Merge remote-tracking branch 'upstream/master'

This commit is contained in:
Geoff Liu 2015-03-16 14:25:46 -06:00
commit 366fe47ffa
4 changed files with 123 additions and 76 deletions

View File

@ -30,10 +30,10 @@ one of the most widely-used programming languages.
// C++ is _almost_ a superset of C and shares its basic syntax for // C++ is _almost_ a superset of C and shares its basic syntax for
// variable declarations, primitive types, and functions. // variable declarations, primitive types, and functions.
// However, C++ varies in some of the following ways:
// A main() function in C++ should return an int, // Just like in C, your program's entry point is a function called
// though void main() is accepted by most compilers (gcc, clang, etc.) // main with an integer return type,
// though void main() is also accepted by most compilers (gcc, clang, etc.)
// This value serves as the program's exit status. // This value serves as the program's exit status.
// See http://en.wikipedia.org/wiki/Exit_status for more information. // See http://en.wikipedia.org/wiki/Exit_status for more information.
int main(int argc, char** argv) int main(int argc, char** argv)
@ -51,6 +51,8 @@ int main(int argc, char** argv)
return 0; return 0;
} }
// However, C++ varies in some of the following ways:
// In C++, character literals are one byte. // In C++, character literals are one byte.
sizeof('c') == 1 sizeof('c') == 1

View File

@ -7,6 +7,7 @@ contributors:
- ["Eli Barzilay", "https://github.com/elibarzilay"] - ["Eli Barzilay", "https://github.com/elibarzilay"]
- ["Gustavo Schmidt", "https://github.com/gustavoschmidt"] - ["Gustavo Schmidt", "https://github.com/gustavoschmidt"]
- ["Duong H. Nguyen", "https://github.com/cmpitg"] - ["Duong H. Nguyen", "https://github.com/cmpitg"]
- ["Keyan Zhang", "https://github.com/keyanzhang"]
--- ---
Racket is a general purpose, multi-paradigm programming language in the Lisp/Scheme family. Racket is a general purpose, multi-paradigm programming language in the Lisp/Scheme family.
@ -284,14 +285,47 @@ m ; => '#hash((b . 2) (a . 1) (c . 3)) <-- no `d'
(= 3 3.0) ; => #t (= 3 3.0) ; => #t
(= 2 1) ; => #f (= 2 1) ; => #f
;; for object identity use `eq?' ;; `eq?' returns #t if 2 arguments refer to the same object (in memory),
(eq? 3 3) ; => #t ;; #f otherwise.
(eq? 3 3.0) ; => #f ;; In other words, it's a simple pointer comparison.
(eq? (list 3) (list 3)) ; => #f (eq? '() '()) ; => #t, since there exists only one empty list in memory
(let ([x '()] [y '()])
(eq? x y)) ; => #t, same as above
;; for collections use `equal?' (eq? (list 3) (list 3)) ; => #f
(equal? (list 'a 'b) (list 'a 'b)) ; => #t (let ([x (list 3)] [y (list 3)])
(equal? (list 'a 'b) (list 'b 'a)) ; => #f (eq? x y)) ; => #f — not the same list in memory!
(let* ([x (list 3)] [y x])
(eq? x y)) ; => #t, since x and y now point to the same stuff
(eq? 'yes 'yes) ; => #t
(eq? 'yes 'no) ; => #f
(eq? 3 3) ; => #t — be careful here
; Its better to use `=' for number comparisons.
(eq? 3 3.0) ; => #f
(eq? (expt 2 100) (expt 2 100)) ; => #f
(eq? (integer->char 955) (integer->char 955)) ; => #f
(eq? (string-append "foo" "bar") (string-append "foo" "bar")) ; => #f
;; `eqv?' supports the comparison of number and character datatypes.
;; for other datatypes, `eqv?' and `eq?' return the same result.
(eqv? 3 3.0) ; => #f
(eqv? (expt 2 100) (expt 2 100)) ; => #t
(eqv? (integer->char 955) (integer->char 955)) ; => #t
(eqv? (string-append "foo" "bar") (string-append "foo" "bar")) ; => #f
;; `equal?' supports the comparison of the following datatypes:
;; strings, byte strings, pairs, mutable pairs, vectors, boxes,
;; hash tables, and inspectable structures.
;; for other datatypes, `equal?' and `eqv?' return the same result.
(equal? 3 3.0) ; => #f
(equal? (string-append "foo" "bar") (string-append "foo" "bar")) ; => #t
(equal? (list 3) (list 3)) ; => #t
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 5. Control Flow ;; 5. Control Flow

