mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2025-04-27 15:43:58 +00:00
Merged changes for r
This commit is contained in:
commit
555a67424d
@ -5,7 +5,7 @@ author_url: http://github.com/e99n09
|
|||||||
filename: learnr.r
|
filename: learnr.r
|
||||||
---
|
---
|
||||||
|
|
||||||
R is a statistical computing language.
|
R is a statistical computing language. It has lots of good built-in functions for uploading and cleaning data sets, running common statistical tests, and making graphs. You can also easily compile it within a LaTeX document.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
|
|
||||||
@ -14,36 +14,30 @@ R is a statistical computing language.
|
|||||||
# You can't make a multi-line comment per se,
|
# You can't make a multi-line comment per se,
|
||||||
# but you can stack multiple comments like so.
|
# but you can stack multiple comments like so.
|
||||||
|
|
||||||
# Protip: hit COMMAND-ENTER to execute a line
|
# Hit COMMAND-ENTER to execute a line
|
||||||
|
|
||||||
#########################
|
#########################
|
||||||
# The absolute basics
|
# The absolute basics
|
||||||
#########################
|
#########################
|
||||||
|
|
||||||
# NUMERICS
|
# NUMBERS
|
||||||
|
|
||||||
# We've got numbers! Behold the "numeric" class
|
# We've got doubles! Behold the "numeric" class
|
||||||
5 # => [1] 5
|
5 # => [1] 5
|
||||||
class(5) # => [1] "numeric"
|
class(5) # => [1] "numeric"
|
||||||
|
# We've also got integers! They look suspiciously similar,
|
||||||
|
# but indeed are different
|
||||||
|
5L # => [1] 5
|
||||||
|
class(5L) # => [1] "integer"
|
||||||
# Try ?class for more information on the class() function
|
# Try ?class for more information on the class() function
|
||||||
# In fact, you can look up the documentation on just about anything with ?
|
# In fact, you can look up the documentation on just about anything with ?
|
||||||
|
|
||||||
# Numerics are like doubles. There's no such thing as integers
|
|
||||||
5 == 5.0 # => [1] TRUE
|
|
||||||
# Because R doesn't distinguish between integers and doubles,
|
|
||||||
# R shows the "integer" form instead of the equivalent "double" form
|
|
||||||
# whenever it's convenient:
|
|
||||||
5.0 # => [1] 5
|
|
||||||
|
|
||||||
# All the normal operations!
|
# All the normal operations!
|
||||||
10 + 66 # => [1] 76
|
10 + 66 # => [1] 76
|
||||||
53.2 - 4 # => [1] 49.2
|
53.2 - 4 # => [1] 49.2
|
||||||
3.37 * 5.4 # => [1] 18.198
|
|
||||||
2 * 2.0 # => [1] 4
|
2 * 2.0 # => [1] 4
|
||||||
3 / 4 # => [1] 0.75
|
3L / 4 # => [1] 0.75
|
||||||
2.0 / 2 # => [1] 1
|
|
||||||
3 %% 2 # => [1] 1
|
3 %% 2 # => [1] 1
|
||||||
4 %% 2 # => [1] 0
|
|
||||||
|
|
||||||
# Finally, we've got not-a-numbers! They're numerics too
|
# Finally, we've got not-a-numbers! They're numerics too
|
||||||
class(NaN) # => [1] "numeric"
|
class(NaN) # => [1] "numeric"
|
||||||
@ -107,6 +101,17 @@ while (a > 4) {
|
|||||||
# Operations on entire vectors (i.e. a whole row, a whole column)
|
# Operations on entire vectors (i.e. a whole row, a whole column)
|
||||||
# or apply()-type functions (we'll discuss later) are preferred
|
# or apply()-type functions (we'll discuss later) are preferred
|
||||||
|
|
||||||
|
# IF/ELSE
|
||||||
|
|
||||||
|
# Again, pretty standard
|
||||||
|
if (4 > 3) {
|
||||||
|
print("Huzzah! It worked!")
|
||||||
|
} else {
|
||||||
|
print("Noooo! This is blatantly illogical!")
