mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-12-23 09:41:36 +00:00
[common-lisp/en]: clean up and add more information
This commit is contained in:
parent
9f33f260dc
commit
6968c57248
@ -4,82 +4,91 @@ language: "Common Lisp"
|
||||
filename: commonlisp.lisp
|
||||
contributors:
|
||||
- ["Paul Nathan", "https://github.com/pnathan"]
|
||||
- ["Rommel Martinez", "https://ebzzry.io"]
|
||||
---
|
||||
|
||||
ANSI Common Lisp is a general purpose, multi-paradigm programming
|
||||
language suited for a wide variety of industry applications. It is
|
||||
frequently referred to as a programmable programming language.
|
||||
Common Lisp is a general-purpose, multi-paradigm programming language suited for a wide variety of
|
||||
industry applications. It is frequently referred to as a programmable programming language.
|
||||
|
||||
The classic starting point is [Practical Common Lisp and freely available.](http://www.gigamonkeys.com/book/)
|
||||
|
||||
Another popular and recent book is
|
||||
[Land of Lisp](http://landoflisp.com/).
|
||||
The classic starting point is [Practical Common Lisp](http://www.gigamonkeys.com/book/). Another
|
||||
popular and recent book is [Land of Lisp](http://landoflisp.com/). A new book about best practices,
|
||||
[Common Lisp Recipes](http://weitz.de/cl-recipes/), was recently published.
|
||||
|
||||
|
||||
|
||||
```common_lisp
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;;;-----------------------------------------------------------------------------
|
||||
;;; 0. Syntax
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;;;-----------------------------------------------------------------------------
|
||||
|
||||
;;; General form.
|
||||
;;; General form
|
||||
|
||||
;; Lisp has two fundamental pieces of syntax: the ATOM and the
|
||||
;; S-expression. Typically, grouped S-expressions are called `forms`.
|
||||
;;; CL has two fundamental pieces of syntax: ATOM and S-EXPRESSION.
|
||||
;;; Typically, grouped S-expressions are called `forms`.
|
||||
|
||||
10 ; an atom; it evaluates to itself
|
||||
|
||||
:THING ;Another atom; evaluating to the symbol :thing.
|
||||
|
||||
t ; another atom, denoting true.
|
||||
|
||||
(+ 1 2 3 4) ; an s-expression
|
||||
|
||||
'(4 :foo t) ;another one
|
||||
10 ; an atom; it evaluates to itself
|
||||
:thing ; another atom; evaluating to the symbol :thing
|
||||
t ; another atom, denoting true
|
||||
(+ 1 2 3 4) ; an s-expression
|
||||
'(4 :foo t) ; another s-expression
|
||||
|
||||
|
||||
;;; Comments
|
||||
|
||||
;; Single line comments start with a semicolon; use two for normal
|
||||
;; comments, three for section comments, and four for file-level
|
||||
;; comments.
|
||||
;;; Single-line comments start with a semicolon; use four for file-level
|
||||
;;; comments, three for section descriptions, two inside definitions, and one
|
||||
;;; for single lines. For example,
|
||||
|
||||
#| Block comments
|
||||
can span multiple lines and...
|
||||
;;;; life.lisp
|
||||
|
||||
;;; Foo bar baz, because quu quux. Optimized for maximum krakaboom and umph.
|
||||
;;; Needed by the function LINULUKO.
|
||||
|
||||
(defun meaning (life)
|
||||
"Return the computed meaning of LIFE"
|
||||
(let ((meh "abc"))
|
||||
;; Invoke krakaboom
|
||||
(loop :for x :across meh
|
||||
:collect x))) ; store values into x, then return it
|
||||
|
||||
;;; Block comments, on the other hand, allow for free-form comments. They are
|
||||
;;; delimited with #| and |#
|
||||
|
||||
#| This is a block comment which
|
||||
can span multiple lines and
|
||||
#|
|
||||
they can be nested!
|
||||
|#
|
||||
|#
|
||||
|
||||
;;; Environment.
|
||||
|
||||
;; A variety of implementations exist; most are
|
||||
;; standard-conformant. CLISP is a good starting one.
|
||||
;;; Environment
|
||||
|
||||
;; Libraries are managed through Quicklisp.org's Quicklisp system.