View File

@ -19,7 +19,7 @@ var isDone: boolean = false;
var lines: number = 42; var lines: number = 42;
var name: string = "Anders"; var name: string = "Anders";
//..When it's impossible to know, there is the "Any" type // When it's impossible to know, there is the "Any" type
var notSure: any = 4; var notSure: any = 4;
notSure = "maybe a string instead"; notSure = "maybe a string instead";
notSure = false; // okay, definitely a boolean notSure = false; // okay, definitely a boolean
@ -33,20 +33,27 @@ var list: Array<number> = [1, 2, 3];
enum Color {Red, Green, Blue}; enum Color {Red, Green, Blue};
var c: Color = Color.Green; var c: Color = Color.Green;
//Lastly, "void" is used in the special case of a function not returning anything // Lastly, "void" is used in the special case of a function returning nothing
function bigHorribleAlert(): void { function bigHorribleAlert(): void {
alert("I'm a little annoying box!"); alert("I'm a little annoying box!");
} }
//Functions are first class citizens, support the lambda "fat arrow" syntax and use type inference // Functions are first class citizens, support the lambda "fat arrow" syntax and
//All examples are equivalent, the same signature will be infered by the compiler, and same JavaScript will be emitted // use type inference
var f1 = function(i: number) : number { return i * i; }
var f2 = function(i: number) { return i * i; } //Return type infered
var f3 = (i : number) : number => { return i * i; }
var f4 = (i: number) => { return i * i; } //Return type infered
var f5 = (i: number) => i * i; //Return type infered, one-liner means no return keyword needed
//Interfaces are structural, anything that has the properties is compliant with the interface // The following are equivalent, the same signature will be infered by the
// compiler, and same JavaScript will be emitted
var f1 = function(i: number): number { return i * i; }
// Return type inferred
var f2 = function(i: number) { return i * i; }
var f3 = (i: number): number => { return i * i; }
// Return type inferred
var f4 = (i: number) => { return i * i; }
// Return type inferred, one-liner means no return keyword needed
var f5 = (i: number) => i * i;
// Interfaces are structural, anything that has the properties is compliant with
// the interface
interface Person { interface Person {
name: string; name: string;
// Optional properties, marked with a "?" // Optional properties, marked with a "?"
@ -55,17 +62,19 @@ interface Person {
move(): void; move(): void;
} }
//..Object that implements the "Person" interface // Object that implements the "Person" interface
var p : Person = { name: "Bobby", move : () => {} }; //Can be treated as a Person since it has the name and age properties // Can be treated as a Person since it has the name and move properties
//..Objects that have the optional property: var p: Person = { name: "Bobby", move: () => {} };
// Objects that have the optional property:
var validPerson: Person = { name: "Bobby", age: 42, move: () => {} }; var validPerson: Person = { name: "Bobby", age: 42, move: () => {} };
var invalidPerson : Person = { name: "Bobby", age: true }; //Is not a person because age is not a number // Is not a person because age is not a number
var invalidPerson: Person = { name: "Bobby", age: true };
//..Interfaces can also describe a function type // Interfaces can also describe a function type
interface SearchFunc { interface SearchFunc {
(source: string, subString: string): boolean; (source: string, subString: string): boolean;
} }
//..Only the parameters' types are important, names are not important. // Only the parameters' types are important, names are not important.
var mySearch: SearchFunc; var mySearch: SearchFunc;
mySearch = function(src: string, sub: string) { mySearch = function(src: string, sub: string) {
return src.search(sub) != -1; return src.search(sub) != -1;
@ -76,10 +85,12 @@ class Point {
// Properties // Properties
x: number; x: number;
//Constructor - the public/private keywords in this context will generate the boiler plate code // Constructor - the public/private keywords in this context will generate
// for the property and the initialization in the constructor. // the boiler plate code for the property and the initialization in the
// constructor.
// In this example, "y" will be defined just like "x" is, but with less code // In this example, "y" will be defined just like "x" is, but with less code
// Default values are also supported // Default values are also supported
constructor(x: number, public y: number = 0) { constructor(x: number, public y: number = 0) {
this.x = x; this.x = x;
} }
@ -120,25 +131,25 @@ module Geometry {
var s1 = new Geometry.Square(5); var s1 = new Geometry.Square(5);
//..Local alias for referencing a module // Local alias for referencing a module
import G = Geometry; import G = Geometry;
var s2 = new G.Square(10); var s2 = new G.Square(10);
// Generics // Generics
//..Classes // Classes
class Tuple<T1, T2> { class Tuple<T1, T2> {
constructor(public item1: T1, public item2: T2) { constructor(public item1: T1, public item2: T2) {
} }
} }
//..Interfaces // Interfaces
interface Pair<T> { interface Pair<T> {
item1: T; item1: T;
item2: T; item2: T;
} }
//..And functions // And functions
var pairToTuple = function<T>(p: Pair<T>) { var pairToTuple = function<T>(p: Pair<T>) {
return new Tuple(p.item1, p.item2); return new Tuple(p.item1, p.item2);
}; };