mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-12-24 10:01:38 +00:00
Merge pull request #3182 from Spiderpig86/master
[MIPS/en] pull request
This commit is contained in:
commit
5befc57081
366
mips.html.markdown
Normal file
366
mips.html.markdown
Normal file
@ -0,0 +1,366 @@
|
||||
---
|
||||
language: "MIPS Assembly"
|
||||
filename: MIPS.asm
|
||||
contributors:
|
||||
- ["Stanley Lim", "https://github.com/Spiderpig86"]
|
||||
---
|
||||
|
||||
The MIPS (Microprocessor without Interlocked Pipeline Stages) Assembly language
|
||||
is designed to work with the MIPS microprocessor paradigm designed by J. L.
|
||||
Hennessy in 1981. These RISC processors are used in embedded systems such as
|
||||
gateways and routers.
|
||||
|
||||
[Read More](https://en.wikipedia.org/wiki/MIPS_architecture)
|
||||
|
||||
```assembly
|
||||
# Comments are denoted with a '#'
|
||||
|
||||
# Everything that occurs after a '#' will be ignored by the assembler's lexer.
|
||||
|
||||
# Programs typically contain a .data and .text sections
|
||||
|
||||
.data # Section where data is stored in memory (allocated in RAM), similar to
|
||||
# variables in higher level languages
|
||||
|
||||
# Declarations follow a ( label: .type value(s) ) form of declaration
|
||||
hello_world: .asciiz "Hello World\n" # Declare a null terminated string
|
||||
num1: .word 42 # Integers are referred to as words
|
||||
# (32 bit value)
|
||||
|
||||
arr1: .word 1, 2, 3, 4, 5 # Array of words
|
||||
arr2: .byte 'a', 'b' # Array of chars (1 byte each)
