mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-12-23 09:41:36 +00:00
Piddly things
This commit is contained in:
parent
f733ea36d2
commit
4d705abd99
342
go.html.markdown
342
go.html.markdown
@ -18,7 +18,7 @@ help with large-scale programming.
|
||||
|
||||
Go comes with a great standard library and an enthusiastic community.
|
||||
|
||||
```Go
|
||||
```go
|
||||
// Single line comment
|
||||
/* Multi-
|
||||
line comment */
|
||||
@ -29,260 +29,260 @@ package main
|
||||
|
||||
// Import declaration declares library packages referenced in this file.
|
||||
import (
|
||||
"fmt" // A package in the Go standard library
|
||||
"net/http" // Yes, a web server!
|
||||
"strconv" // String conversions
|
||||
"fmt" // A package in the Go standard library
|
||||
"net/http" // Yes, a web server!
|
||||
"strconv" // String conversions
|
||||
)
|
||||
|
||||
// A function definition. Main is special. It is the entry point for the
|
||||
// executable program. Love it or hate it, Go uses brace brackets.
|
||||
func main() {
|
||||
// Println outputs a line to stdout.
|
||||
// Qualify it with the package name, fmt.
|
||||
fmt.Println("Hello world!")
|
||||
// Println outputs a line to stdout.
|
||||
// Qualify it with the package name, fmt.
|
||||
fmt.Println("Hello world!")
|
||||
|
||||
// Call another function within this package.
|
||||
beyondHello()
|
||||
// Call another function within this package.
|
||||
beyondHello()
|
||||
}
|
||||
|
||||
// Functions have parameters in parentheses.
|
||||
// If there are no parameters, empty parens are still required.
|
||||
func beyondHello() {
|
||||
var x int // Variable declaration. Variables must be declared before use.
|
||||
x = 3 // Variable assignment.
|
||||
// "Short" declarations use := to infer the type, declare, and assign.
|
||||
y := 4
|
||||
sum, prod := learnMultiple(x, y) // function returns two values
|
||||
fmt.Println("sum:", sum, "prod:", prod) // simple output
|
||||
learnTypes() // < y minutes, learn more!
|
||||
var x int // Variable declaration. Variables must be declared before use.
|
||||
x = 3 // Variable assignment.
|
||||
// "Short" declarations use := to infer the type, declare, and assign.
|
||||
y := 4
|
||||
sum, prod := learnMultiple(x, y) // function returns two values
|
||||
fmt.Println("sum:", sum, "prod:", prod) // simple output
|
||||
learnTypes() // < y minutes, learn more!
|
||||
}
|
||||
|
||||
// Functions can have parameters and (multiple!) return values.
|
||||
func learnMultiple(x, y int) (sum, prod int) {
|
||||
return x + y, x * y // return two values
|
||||
return x + y, x * y // return two values
|
||||
}
|
||||
|
||||
// Some built-in types and literals.
|
||||
func learnTypes() {
|
||||
// Short declaration usually gives you what you want.
|
||||
s := "Learn Go!" // string type
|
||||
// Short declaration usually gives you what you want.
|
||||
s := "Learn Go!" // string type
|
||||
|
||||
s2 := `A "raw" string literal
|
||||
s2 := `A "raw" string literal
|
||||
can include line breaks.` // same string type
|
||||
|
||||
// non-ASCII literal. Go source is UTF-8.
|
||||
g := 'Σ' // rune type, an alias for uint32, holds a UTF-8 code point
|
||||
// non-ASCII literal. Go source is UTF-8.
|
||||
g := 'Σ' // rune type, an alias for uint32, holds a UTF-8 code point
|
||||
|
||||
f := 3.14195 // float64, an IEEE-754 64-bit floating point number
|
||||
c := 3 + 4i // complex128, represented internally with two float64s
|
||||
f := 3.14195 // float64, an IEEE-754 64-bit floating point number
|
||||
c := 3 + 4i // complex128, represented internally with two float64s
|
||||
|
||||
// Var syntax with an initializers.