|
||||||
|
}
|
||||||
|
# =>
|
||||||
|
# [1] "Huzzah! It worked!"
|
||||||
|
|
||||||
# FUNCTIONS
|
# FUNCTIONS
|
||||||
|
|
||||||
# Defined like so:
|
# Defined like so:
|
||||||
@ -126,8 +131,8 @@ myFunc(5) # => [1] 19
|
|||||||
# ONE-DIMENSIONAL
|
# ONE-DIMENSIONAL
|
||||||
|
|
||||||
# You can vectorize anything, so long as all components have the same type
|
# You can vectorize anything, so long as all components have the same type
|
||||||
vec <- c(4, 5, 6, 7)
|
vec <- c(8, 9, 10, 11)
|
||||||
vec # => [1] 4 5 6 7
|
vec # => [1] 8 9 10 11
|
||||||
# The class of a vector is the class of its components
|
# The class of a vector is the class of its components
|
||||||
class(vec) # => [1] "numeric"
|
class(vec) # => [1] "numeric"
|
||||||
# If you vectorize items of different classes, weird coercions happen
|
# If you vectorize items of different classes, weird coercions happen
|
||||||
@ -135,15 +140,27 @@ c(TRUE, 4) # => [1] 1 4
|
|||||||
c("dog", TRUE, 4) # => [1] "dog" "TRUE" "4"
|
c("dog", TRUE, 4) # => [1] "dog" "TRUE" "4"
|
||||||
|
|
||||||
# We ask for specific components like so (R starts counting from 1)
|
# We ask for specific components like so (R starts counting from 1)
|
||||||
vec[1] # => [1] 4
|
vec[1] # => [1] 8
|
||||||
# We can also search for the indices of specific components
|
# We can also search for the indices of specific components,
|
||||||
which(vec %% 2 == 0)
|
which(vec %% 2 == 0) # => [1] 1 3
|
||||||
|
# or grab just the first or last entry in the vector
|
||||||
|
head(vec, 1) # => [1] 8
|
||||||
|
tail(vec, 1) # => [1] 11
|
||||||
# If an index "goes over" you'll get NA:
|
# If an index "goes over" you'll get NA:
|
||||||
vec[6] # => [1] NA
|
vec[6] # => [1] NA
|
||||||
|
# You can find the length of your vector with length()
|
||||||
|
length(vec) # => [1] 4
|
||||||
|
|
||||||
# You can perform operations on entire vectors or subsets of vectors
|
# You can perform operations on entire vectors or subsets of vectors
|
||||||
vec * 4 # => [1] 16 20 24 28
|
vec * 4 # => [1] 16 20 24 28
|
||||||
vec[2:3] * 5 # => [1] 25 30
|
vec[2:3] * 5 # => [1] 25 30
|
||||||
|
# and there are many built-in functions to summarize vectors
|
||||||
|
mean(vec) # => [1] 9.5
|
||||||
|
var(vec) # => [1] 1.666667
|
||||||
|
sd(vec) # => [1] 1.290994
|
||||||
|
max(vec) # => [1] 11
|
||||||
|
min(vec) # => [1] 8
|
||||||
|
sum(vec) # => [1] 38
|
||||||
|
|
||||||
# TWO-DIMENSIONAL (ALL ONE CLASS)
|
# TWO-DIMENSIONAL (ALL ONE CLASS)
|
||||||
|
|
||||||
@ -273,6 +290,7 @@ apply(mat, MAR = 2, myFunc)
|
|||||||
# [2,] 7 19
|
# [2,] 7 19
|
||||||
# [3,] 11 23
|
# [3,] 11 23
|
||||||
# Other functions: ?lapply, ?sapply
|
# Other functions: ?lapply, ?sapply
|
||||||
|
|
||||||
# Don't feel too intimidated; everyone agrees they are rather confusing
|
# Don't feel too intimidated; everyone agrees they are rather confusing
|
||||||
|
|
||||||
# The plyr package aims to replace (and improve upon!) the *apply() family.
|
# The plyr package aims to replace (and improve upon!) the *apply() family.
|
||||||
@ -303,13 +321,13 @@ write.csv(pets, "pets2.csv") # to make a new .csv file
|
|||||||
|
|
||||||
# Scatterplots!
|
# Scatterplots!
|
||||||
plot(list1$time, list1$price, main = "fake data")
|
plot(list1$time, list1$price, main = "fake data")
|
||||||
# Fit a linear model
|
# Regressions!
|
||||||
myLm <- lm(price ~ time, data = list1)
|
linearModel <- lm(price ~ time, data = list1)
|
||||||
myLm # outputs result of regression
|
linearModel # outputs result of regression
|
||||||
# Plot regression line on existing plot
|
# Plot regression line on existing plot
|
||||||
abline(myLm, col = "red")
|
abline(linearModel, col = "red")
|
||||||
# Get a variety of nice diagnostics
|
# Get a variety of nice diagnostics
|
||||||
plot(myLm)
|
plot(linearModel)
|
||||||
|
|
||||||
# Histograms!
|
# Histograms!
|
||||||
hist(rpois(n = 10000, lambda = 5), col = "thistle")
|
hist(rpois(n = 10000, lambda = 5), col = "thistle")
|
||||||
@ -325,4 +343,7 @@ require(ggplot2)
|
|||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## How do I get R?
|
||||||
|
|
||||||
|
* Get R and the R GUI from [http://www.r-project.org/](http://www.r-project.org/)
|
||||||
|
* [RStudio](http://www.rstudio.com/ide/) is another GUI
|
||||||
|
Loading…
Reference in New Issue
Block a user