|
||||
buffer: .space 60 # Allocates space in the RAM
|
||||
# (not cleared to 0)
|
||||
|
||||
# Datatype sizes
|
||||
_byte: .byte 'a' # 1 byte
|
||||
_halfword: .half 53 # 2 bytes
|
||||
_word: .word 3 # 4 bytes
|
||||
_float: .float 3.14 # 4 bytes
|
||||
_double: .double 7.0 # 8 bytes
|
||||
|
||||
.align 2 # Memory alignment of data, where
|
||||
# number indicates byte alignment in
|
||||
# powers of 2. (.align 2 represents
|
||||
# word alignment since 2^2 = 4 bytes)
|
||||
|
||||
.text # Section that contains instructions
|
||||
# and program logic
|
||||
.globl _main # Declares an instruction label as
|
||||
# global, making it accessible to
|
||||
# other files
|
||||
|
||||
_main: # MIPS programs execute instructions
|
||||
# sequentially, where the code under
|
||||
# this label will be executed firsts
|
||||
|
||||
# Let's print "hello world"
|
||||
la $a0, hello_world # Load address of string stored in
|
||||
# memory
|
||||
li $v0, 4 # Load the syscall value (indicating
|
||||
# type of functionality)
|
||||
syscall # Perform the specified syscall with
|
||||
# the given argument ($a0)
|
||||
|
||||
# Registers (used to hold data during program execution)
|
||||
# $t0 - $t9 # Temporary registers used for
|
||||
# intermediate calculations inside
|
||||
# subroutines (not saved across
|
||||
# function calls)
|
||||
|
||||
# $s0 - $s7 # Saved registers where values are
|
||||
# saved across subroutine calls.
|
||||
# Typically saved in stack
|
||||
|
||||
# $a0 - $a3 # Argument registers for passing in
|
||||
# arguments for subroutines
|
||||
# $v0 - $v1 # Return registers for returning
|
||||
# values to caller function
|
||||
|
||||
# Types of load/store instructions
|
||||
la $t0, label # Copy the address of a value in
|
||||
# memory specified by the label into
|
||||
# register $t0
|
||||
lw $t0, label # Copy a word value from memory
|
||||
lw $t1, 4($s0) # Copy a word value from an address
|
||||
# stored in a register with an offset
|
||||
# of 4 bytes (addr + 4)
|
||||
lb $t2, label # Copy a byte value to the lower order
|
||||
# portion of the register $t2
|
||||
lb $t2, 0($s0) # Copy a byte value from the source
|
||||
# address in $s0 with offset 0
|
||||
# Same idea with 'lh' for halfwords
|
||||
|
||||
sw $t0, label # Store word value into memory address
|
||||
# mapped by label
|
||||
sw $t0, 8($s0) # Store word value into address
|
||||
# specified in $s0 and offset of 8 bytes
|
||||
# Same idea using 'sb' and 'sh' for bytes and halfwords. 'sa' does not exist
|
||||
|
||||
### Math ###
|
||||
_math:
|
||||
# Remember to load your values into a register
|
||||
lw $t0, num # From the data section
|
||||
li $t0, 5 # Or from an immediate (constant)
|
||||
li $t1, 6
|
||||
add $t2, $t0, $t1 # $t2 = $t0 + $t1
|
||||
sub $t2, $t0, $t1 # $t2 = $t0 - $t1
|
||||
mul $t2, $t0, $t1 # $t2 = $t0 * $t1
|
||||
div $t2, $t0, $t1 # $t2 = $t0 / $t1 (Might not be
|
||||
# supported in some versons of MARS)
|
||||
div $t0, $t1 # Performs $t0 / $t1. Get the quotient
|
||||
# using 'mflo' and remainder using 'mfhi'
|
||||
|
||||
# Bitwise Shifting
|
||||
sll $t0, $t0, 2 # Bitwise shift to the left with
|
||||
# immediate (constant value) of 2
|
||||
sllv $t0, $t1, $t2 # Shift left by a variable amount in
|
||||
# register
|
||||
srl $t0, $t0, 5 # Bitwise shift to the right (does
|
||||
# not sign preserve, sign-extends with 0)
|
||||
srlv $t0, $t1, $t2 # Shift right by a variable amount in
|
||||
# a register
|
||||
sra $t0, $t0, 7 # Bitwise arithmetic shift to the right
|
||||
# (preserves sign)
|
||||
srav $t0, $t1, $t2 # Shift right by a variable amount