|
||||
var u uint = 7 // unsigned, but implementation dependent size as with int
|
||||
var pi float32 = 22. / 7
|
||||
// Var syntax with an initializers.
|
||||
var u uint = 7 // unsigned, but implementation dependent size as with int
|
||||
var pi float32 = 22. / 7
|
||||
|
||||
// Conversion syntax with a short declaration.
|
||||
n := byte('\n') // byte is an alias for uint8
|
||||
// Conversion syntax with a short declaration.
|
||||
n := byte('\n') // byte is an alias for uint8
|
||||
|
||||
// Arrays have size fixed at compile time.
|
||||
var a4 [4]int // an array of 4 ints, initialized to all 0
|
||||
a3 := [...]int{3, 1, 5} // an array of 3 ints, initialized as shown
|
||||
// Arrays have size fixed at compile time.
|
||||
var a4 [4]int // an array of 4 ints, initialized to all 0
|
||||
a3 := [...]int{3, 1, 5} // an array of 3 ints, initialized as shown
|
||||
|
||||
// Slices have dynamic size. Arrays and slices each have advantages
|
||||
// but use cases for slices are much more common.
|
||||
s3 := []int{4, 5, 9} // compare to a3. no ellipsis here
|
||||
s4 := make([]int, 4) // allocates slice of 4 ints, initialized to all 0
|
||||
var d2 [][]float64 // declaration only, nothing allocated here
|
||||
bs := []byte("a slice") // type conversion syntax
|
||||
// Slices have dynamic size. Arrays and slices each have advantages
|
||||
// but use cases for slices are much more common.
|
||||
s3 := []int{4, 5, 9} // compare to a3. no ellipsis here
|
||||
s4 := make([]int, 4) // allocates slice of 4 ints, initialized to all 0
|
||||
var d2 [][]float64 // declaration only, nothing allocated here
|
||||
bs := []byte("a slice") // type conversion syntax
|
||||
|
||||
p, q := learnMemory() // declares p, q to be type pointer to int.
|
||||
fmt.Println(*p, *q) // * follows a pointer. This prints two ints.
|
||||
p, q := learnMemory() // declares p, q to be type pointer to int.
|
||||
fmt.Println(*p, *q) // * follows a pointer. This prints two ints.
|
||||
|
||||
// Maps are a dynamically growable associative array type, like the
|
||||
// hash or dictionary types of some other languages.
|
||||
m := map[string]int{"three": 3, "four": 4}
|
||||
m["one"] = 1
|
||||
// Maps are a dynamically growable associative array type, like the
|
||||
// hash or dictionary types of some other languages.
|
||||
m := map[string]int{"three": 3, "four": 4}
|
||||
m["one"] = 1
|
||||
|
||||
// Unused variables are an error in Go.
|
||||
// The underbar lets you "use" a variable but discard its value.
|
||||
_, _, _, _, _, _, _, _, _ = s2, g, f, u, pi, n, a3, s4, bs
|
||||
// Output of course counts as using a variable.
|
||||
fmt.Println(s, c, a4, s3, d2, m)
|
||||
// Unused variables are an error in Go.
|
||||
// The underbar lets you "use" a variable but discard its value.
|
||||
_, _, _, _, _, _, _, _, _ = s2, g, f, u, pi, n, a3, s4, bs
|
||||
// Output of course counts as using a variable.
|
||||
fmt.Println(s, c, a4, s3, d2, m)
|
||||
|
||||
learnFlowControl() // back in the flow
|
||||
learnFlowControl() // back in the flow
|
||||
}
|
||||
|
||||
// Go is fully garbage collected. It has pointers but no pointer arithmetic.
|
||||
// You can make a mistake with a nil pointer, but not by incrementing a pointer.
|
||||
func learnMemory() (p, q *int) {
|
||||
// Named return values p and q have type pointer to int.
|
||||
p = new(int) // built-in function new allocates memory.
|
||||
// The allocated int is initialized to 0, p is no longer nil.
