[julia/en] camelCase functions => snake_case

This commit is contained in:
Keith Miyake 2018-10-04 15:51:04 -07:00
parent f894add86a
commit 3499b83589

View File

@ -434,8 +434,8 @@ add(5, 6)
# => 11
# Compact assignment of functions
fAdd(x, y) = x + y # => fAdd (generic function with 1 method)
fAdd(3, 4) # => 7
f_add(x, y) = x + y # => f_add (generic function with 1 method)
f_add(3, 4) # => 7
# Function can also return multiple values as tuple
fn(x, y) = x + y, x - y # => fn (generic function with 1 method)
@ -478,56 +478,56 @@ catch e
end
# You can define functions that take keyword arguments
function keywordArgs(;k1=4, name2="hello") # note the ;
function keyword_args(;k1=4, name2="hello") # note the ;
return Dict("k1" => k1, "name2" => name2)
end
# => keywordArgs (generic function with 1 method)
# => keyword_args (generic function with 1 method)
keywordArgs(name2="ness") # => ["name2"=>"ness", "k1"=>4]
keywordArgs(k1="mine") # => ["name2"=>"hello", "k1"=>"mine"]
keywordArgs() # => ["name2"=>"hello", "k1"=>4]
keyword_args(name2="ness") # => ["name2"=>"ness", "k1"=>4]
keyword_args(k1="mine") # => ["name2"=>"hello", "k1"=>"mine"]
keyword_args() # => ["name2"=>"hello", "k1"=>4]
# You can combine all kinds of arguments in the same function
function allTheArgs(normalArg, optionalPositionalArg=2; keywordArg="foo")
function all_the_args(normalArg, optionalPositionalArg=2; keywordArg="foo")
println("normal arg: $normalArg")
println("optional arg: $optionalPositionalArg")
println("keyword arg: $keywordArg")
end
# => allTheArgs (generic function with 2 methods)
# => all_the_args (generic function with 2 methods)
allAheArgs(1, 3, keywordArg=4)
all_the_args(1, 3, keywordArg=4)
# => normal arg: 1
# => optional arg: 3
# => keyword arg: 4
# Julia has first class functions
function createAdder(x)
function create_adder(x)
adder = function (y)
return x + y
end
return adder
end
# => createAdder (generic function with 1 method)
# => create_adder (generic function with 1 method)
# This is "stabby lambda syntax" for creating anonymous functions
(x -> x > 2)(3) # => true
# This function is identical to createAdder implementation above.
function createAdder(x)
# This function is identical to create_adder implementation above.
function create_adder(x)
y -> x + y
end
# => createAdder (generic function with 1 method)
# => create_adder (generic function with 1 method)
# You can also name the internal function, if you want
function createAdder(x)
function create_adder(x)
function adder(y)
x + y
end
adder
end
# => createAdder (generic function with 1 method)
# => create_adder (generic function with 1 method)
add10 = createAdder(10) # => (::getfield(Main, Symbol("#adder#11")){Int64})
add10 = create_adder(10) # => (::getfield(Main, Symbol("#adder#11")){Int64})
# (generic function with 1 method)
add10(3) # => 13
@ -669,14 +669,14 @@ Lion <: Cat # => true
Panther <: Cat # => true
# Defining a function that takes Cats
function petCat(cat::Cat)
function pet_cat(cat::Cat)
println("The cat says $(meow(cat))")
end
# => petCat (generic function with 1 method)
# => pet_cat (generic function with 1 method)
petCat(Lion("42")) # => The cat says 42
pet_cat(Lion("42")) # => The cat says 42
try
petCat(tigger) # => ERROR: MethodError: no method matching petCat(::Tiger)
pet_cat(tigger) # => ERROR: MethodError: no method matching pet_cat(::Tiger)
catch e
println(e)
end
@ -744,14 +744,14 @@ fight(Lion("RAR"), Lion("brown", "rarrr")) # => The lions come to a tie
# Under the hood
# You can take a look at the llvm and the assembly code generated.
squareArea(l) = l * l # squareArea (generic function with 1 method)
square_area(l) = l * l # square_area (generic function with 1 method)
squareArea(5) # => 25
square_area(5) # => 25
# What happens when we feed squareArea an integer?
codeNative(squareArea, (Int32,), syntax = :intel)
# What happens when we feed square_area an integer?
codeNative(square_area, (Int32,), syntax = :intel)
# .text
# ; Function squareArea {
# ; Function square_area {
# ; Location: REPL[116]:1 # Prologue
# push rbp
# mov rbp, rsp
@ -765,9 +765,9 @@ codeNative(squareArea, (Int32,), syntax = :intel)
# nop dword ptr [rax + rax]
# ;}
codeNative(squareArea, (Float32,), syntax = :intel)
codeNative(square_area, (Float32,), syntax = :intel)
# .text
# ; Function squareArea {
# ; Function square_area {
# ; Location: REPL[116]:1
# push rbp
# mov rbp, rsp
@ -780,9 +780,9 @@ codeNative(squareArea, (Float32,), syntax = :intel)
# nop word ptr [rax + rax]
# ;}
codeNative(squareArea, (Float64,), syntax = :intel)
codeNative(square_area, (Float64,), syntax = :intel)
# .text
# ; Function squareArea {
# ; Function square_area {
# ; Location: REPL[116]:1
# push rbp
# mov rbp, rsp
@ -798,12 +798,12 @@ codeNative(squareArea, (Float64,), syntax = :intel)
# Note that julia will use floating point instructions if any of the
# arguments are floats.
# Let's calculate the area of a circle
circleArea(r) = pi * r * r # circleArea (generic function with 1 method)
circleArea(5) # 78.53981633974483
circle_area(r) = pi * r * r # circle_area (generic function with 1 method)
circle_area(5) # 78.53981633974483
codeNative(circleArea, (Int32,), syntax = :intel)
codeNative(circle_area, (Int32,), syntax = :intel)
# .text
# ; Function circleArea {
# ; Function circle_area {
# ; Location: REPL[121]:1
# push rbp
# mov rbp, rsp
@ -832,9 +832,9 @@ codeNative(circleArea, (Int32,), syntax = :intel)
# nop dword ptr [rax]
# ;}
codeNative(circleArea, (Float64,), syntax = :intel)
codeNative(circle_area, (Float64,), syntax = :intel)
# .text
# ; Function circleArea {
# ; Function circle_area {
# ; Location: REPL[121]:1
# push rbp
# mov rbp, rsp