc(sizeof(*my_ptr) * 20);
|
||||||
for (xx = 0; xx < 20; xx++) {
|
for (xx = 0; xx < 20; xx++) {
|
||||||
*(my_ptr + xx) = 20 - xx; // my_ptr[xx] = 20-xx
|
*(my_ptr + xx) = 20 - xx; // my_ptr[xx] = 20-xx
|
||||||
} // Initialize memory to 20, 19, 18, 17... 2, 1 (as ints)
|
} // Initialize memory to 20, 19, 18, 17... 2, 1 (as ints)
|
||||||
|
|
||||||
// Dereferencing memory that you haven't allocated gives
|
// Dereferencing memory that you haven't allocated gives
|
||||||
// "unpredictable results" - the program is said to invoke "undefined behavior"
|
// "unpredictable results" - the program is said to invoke "undefined behavior"
|
||||||
printf("%d\n", *(my_ptr + 21)); // => Prints who-knows-what? It may even crash.
|
printf("%d\n", *(my_ptr + 21)); // => Prints who-knows-what? It may even crash.
|
||||||
|
|
||||||
// When you're done with a malloc'd block of memory, you need to free it,
|
// When you're done with a malloc'd block of memory, you need to free it,
|
||||||
// or else no one else can use it until your program terminates
|
// or else no one else can use it until your program terminates
|
||||||
// (this is called a "memory leak"):
|
// (this is called a "memory leak"):
|
||||||
free(my_ptr);
|
free(my_ptr);
|
||||||
|
|
||||||
// Strings are arrays of char, but they are usually represented as a
|
// Strings are arrays of char, but they are usually represented as a
|
||||||
// pointer-to-char (which is a pointer to the first element of the array).
|
// pointer-to-char (which is a pointer to the first element of the array).
|
||||||
// It's good practice to use `const char *' when referring to a string literal,
|
// It's good practice to use `const char *' when referring to a string literal,
|
||||||
// since string literals shall not be modified (i.e. "foo"[0] = 'a' is ILLEGAL.)
|
// since string literals shall not be modified (i.e. "foo"[0] = 'a' is ILLEGAL.)
|
||||||
const char *my_str = "This is my very own string literal";
|
const char *my_str = "This is my very own string literal";
|
||||||
printf("%c\n", *my_str); // => 'T'
|
printf("%c\n", *my_str); // => 'T'
|
||||||
|
|
||||||
// This is not the case if the string is an array
|
// This is not the case if the string is an array
|
||||||
// (potentially initialized with a string literal)
|
// (potentially initialized with a string literal)
|
||||||
// that resides in writable memory, as in:
|
// that resides in writable memory, as in:
|
||||||
char foo[] = "foo";
|
char foo[] = "foo";
|
||||||
foo[0] = 'a'; // this is legal, foo now contains "aoo"
|
foo[0] = 'a'; // this is legal, foo now contains "aoo"
|
||||||
|
|
||||||
function_1();
|
function_1();
|
||||||
} // end main function
|
} // end main function
|
||||||
|
|
||||||
///////////////////////////////////////
|
///////////////////////////////////////
|
||||||
@ -427,12 +426,12 @@ int main() {
|
|||||||
|
|
||||||
int add_two_ints(int x1, int x2)
|
int add_two_ints(int x1, int x2)
|
||||||
{
|
{
|
||||||
return x1 + x2; // Use return to return a value
|
return x1 + x2; // Use return to return a value
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
Functions are call by value. When a function is called, the arguments passed to
|
Functions are call by value. When a function is called, the arguments passed to
|
||||||
the function are copies of the original arguments (except arrays). Anything you
|
≈the function are copies of the original arguments (except arrays). Anything you
|
||||||
do to the arguments in the function do not change the value of the original
|
do to the arguments in the function do not change the value of the original
|
||||||
argument where the function was called.
|
argument where the function was called.