|
||||
s := make([]int, 20) // allocate 20 ints as a single block of memory
|
||||
s[3] = 7 // assign one of them
|
||||
r := -2 // declare another local variable
|
||||
return &s[3], &r // & takes the address of an object.
|
||||
// Named return values p and q have type pointer to int.
|
||||
p = new(int) // built-in function new allocates memory.
|
||||
// The allocated int is initialized to 0, p is no longer nil.
|
||||
s := make([]int, 20) // allocate 20 ints as a single block of memory
|
||||
s[3] = 7 // assign one of them
|
||||
r := -2 // declare another local variable
|
||||
return &s[3], &r // & takes the address of an object.
|
||||
}
|
||||
|
||||
func expensiveComputation() int {
|
||||
return 1e6
|
||||
return 1e6
|
||||
}
|
||||
|
||||
func learnFlowControl() {
|
||||
// If statements require brace brackets, and do not require parens.
|
||||
if true {
|
||||
fmt.Println("told ya")
|
||||
}
|
||||
// Formatting is standardized by the command line command "go fmt."
|
||||
if false {
|
||||
// pout
|
||||
} else {
|
||||
// gloat
|
||||
}
|
||||
// Use switch in preference to chained if statements.
|
||||
x := 1
|
||||
switch x {
|
||||
case 0:
|
||||
case 1:
|
||||
// cases don't "fall through"
|
||||
case 2:
|
||||
// unreached
|
||||
}
|
||||
// Like if, for doesn't use parens either.
|
||||
for x := 0; x < 3; x++ { // ++ is a statement
|
||||
fmt.Println("iteration", x)
|
||||
}
|
||||
// x == 1 here.
|
||||
// If statements require brace brackets, and do not require parens.
|
||||
if true {
|
||||
fmt.Println("told ya")
|
||||
}
|
||||
// Formatting is standardized by the command line command "go fmt."
|
||||
if false {
|
||||
// pout
|
||||
} else {
|
||||
// gloat
|
||||
}
|
||||
// Use switch in preference to chained if statements.
|
||||
x := 1
|
||||
switch x {
|
||||
case 0:
|
||||
case 1:
|
||||
// cases don't "fall through"
|
||||
case 2:
|
||||
// unreached
|
||||
}
|
||||
// Like if, for doesn't use parens either.
|
||||
for x := 0; x < 3; x++ { // ++ is a statement
|
||||
fmt.Println("iteration", x)
|
||||
}
|
||||
// x == 1 here.
|
||||
|
||||
// For is the only loop statement in Go, but it has alternate forms.
|
||||
for { // infinite loop
|
||||
break // just kidding
|
||||
continue // unreached
|
||||
}
|
||||
// As with for, := in an if statement means to declare and assign y first,
|
||||
// then test y > x.
|
||||
if y := expensiveComputation(); y > x {
|
||||
x = y
|
||||
}
|
||||
// Function literals are closures.
|
||||
xBig := func() bool {
|
||||
return x > 100 // references x declared above switch statement.
|
||||
}
|
||||
fmt.Println("xBig:", xBig()) // true (we last assigned 1e6 to x)
|
||||
x /= 1e5 // this makes it == 10
|
||||
fmt.Println("xBig:", xBig()) // false now
|
||||
// For is the only loop statement in Go, but it has alternate forms.
|
||||
for { // infinite loop
|
||||
break // just kidding
|
||||
continue // unreached
|
||||
}
|
||||
// As with for, := in an if statement means to declare and assign y first,
|
||||
// then test y > x.
|
||||
if y := expensiveComputation(); y > x {
|
||||
x = y
|
||||
}
|
||||
// Function literals are closures.
|
||||
xBig := func() bool {
|
||||
return x > 100 // references x declared above switch statement.
|
||||
}
|
||||
fmt.Println("xBig:", xBig()) // true (we last assigned 1e6 to x)
|
||||
x /= 1e5 // this makes it == 10
|
||||
fmt.Println("xBig:", xBig()) // false now
|
||||
|
||||
// When you need it, you'll love it.
|
||||
goto love
|
||||
// When you need it, you'll love it.