|
||||
# in a register
|
||||
|
||||
# Bitwise operators
|
||||
and $t0, $t1, $t2 # Bitwise AND
|
||||
andi $t0, $t1, 0xFFF # Bitwise AND with immediate
|
||||
or $t0, $t1, $t2 # Bitwise OR
|
||||
ori $t0, $t1, 0xFFF # Bitwise OR with immediate
|
||||
xor $t0, $t1, $t2 # Bitwise XOR
|
||||
xori $t0, $t1, 0xFFF # Bitwise XOR with immediate
|
||||
nor $t0, $t1, $t2 # Bitwise NOR
|
||||
|
||||
## BRANCHING ##
|
||||
_branching:
|
||||
# The basic format of these branching instructions typically follow <instr>
|
||||
# <reg1> <reg2> <label> where label is the label we want to jump to if the
|
||||
# given conditional evaluates to true
|
||||
# Sometimes it is easier to write the conditional logic backwards, as seen
|
||||
# in the simple if statement example below
|
||||
|
||||
beq $t0, $t1, reg_eq # Will branch to reg_eq if
|
||||
# $t0 == $t1, otherwise
|
||||
# execute the next line
|
||||
bne $t0, $t1, reg_neq # Branches when $t0 != $t1
|
||||
b branch_target # Unconditional branch, will always execute
|
||||
beqz $t0, req_eq_zero # Branches when $t0 == 0
|
||||
bnez $t0, req_neq_zero # Branches when $t0 != 0
|
||||
bgt $t0, $t1, t0_gt_t1 # Branches when $t0 > $t1
|
||||
bge $t0, $t1, t0_gte_t1 # Branches when $t0 >= $t1
|
||||
bgtz $t0, t0_gt0 # Branches when $t0 > 0
|
||||
blt $t0, $t1, t0_gt_t1 # Branches when $t0 < $t1
|
||||
ble $t0, $t1, t0_gte_t1 # Branches when $t0 <= $t1
|
||||
bltz $t0, t0_lt0 # Branches when $t0 < 0
|
||||
slt $s0, $t0, $t1 # Instruction that sends a signal when
|
||||
# $t0 < $t1 with reuslt in $s0 (1 for true)
|
||||
|
||||
# Simple if statement
|
||||
# if (i == j)
|
||||
# f = g + h;
|
||||
# f = f - i;
|
||||
|
||||
# Let $s0 = f, $s1 = g, $s2 = h, $s3 = i, $s4 = j
|
||||
bne $s3, $s4, L1 # if (i !=j)
|
||||
add $s0, $s1, $s2 # f = g + h
|
||||
|
||||
L1:
|
||||
sub $s0, $s0, $s3 # f = f - i
|
||||
|
||||
# Below is an example of finding the max of 3 numbers
|
||||
# A direct translation in Java from MIPS logic:
|
||||
# if (a > b)
|
||||
# if (a > c)
|
||||
# max = a;
|
||||
# else
|
||||
# max = c;
|
||||
# else
|
||||
# max = b;
|
||||
# else
|
||||
# max = c;
|
||||
|
||||
# Let $s0 = a, $s1 = b, $s2 = c, $v0 = return register
|
||||
ble $s0, $s1, a_LTE_b # if (a <= b) branch(a_LTE_b)
|
||||
ble $s0, $s2, max_C # if (a > b && a <=c) branch(max_C)
|
||||
move $v0, $s1 # else [a > b && a > c] max = a
|
||||
j done # Jump to the end of the program
|
||||
|
||||
a_LTE_b: # Label for when a <= b
|
||||
ble $s1, $s2, max_C # if (a <= b && b <= c) branch(max_C)
|
||||
move $v0, $s1 # if (a <= b && b > c) max = b
|
||||
j done # Jump to done
|
||||
|
||||
max_C:
|
||||
move $v0, $s2 # max = c
|
||||
|
||||
done: # End of program
|
||||
|
||||
## LOOPS ##
|
||||
_loops:
|
||||
# The basic structure of loops is having an exit condition and a jump
|
||||
instruction to continue its execution
|
||||
li $t0, 0
|
||||
while:
|
||||
bgt $t0, 10, end_while # While $t0 is less than 10, keep iterating
|
||||
addi $t0, $t0, 1 # Increment the value
|
||||
j while # Jump back to the beginning of the loop
|
||||
end_while:
|
||||
|
||||
# 2D Matrix Traversal
|
||||
# Assume that $a0 stores the address of an integer matrix which is 3 x 3
|
||||
li $t0, 0 # Counter for i
|
||||
li $t1, 0 # Counter for j
|
||||
matrix_row:
|
||||
bgt $t0, 3, matrix_row_end
|
||||
|
||||
matrix_col:
|
||||
bgt $t1, 3, matrix_col_end
|
||||
|
||||
# Do stuff
|
||||
|
||||
addi $t1, $t1, 1 # Increment the col counter
|
||||
matrix_col_end:
|
||||
|
||||
# Do stuff
|
||||
|
||||
addi $t0, $t0, 1
|
||||
matrix_row_end:
|
||||
|
||||
## FUNCTIONS ##
|
||||
_functions:
|
||||
# Functions are callable procedures that can accept arguments and return
|
||||
values all denoted with labels, like above
|
||||
|
||||
main: # Programs begin with main func
|
||||
jal return_1 # jal will store the current PC in $ra
|
||||
# and then jump to return_1
|
||||
|
||||
# What if we want to pass in args?
|
||||
# First we must pass in our parameters to the argument registers
|
||||
li $a0, 1
|
||||
li $a1, 2
|
||||
jal sum # Now we can call the function
|
||||
|
||||
# How about recursion?
|
||||
# This is a bit more work since we need to make sure we save and restore
|
||||
# the previous PC in $ra since jal will automatically overwrite on each call
|
||||
li $a0, 3
|
||||
jal fact
|
||||
|
||||
li $v0, 10
|
||||
syscall
|
||||
|
||||
# This function returns 1
|
||||
return_1:
|
||||
li $v0, 1 # Load val in return register $v0
|
||||
jr $ra # Jump back to old PC to continue exec
|
||||
|
||||
|
||||
# Function with 2 args
|
||||
sum:
|
||||
add $v0, $a0, $a1
|
||||
jr $ra # Return
|
||||
|
||||
# Recursive function to find factorial
|
||||
fact:
|
||||
addi $sp, $sp, -8 # Allocate space in stack
|
||||
sw $s0, ($sp) # Store reg that holds current num
|
||||
sw $ra, 4($sp) # Store previous PC
|
||||
|
||||
li $v0, 1 # Init return value
|
||||
beq $a0, 0, fact_done # Finish if param is 0
|
||||
|
||||
# Otherwise, continue recursion
|
||||
move $s0, $a0 # Copy $a0 to $s0
|
||||
sub $a0, $a0, 1
|
||||
jal fact
|
||||
|
||||
mul $v0, $s0, $v0 # Multiplication is done
|
||||
|
||||
fact_done:
|
||||
lw $s0, ($sp)
|
||||
lw $ra, ($sp) # Restore the PC
|
||||
addi $sp, $sp, 8
|
||||
|
||||
jr $ra
|
||||
|
||||
## MACROS ##
|
||||
_macros:
|
||||
# Macros are extremly useful for substituting repeated code blocks with a
|
||||
# single label for better readability
|
||||
# These are in no means substitutes for functions
|
||||
# These must be declared before it is used
|
||||
|
||||
# Macro for printing new lines (since these can be very repetitive)
|
||||
.macro println()
|
||||
la $a0, newline # New line string stored here
|
||||
li $v0, 4
|
||||
syscall
|
||||
.end_macro
|
||||
|
||||
println() # Assembler will copy that block of
|
||||
# code here before running
|
||||
|
||||
# Parameters can be passed in through macros.
|
||||
# These are denoted by a '%' sign with any name you choose
|
||||
.macro print_int(%num)
|
||||
li $v0, 1
|
||||
lw $a0, %num
|
||||
syscall
|
||||
.end_macro
|
||||
|
||||
li $t0, 1
|
||||
print_int($t0)
|
||||
|
||||
# We can also pass in immediates for macros
|
||||
.macro immediates(%a, %b)
|
||||
add $t0, %a, %b
|
||||
.end_macro
|
||||
|
||||
immediates(3, 5)
|
||||
|
||||
# Along with passing in labels
|
||||
.macro print(%string)
|
||||
la $a0, %string
|
||||
li $v0, 4
|
||||
syscall
|
||||
.end_macro
|
||||
|
||||
print(hello_world)
|
||||
|
||||
## ARRAYS ##
|
||||
.data
|
||||
list: .word 3, 0, 1, 2, 6 # This is an array of words
|
||||
char_arr: .asciiz "hello" # This is a char array
|
||||
buffer: .space 128 # Allocates a block in memory, does
|
||||
# not automatically clear
|
||||
# These blocks of memory are aligned
|
||||
# next each other
|
||||
|
||||
.text
|
||||
la $s0, list # Load address of list
|
||||
li $t0, 0 # Counter
|
||||
li $t1, 5 # Length of the list
|
||||
|
||||
loop:
|
||||
bgt $t0, $t1, end_loop
|
||||
|
||||
lw $a0, ($s0)
|
||||
li $v0, 1
|
||||
syscall # Print the number
|
||||
|
||||
addi $s0, $s0, 4 # Size of a word is 4 bytes
|
||||
addi $t0, $t0, 1 # Increment
|
||||
j loop
|
||||
end_loop:
|
||||
|
||||
## INCLUDE ##
|
||||
# You do this to import external files into your program (behind the scenes,
|
||||
# it really just takes whatever code that is in that file and places it where
|
||||
# the include statement is)
|
||||
.include "somefile.asm"
|
||||
|
||||
```
|
Loading…
Reference in New Issue
Block a user