|
||||||
|
|
||||||
@ -444,14 +443,14 @@ Example: in-place string reversal
|
|||||||
// A void function returns no value
|
// A void function returns no value
|
||||||
void str_reverse(char *str_in)
|
void str_reverse(char *str_in)
|
||||||
{
|
{
|
||||||
char tmp;
|
char tmp;
|
||||||
int ii = 0;
|
int ii = 0;
|
||||||
size_t len = strlen(str_in); // `strlen()` is part of the c standard library
|
size_t len = strlen(str_in); // `strlen()` is part of the c standard library
|
||||||
for (ii = 0; ii < len / 2; ii++) {
|
for (ii = 0; ii < len / 2; ii++) {
|
||||||
tmp = str_in[ii];
|
tmp = str_in[ii];
|
||||||
str_in[ii] = str_in[len - ii - 1]; // ii-th char from end
|
str_in[ii] = str_in[len - ii - 1]; // ii-th char from end
|
||||||
str_in[len - ii - 1] = tmp;
|
str_in[len - ii - 1] = tmp;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
@ -463,13 +462,13 @@ printf("%s\n", c); // => ".tset a si sihT"
|
|||||||
//if referring to external variables outside function, must use extern keyword.
|
//if referring to external variables outside function, must use extern keyword.
|
||||||
int i = 0;
|
int i = 0;
|
||||||
void testFunc() {
|
void testFunc() {
|
||||||
extern int i; //i here is now using external variable i
|
extern int i; //i here is now using external variable i
|
||||||
}
|
}
|
||||||
|
|
||||||
//make external variables private to source file with static:
|
//make external variables private to source file with static:
|
||||||
static int i = 0; //other files using testFunc() cannot access variable i
|
static int j = 0; //other files using testFunc() cannot access variable i
|
||||||
void testFunc() {
|
void testFunc2() {
|
||||||
extern int i;
|
extern int j;
|
||||||
}
|
}
|
||||||
//**You may also declare functions as static to make them private**
|
//**You may also declare functions as static to make them private**
|
||||||
|
|
||||||
@ -486,8 +485,8 @@ my_type my_type_var = 0;
|
|||||||
// Structs are just collections of data, the members are allocated sequentially,
|
// Structs are just collections of data, the members are allocated sequentially,
|
||||||
// in the order they are written:
|
// in the order they are written:
|
||||||
struct rectangle {
|
struct rectangle {
|
||||||
int width;
|
int width;
|
||||||
int height;
|
int height;
|
||||||
};
|
};
|
||||||
|
|
||||||
// It's not generally true that
|
// It's not generally true that
|
||||||
@ -497,20 +496,20 @@ struct rectangle {
|
|||||||
|
|
||||||
void function_1()
|
void function_1()
|
||||||
{
|
{
|
||||||
struct rectangle my_rec;
|
struct rectangle my_rec;
|
||||||
|
|
||||||
// Access struct members with .
|
// Access struct members with .
|
||||||
my_rec.width = 10;
|
my_rec.width = 10;
|
||||||
my_rec.height = 20;
|
my_rec.height = 20;
|
||||||
|
|
||||||
// You can declare pointers to structs
|
// You can declare pointers to structs
|
||||||
struct rectangle *my_rec_ptr = &my_rec;
|
struct rectangle *my_rec_ptr = &my_rec;
|
||||||
|
|
||||||
// Use dereferencing to set struct pointer members...
|
// Use dereferencing to set struct pointer members...
|
||||||
(*my_rec_ptr).width = 30;
|
(*my_rec_ptr).width = 30;
|
||||||
|
|
||||||
// ... or even better: prefer the -> shorthand for the sake of readability
|
// ... or even better: prefer the -> shorthand for the sake of readability
|
||||||
my_rec_ptr->height = 10; // Same as (*my_rec_ptr).height = 10;
|
my_rec_ptr->height = 10; // Same as (*my_rec_ptr).height = 10;
|
||||||
}
|
}
|
||||||
|
|
||||||
// You can apply a typedef to a struct for convenience
|
// You can apply a typedef to a struct for convenience
|
||||||
@ -518,14 +517,14 @@ typedef struct rectangle rect;
|
|||||||
|
|
||||||
int area(rect r)
|
int area(rect r)
|
||||||
{
|
{
|
||||||
return r.width * r.height;
|
return r.width * r.height;
|
||||||
}
|
}
|
||||||
|
|
||||||
// if you have large structs, you can pass them "by pointer" to avoid copying
|
// if you have large structs, you can pass them "by pointer" to avoid copying
|
||||||
// the whole struct:
|
// the whole struct:
|
||||||
int area(const rect *r)
|
int areaptr(const rect *r)
|
||||||
{
|
{
|
||||||
return r->width * r->height;
|
return r->width * r->height;
|
||||||
}
|
}
|
||||||
|
|
||||||
///////////////////////////////////////
|
///////////////////////////////////////
|
||||||
@ -540,12 +539,12 @@ However, definition syntax may be initially confusing.