|
||||
goto love
|
||||
love:
|
||||
|
||||
learnInterfaces() // Good stuff coming up!
|
||||
learnInterfaces() // Good stuff coming up!
|
||||
}
|
||||
|
||||
// Define Stringer as an interface type with one method, String.
|
||||
type Stringer interface {
|
||||
String() string
|
||||
String() string
|
||||
}
|
||||
|
||||
// Define pair as a struct with two fields, ints named x and y.
|
||||
type pair struct {
|
||||
x, y int
|
||||
x, y int
|
||||
}
|
||||
|
||||
// Define a method on type pair. Pair now implements Stringer.
|
||||
func (p pair) String() string { // p is called the "receiver"
|
||||
// Sprintf is another public function in package fmt.
|
||||
// Dot syntax references fields of p.
|
||||
return fmt.Sprintf("(%d, %d)", p.x, p.y)
|
||||
// Sprintf is another public function in package fmt.
|
||||
// Dot syntax references fields of p.
|
||||
return fmt.Sprintf("(%d, %d)", p.x, p.y)
|
||||
}
|
||||
|
||||
func learnInterfaces() {
|
||||
// Brace syntax is a "struct literal." It evaluates to an initialized
|
||||
// struct. The := syntax declares and initializes p to this struct.
|
||||
p := pair{3, 4}
|
||||
fmt.Println(p.String()) // call String method of p, of type pair.
|
||||
var i Stringer // declare i of interface type Stringer.
|
||||
i = p // valid because pair implements Stringer
|
||||
// Call String method of i, of type Stringer. Output same as above.
|
||||
fmt.Println(i.String())
|
||||
// Brace syntax is a "struct literal." It evaluates to an initialized
|
||||
// struct. The := syntax declares and initializes p to this struct.
|
||||
p := pair{3, 4}
|
||||
fmt.Println(p.String()) // call String method of p, of type pair.
|
||||
var i Stringer // declare i of interface type Stringer.
|
||||
i = p // valid because pair implements Stringer
|
||||
// Call String method of i, of type Stringer. Output same as above.
|
||||
fmt.Println(i.String())
|
||||
|
||||
// Functions in the fmt package call the String method to ask an object
|
||||
// for a printable representation of itself.
|
||||
fmt.Println(p) // output same as above. Println calls String method.
|
||||
fmt.Println(i) // output same as above
|
||||
// Functions in the fmt package call the String method to ask an object
|
||||
// for a printable representation of itself.
|
||||
fmt.Println(p) // output same as above. Println calls String method.
|
||||
fmt.Println(i) // output same as above
|
||||
|
||||
learnErrorHandling()
|
||||
learnErrorHandling()
|
||||
}
|
||||
|
||||
func learnErrorHandling() {
|
||||
// ", ok" idiom used to tell if something worked or not.
|
||||
m := map[int]string{3: "three", 4: "four"}
|
||||
if x, ok := m[1]; !ok { // ok will be false because 1 is not in the map.
|
||||
fmt.Println("no one there")
|
||||
} else {
|
||||
fmt.Print(x) // x would be the value, if it were in the map.
|
||||
}
|
||||
// An error value communicates not just "ok" but more about the problem.
|
||||
if _, err := strconv.Atoi("non-int"); err != nil { // _ discards value
|
||||
// prints "strconv.ParseInt: parsing "non-int": invalid syntax"
|
||||
fmt.Println(err)
|
||||
}
|
||||
// We'll revisit interfaces a little later. Meanwhile,
|
||||
learnConcurrency()
|
||||
// ", ok" idiom used to tell if something worked or not.
|
||||
m := map[int]string{3: "three", 4: "four"}
|
||||
if x, ok := m[1]; !ok { // ok will be false because 1 is not in the map.
|
||||
fmt.Println("no one there")
|
||||
} else {
|
||||
fmt.Print(x) // x would be the value, if it were in the map.
|
||||
}
|
||||
// An error value communicates not just "ok" but more about the problem.
