mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-12-23 09:41:36 +00:00
Merged changes for r
This commit is contained in:
commit
555a67424d
@ -5,7 +5,7 @@ author_url: http://github.com/e99n09
|
||||
filename: learnr.r
|
||||
---
|
||||
|
||||
R is a statistical computing language.
|
||||
R is a statistical computing language. It has lots of good built-in functions for uploading and cleaning data sets, running common statistical tests, and making graphs. You can also easily compile it within a LaTeX document.
|
||||
|
||||
```python
|
||||
|
||||
@ -14,36 +14,30 @@ R is a statistical computing language.
|
||||
# You can't make a multi-line comment per se,
|
||||
# but you can stack multiple comments like so.
|
||||
|
||||
# Protip: hit COMMAND-ENTER to execute a line
|
||||
# Hit COMMAND-ENTER to execute a line
|
||||
|
||||
#########################
|
||||
# The absolute basics
|
||||
#########################
|
||||
|
||||
# NUMERICS
|
||||
# NUMBERS
|
||||
|
||||
# We've got numbers! Behold the "numeric" class
|
||||
# We've got doubles! Behold the "numeric" class
|
||||
5 # => [1] 5
|
||||
class(5) # => [1] "numeric"
|
||||
# We've also got integers! They look suspiciously similar,
|
||||
# but indeed are different
|
||||
5L # => [1] 5
|
||||
class(5L) # => [1] "integer"
|
||||
# Try ?class for more information on the class() function
|
||||
# In fact, you can look up the documentation on just about anything with ?
|
||||
|
||||
# Numerics are like doubles. There's no such thing as integers
|
||||
5 == 5.0 # => [1] TRUE
|
||||
# Because R doesn't distinguish between integers and doubles,
|
||||
# R shows the "integer" form instead of the equivalent "double" form
|
||||
# whenever it's convenient:
|
||||
5.0 # => [1] 5
|
||||
|
||||
# All the normal operations!
|
||||
10 + 66 # => [1] 76
|
||||
53.2 - 4 # => [1] 49.2
|
||||
3.37 * 5.4 # => [1] 18.198
|
||||
2 * 2.0 # => [1] 4
|
||||
3 / 4 # => [1] 0.75
|
||||
2.0 / 2 # => [1] 1
|
||||
3L / 4 # => [1] 0.75
|
||||
3 %% 2 # => [1] 1
|
||||
4 %% 2 # => [1] 0
|
||||
|
||||
# Finally, we've got not-a-numbers! They're numerics too
|
||||
class(NaN) # => [1] "numeric"
|
||||
@ -107,6 +101,17 @@ while (a > 4) {
|
||||
# Operations on entire vectors (i.e. a whole row, a whole column)
|
||||
# or apply()-type functions (we'll discuss later) are preferred
|
||||
|
||||
# IF/ELSE
|
||||
|
||||
# Again, pretty standard
|
||||
if (4 > 3) {
|
||||
print("Huzzah! It worked!")
|
||||
} else {
|
||||
print("Noooo! This is blatantly illogical!")
|
||||
}
|
||||
# =>
|
||||
# [1] "Huzzah! It worked!"
|
||||
|
||||
# FUNCTIONS
|
||||
|
||||
# Defined like so:
|
||||
@ -126,8 +131,8 @@ myFunc(5) # => [1] 19
|
||||
# ONE-DIMENSIONAL
|
||||
|
||||
# You can vectorize anything, so long as all components have the same type
|
||||
vec <- c(4, 5, 6, 7)
|
||||
vec # => [1] 4 5 6 7
|
||||
vec <- c(8, 9, 10, 11)
|
||||
vec # => [1] 8 9 10 11
|
||||
# The class of a vector is the class of its components
|
||||
class(vec) # => [1] "numeric"
|
||||
# If you vectorize items of different classes, weird coercions happen
|
||||
@ -135,15 +140,27 @@ c(TRUE, 4) # => [1] 1 4
|
||||
c("dog", TRUE, 4) # => [1] "dog" "TRUE" "4"
|
||||
|
||||
# We ask for specific components like so (R starts counting from 1)
|
||||
vec[1] # => [1] 4
|
||||
# We can also search for the indices of specific components
|
||||
which(vec %% 2 == 0)
|
||||
vec[1] # => [1] 8
|
||||
# We can also search for the indices of specific components,
|
||||
which(vec %% 2 == 0) # => [1] 1 3
|
||||
# or grab just the first or last entry in the vector
|
||||
head(vec, 1) # => [1] 8
|
||||
tail(vec, 1) # => [1] 11
|
||||
# If an index "goes over" you'll get NA:
|
||||
vec[6] # => [1] NA
|
||||
# You can find the length of your vector with length()
|
||||
length(vec) # => [1] 4
|
||||
|
||||
# You can perform operations on entire vectors or subsets of vectors
|
||||
vec * 4 # => [1] 16 20 24 28
|
||||
vec[2:3] * 5 # => [1] 25 30
|
||||
# and there are many built-in functions to summarize vectors
|
||||
mean(vec) # => [1] 9.5
|
||||
var(vec) # => [1] 1.666667
|
||||
sd(vec) # => [1] 1.290994
|
||||
max(vec) # => [1] 11
|
||||
min(vec) # => [1] 8
|
||||
sum(vec) # => [1] 38
|
||||
|
||||
# TWO-DIMENSIONAL (ALL ONE CLASS)
|
||||
|
||||
@ -273,6 +290,7 @@ apply(mat, MAR = 2, myFunc)
|
||||
# [2,] 7 19
|
||||
# [3,] 11 23
|
||||
# Other functions: ?lapply, ?sapply
|
||||
|
||||
# Don't feel too intimidated; everyone agrees they are rather confusing
|
||||
|
||||
# The plyr package aims to replace (and improve upon!) the *apply() family.
|
||||
@ -303,13 +321,13 @@ write.csv(pets, "pets2.csv") # to make a new .csv file
|
||||
|
||||
# Scatterplots!
|
||||
plot(list1$time, list1$price, main = "fake data")
|
||||
# Fit a linear model
|
||||
myLm <- lm(price ~ time, data = list1)
|
||||
myLm # outputs result of regression
|
||||
# Regressions!
|
||||
linearModel <- lm(price ~ time, data = list1)
|
||||
linearModel # outputs result of regression
|
||||
# Plot regression line on existing plot
|
||||
abline(myLm, col = "red")
|
||||
abline(linearModel, col = "red")
|
||||
# Get a variety of nice diagnostics
|
||||
plot(myLm)
|
||||
plot(linearModel)
|
||||
|
||||
# Histograms!
|
||||
hist(rpois(n = 10000, lambda = 5), col = "thistle")
|
||||
@ -325,4 +343,7 @@ require(ggplot2)
|
||||
|
||||
```
|
||||
|
||||
## How do I get R?
|
||||
|
||||
* Get R and the R GUI from [http://www.r-project.org/](http://www.r-project.org/)
|
||||
* [RStudio](http://www.rstudio.com/ide/) is another GUI
|
||||
|
Loading…
Reference in New Issue
Block a user