SKI, SK and Iota

This commit is contained in:
YAN HUI HANG 2018-07-15 15:33:01 +08:00
parent 0d211d3419
commit 3ab2e88b4a

View File

@ -3,6 +3,7 @@ category: Algorithms & Data Structures
name: Lambda Calculus name: Lambda Calculus
contributors: contributors:
- ["Max Sun", "http://github.com/maxsun"] - ["Max Sun", "http://github.com/maxsun"]
- ["Yan Hui Hang", "http://github.com/yanhh0"]
--- ---
# Lambda Calculus # Lambda Calculus
@ -114,8 +115,100 @@ Using successor, we can define add:
**Challenge:** try defining your own multiplication function! **Challenge:** try defining your own multiplication function!
## Get even smaller: SKI, SK and Iota
### SKI Combinator Calculus
Let S, K, I be the following functions:
`I x = x`
`K x y = x`
`S x y z = x z (y z)`
We can convert an expression in the lambda calculus to an expression
in the SKI combinator calculus:
1. `λx.x = I`
2. `λx.c = Kc`
3. `λx.(y z) = S (λx.y) (λx.z)`
Take the church number 2 for example:
`2 = λf.λx.f(f x)`
For the inner part `λx.f(f x)`:
```
λx.f(f x)
= S (λx.f) (λx.(f x)) (case 3)
= S (K f) (S (λx.f) (λx.x)) (case 2, 3)
= S (K f) (S (K f) I) (case 2, 1)
```
So:
```
2
= λf.λx.f(f x)
= λf.(S (K f) (S (K f) I))
= λf.((S (K f)) (S (K f) I))
= S (λf.(S (K f))) (λf.(S (K f) I)) (case 3)
```
For the first argument `λf.(S (K f))`:
```
λf.(S (K f))
= S (λf.S) (λf.(K f)) (case 3)
= S (K S) (S (λf.K) (λf.f)) (case 2, 3)
= S (K S) (S (K K) I) (case 2, 3)
```
For the second argument `λf.(S (K f) I)`:
```
λf.(S (K f) I)
= λf.((S (K f)) I)
= S (λf.(S (K f))) (λf.I) (case 3)
= S (S (λf.S) (λf.(K f))) (K I) (case 2, 3)
= S (S (K S) (S (λf.K) (λf.f))) (K I) (case 1, 3)
= S (S (K S) (S (K K) I)) (K I) (case 1, 2)
```
Merging them up:
```
2
= S (λf.(S (K f))) (λf.(S (K f) I))
= S (S (K S) (S (K K) I)) (S (S (K S) (S (K K) I)) (K I))
```
Expanding this, we would end up with the same expression for the
church number 2 again.
### SK Combinator Calculus
The SKI combinator calculus can still be reduced further. We can
remove the I combinator by noting that `I = SKK`. We can substitute
all `I`'s with `SKK`.
### Iota Combinator
The SK combinator calculus is still not minimal. Defining:
```
ι = λf.((f S) K)
```
We have:
```
I = ιι
K = ι(ιI) = ι(ι(ιι))
S = ι(K) = ι(ι(ι(ιι)))
```
## For more advanced reading: ## For more advanced reading:
1. [A Tutorial Introduction to the Lambda Calculus](http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf) 1. [A Tutorial Introduction to the Lambda Calculus](http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf)
2. [Cornell CS 312 Recitation 26: The Lambda Calculus](http://www.cs.cornell.edu/courses/cs3110/2008fa/recitations/rec26.html) 2. [Cornell CS 312 Recitation 26: The Lambda Calculus](http://www.cs.cornell.edu/courses/cs3110/2008fa/recitations/rec26.html)
3. [Wikipedia - Lambda Calculus](https://en.wikipedia.org/wiki/Lambda_calculus) 3. [Wikipedia - Lambda Calculus](https://en.wikipedia.org/wiki/Lambda_calculus)
4. [Wikipedia - SKI combinator calculus](https://en.wikipedia.org/wiki/SKI_combinator_calculus)
5. [Wikipedia - Iota and Jot](https://en.wikipedia.org/wiki/Iota_and_Jot)