|
||||
if _, err := strconv.Atoi("non-int"); err != nil { // _ discards value
|
||||
// prints "strconv.ParseInt: parsing "non-int": invalid syntax"
|
||||
fmt.Println(err)
|
||||
}
|
||||
// We'll revisit interfaces a little later. Meanwhile,
|
||||
learnConcurrency()
|
||||
}
|
||||
|
||||
// c is a channel, a concurrency-safe communication object.
|
||||
func inc(i int, c chan int) {
|
||||
c <- i + 1 // <- is the "send" operator when a channel appears on the left.
|
||||
c <- i + 1 // <- is the "send" operator when a channel appears on the left.
|
||||
}
|
||||
|
||||
// We'll use inc to increment some numbers concurrently.
|
||||
func learnConcurrency() {
|
||||
// Same make function used earlier to make a slice. Make allocates and
|
||||
// initializes slices, maps, and channels.
|
||||
c := make(chan int)
|
||||
// Start three concurrent goroutines. Numbers will be incremented
|
||||
// concurrently, perhaps in parallel if the machine is capable and
|
||||
// properly configured. All three send to the same channel.
|
||||
go inc(0, c) // go is a statement that starts a new goroutine.
|
||||
go inc(10, c)
|
||||
go inc(-805, c)
|
||||
// Read three results from the channel and print them out.
|
||||
// There is no telling in what order the results will arrive!
|
||||
fmt.Println(<-c, <-c, <-c) // channel on right, <- is "receive" operator.
|
||||
// Same make function used earlier to make a slice. Make allocates and
|
||||
// initializes slices, maps, and channels.
|
||||
c := make(chan int)
|
||||
// Start three concurrent goroutines. Numbers will be incremented
|
||||
// concurrently, perhaps in parallel if the machine is capable and
|
||||
// properly configured. All three send to the same channel.
|
||||
go inc(0, c) // go is a statement that starts a new goroutine.
|
||||
go inc(10, c)
|
||||
go inc(-805, c)
|
||||
// Read three results from the channel and print them out.
|
||||
// There is no telling in what order the results will arrive!
|
||||
fmt.Println(<-c, <-c, <-c) // channel on right, <- is "receive" operator.
|
||||
|
||||
cs := make(chan string) // another channel, this one handles strings.
|
||||
cc := make(chan chan string) // a channel of channels.
|
||||
go func() { c <- 84 }() // start a new goroutine just to send a value
|
||||
go func() { cs <- "wordy" }() // again, for cs this time
|
||||
// Select has syntax like a switch statement but each case involves
|
||||
// a channel operation. It selects a case at random out of the cases
|
||||
// that are ready to communicate.
|
||||
select {
|
||||
case i := <-c: // the value received can be assigned to a variable
|
||||
fmt.Println("it's a", i)
|
||||
case <-cs: // or the value received can be discarded
|
||||
fmt.Println("it's a string")
|
||||
case <-cc: // empty channel, not ready for communication.
|
||||
fmt.Println("didn't happen.")
|
||||
}
|
||||
// At this point a value was taken from either c or cs. One of the two
|
||||
// goroutines started above has completed, the other will remain blocked.
|
||||
cs := make(chan string) // another channel, this one handles strings.
|
||||
cc := make(chan chan string) // a channel of channels.
|
||||
go func() { c <- 84 }() // start a new goroutine just to send a value
|
||||
go func() { cs <- "wordy" }() // again, for cs this time
|
||||
// Select has syntax like a switch statement but each case involves
|
||||
// a channel operation. It selects a case at random out of the cases
|
||||
// that are ready to communicate.
|
||||
select {
|
||||
case i := <-c: // the value received can be assigned to a variable
|
||||
fmt.Println("it's a", i)
|
||||
case <-cs: // or the value received can be discarded
|
||||
fmt.Println("it's a string")
|
||||
case <-cc: // empty channel, not ready for communication.
|
||||
fmt.Println("didn't happen.")
|
||||
}
|
||||
// At this point a value was taken from either c or cs. One of the two
|
||||
// goroutines started above has completed, the other will remain blocked.