|
|||||||
Example: use str_reverse from a pointer
|
Example: use str_reverse from a pointer
|
||||||
*/
|
*/
|
||||||
void str_reverse_through_pointer(char *str_in) {
|
void str_reverse_through_pointer(char *str_in) {
|
||||||
// Define a function pointer variable, named f.
|
// Define a function pointer variable, named f.
|
||||||
void (*f)(char *); // Signature should exactly match the target function.
|
void (*f)(char *); // Signature should exactly match the target function.
|
||||||
f = &str_reverse; // Assign the address for the actual function (determined at run time)
|
f = &str_reverse; // Assign the address for the actual function (determined at run time)
|
||||||
// f = str_reverse; would work as well - functions decay into pointers, similar to arrays
|
// f = str_reverse; would work as well - functions decay into pointers, similar to arrays
|
||||||
(*f)(str_in); // Just calling the function through the pointer
|
(*f)(str_in); // Just calling the function through the pointer
|
||||||
// f(str_in); // That's an alternative but equally valid syntax for calling it.
|
// f(str_in); // That's an alternative but equally valid syntax for calling it.
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
@ -560,36 +559,37 @@ typedef void (*my_fnp_type)(char *);
|
|||||||
// my_fnp_type f;
|
// my_fnp_type f;
|
||||||
|
|
||||||
//Special characters:
|
//Special characters:
|
||||||
'\a' // alert (bell) character
|
/*
|
||||||
'\n' // newline character
|
'\a'; // alert (bell) character
|
||||||
'\t' // tab character (left justifies text)
|
'\n'; // newline character
|
||||||
'\v' // vertical tab
|
'\t'; // tab character (left justifies text)
|
||||||
'\f' // new page (form feed)
|
'\v'; // vertical tab
|
||||||
'\r' // carriage return
|
'\f'; // new page (form feed)
|
||||||
'\b' // backspace character
|
'\r'; // carriage return
|
||||||
'\0' // NULL character. Usually put at end of strings in C.
|
'\b'; // backspace character
|
||||||
// hello\n\0. \0 used by convention to mark end of string.
|
'\0'; // NULL character. Usually put at end of strings in C.
|
||||||
'\\' // backslash
|
// hello\n\0. \0 used by convention to mark end of string.
|
||||||
'\?' // question mark
|
'\\'; // backslash
|
||||||
'\'' // single quote
|
'\?'; // question mark
|
||||||
'\"' // double quote
|
'\''; // single quote
|
||||||
'\xhh' // hexadecimal number. Example: '\xb' = vertical tab character
|
'\"'; // double quote
|
||||||
'\ooo' // octal number. Example: '\013' = vertical tab character
|
'\xhh'; // hexadecimal number. Example: '\xb' = vertical tab character
|
||||||
|
'\ooo'; // octal number. Example: '\013' = vertical tab character
|
||||||
|
|
||||||
//print formatting:
|
//print formatting:
|
||||||
"%d" // integer
|
"%d"; // integer
|
||||||
"%3d" // integer with minimum of length 3 digits (right justifies text)
|
"%3d"; // integer with minimum of length 3 digits (right justifies text)
|
||||||
"%s" // string
|
"%s"; // string
|
||||||
"%f" // float
|
"%f"; // float
|
||||||
"%ld" // long
|
"%ld"; // long
|
||||||
"%3.2f" // minimum 3 digits left and 2 digits right decimal float
|
"%3.2f"; // minimum 3 digits left and 2 digits right decimal float
|
||||||
"%7.4s" // (can do with strings too)
|
"%7.4s"; // (can do with strings too)
|
||||||
"%c" // char
|
"%c"; // char
|
||||||
"%p" // pointer
|
"%p"; // pointer
|
||||||
"%x" // hexadecimal
|
"%x"; // hexadecimal
|
||||||
"%o" // octal
|
"%o"; // octal
|
||||||
"%%" // prints %
|
"%%"; // prints %
|
||||||
|
*/
|
||||||
///////////////////////////////////////
|
///////////////////////////////////////
|
||||||
// Order of Evaluation
|
// Order of Evaluation
|
||||||
///////////////////////////////////////
|
///////////////////////////////////////
|
||||||
|
Loading…
Reference in New Issue
Block a user