|
||||
|
||||
learnWebProgramming() // Go does it. You want to do it too.
|
||||
learnWebProgramming() // Go does it. You want to do it too.
|
||||
}
|
||||
|
||||
// A single function from package http starts a web server.
|
||||
func learnWebProgramming() {
|
||||
// ListenAndServe first parameter is TCP address to listen at.
|
||||
// Second parameter is an interface, specifically http.Handler.
|
||||
err := http.ListenAndServe(":8080", pair{})
|
||||
fmt.Println(err) // don't ignore errors
|
||||
// ListenAndServe first parameter is TCP address to listen at.
|
||||
// Second parameter is an interface, specifically http.Handler.
|
||||
err := http.ListenAndServe(":8080", pair{})
|
||||
fmt.Println(err) // don't ignore errors
|
||||
}
|
||||
|
||||
// Make pair an http.Handler by implementing its only method, ServeHTTP.
|
||||
func (p pair) ServeHTTP(w http.ResponseWriter, r *http.Request) {
|
||||
// Serve data with a method of http.ResponseWriter
|
||||
w.Write([]byte("You learned Go in Y minutes!"))
|
||||
// Serve data with a method of http.ResponseWriter
|
||||
w.Write([]byte("You learned Go in Y minutes!"))
|
||||
}
|
||||
```
|
||||
|
||||
|
@ -4,7 +4,7 @@ contributors:
|
||||
- ["Bastien Guerry", "http://bzg.fr"]
|
||||
translators:
|
||||
- ["Lucas Tadeu Teixeira", "http://ltt.me"]
|
||||
lang: pt-br
|
||||
lang: pt-br
|
||||
filename: learn-emacs-lisp-pt.el
|
||||
---
|
||||
|
||||
@ -30,9 +30,9 @@ filename: learn-emacs-lisp-pt.el
|
||||
;; Realizar este tutorial não danificará seu computador, a menos
|
||||
;; que você fique tão irritado a ponto de jogá-lo no chão. Neste caso,
|
||||
;; me abstenho de qualquer responsabilidade. Divirta-se!
|
||||
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;;
|
||||
;;
|
||||
;; Abra o Emacs.
|
||||
;;
|
||||
;; Aperte a tecla `q' para ocultar a mensagem de boas vindas.
|
||||
@ -45,11 +45,11 @@ filename: learn-emacs-lisp-pt.el
|
||||
;; O buffer de rascunho (i.e., "scratch") é o buffer padrão quando
|
||||
;; o Emacs é aberto. Você nunca está editando arquivos: você está
|
||||
;; editando buffers que você pode salvar em um arquivo.
|
||||
;;
|
||||
;;
|
||||
;; "Lisp interaction" refere-se a um conjunto de comandos disponíveis aqui.
|
||||
;;
|
||||
;; O Emacs possui um conjunto de comandos embutidos (disponíveis em
|
||||
;; qualquer buffer) e vários subconjuntos de comandos disponíveis
|
||||
;;
|
||||
;; O Emacs possui um conjunto de comandos embutidos (disponíveis em
|
||||
;; qualquer buffer) e vários subconjuntos de comandos disponíveis
|
||||
;; quando você ativa um modo específico. Aqui nós utilizamos
|
||||
;; `lisp-interaction-mode', que possui comandos para interpretar e navegar
|
||||
;; em código Elisp.
|
||||
@ -137,7 +137,7 @@ filename: learn-emacs-lisp-pt.el
|
||||
;; => [a tela exibirá duas janelas e o cursor estará no buffer *test*]
|
||||
|
||||
;; Posicione o mouse sobre a janela superior e clique com o botão
|
||||
;; esquerdo para voltar. Ou você pode utilizar `C-xo' (i.e. segure
|
||||
;; esquerdo para voltar. Ou você pode utilizar `C-xo' (i.e. segure
|
||||
;; ctrl-x e aperte o) para voltar para a outra janela, de forma interativa.
|
||||
|
||||
;; Você pode combinar várias "sexps" com `progn':
|
||||
|
Loading…
Reference in New Issue
Block a user