|
||||
;;; A variety of implementations exist; most are standards-conformant. SBCL
|
||||
;;; is a good starting point. Third party libraries can be easily installed with
|
||||
;;; Quicklisp
|
||||
|
||||
;; Common Lisp is usually developed with a text editor and a REPL
|
||||
;; (Read Evaluate Print Loop) running at the same time. The REPL
|
||||
;; allows for interactive exploration of the program as it is "live"
|
||||
;; in the system.
|
||||
;;; CL is usually developed with a text editor and a Real Eval Print
|
||||
;;; Loop (REPL) running at the same time. The REPL allows for interactive
|
||||
;;; exploration of the program while it is running "live".
|
||||
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;;; 1. Primitive Datatypes and Operators
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;;;-----------------------------------------------------------------------------
|
||||
;;; 1. Primitive datatypes and operators
|
||||
;;;-----------------------------------------------------------------------------
|
||||
|
||||
;;; Symbols
|
||||
|
||||
'foo ; => FOO Notice that the symbol is upper-cased automatically.
|
||||
|
||||
;; Intern manually creates a symbol from a string.
|
||||
;;; INTERN manually creates a symbol from a string.
|
||||
|
||||
(intern "AAAA") ; => AAAA
|
||||
|
||||
(intern "aaa") ; => |aaa|
|
||||
(intern "AAAA") ; => AAAA
|
||||
(intern "aaa") ; => |aaa|
|
||||
|
||||
;;; Numbers
|
||||
|
||||
9999999999999999999999 ; integers
|
||||
#b111 ; binary => 7
|
||||
#o111 ; octal => 73
|
||||
@ -89,313 +98,362 @@ t ; another atom, denoting true.
|
||||
1/2 ; ratios
|
||||
#C(1 2) ; complex numbers
|
||||
|
||||
;;; Function application are written as (f x y z ...) where f is a function and
|
||||
;;; x, y, z, ... are the arguments.
|
||||
|
||||
;; Function application is written (f x y z ...)
|
||||
;; where f is a function and x, y, z, ... are operands
|
||||
;; If you want to create a literal list of data, use ' to stop it from
|
||||
;; being evaluated - literally, "quote" the data.
|
||||
'(+ 1 2) ; => (+ 1 2)
|
||||
;; You can also call a function manually:
|
||||
(funcall #'+ 1 2 3) ; => 6
|
||||
;; Some arithmetic operations
|
||||
(+ 1 1) ; => 2
|
||||
(- 8 1) ; => 7
|
||||
(* 10 2) ; => 20
|
||||
(expt 2 3) ; => 8
|
||||
(mod 5 2) ; => 1
|
||||
(/ 35 5) ; => 7
|
||||
(/ 1 3) ; => 1/3
|
||||
(+ #C(1 2) #C(6 -4)) ; => #C(7 -2)
|
||||
(+ 1 2) ; => 3
|
||||
|
||||
;;; Booleans
|
||||
t ; for true (any not-nil value is true)
|
||||
nil ; for false - and the empty list
|
||||
(not nil) ; => t
|
||||
(and 0 t) ; => t
|
||||
(or 0 nil) ; => 0
|
||||
;;; If you want to create literal data, use QUOTE to prevent it from being
|
||||
;;; evaluated
|
||||
|
||||
;;; Characters
|
||||
#\A ; => #\A
|
||||
#\λ ; => #\GREEK_SMALL_LETTER_LAMDA
|
||||
#\u03BB ; => #\GREEK_SMALL_LETTER_LAMDA
|
||||
(quote (+ 1 2)) ; => (+ 1 2)
|
||||
(quote a) ; => A
|
||||
|
||||
;;; The shorthand for QUOTE is '
|
||||
|
||||
'(+ 1 2) ; => (+ 1 2)
|
||||
'a ; => A
|
||||
|
||||
;;; Basic arithmetic operations
|
||||
|
||||
(+ 1 1) ; => 2
|
||||
(- 8 1) ; => 7
|
||||
(* 10 2) ; => 20
|
||||
(expt 2 3) ; => 8
|
||||
(mod 5 2) ; => 1
|
||||
(/ 35 5) ; => 7
|
||||
(/ 1 3) ; => 1/3
|
||||
(+ #C(1 2) #C(6 -4)) ; => #C(7 -2)
|
||||
|
||||
;;; Booleans
|
||||
|
||||
t ; true; any non-NIL value is true
|
||||
nil ; false; also, the empty list: ()
|
||||
(not nil) ; => T
|
||||
(and 0 t) ; => T
|
||||
(or 0 nil) ; => 0
|
||||
|
||||
;;; Characters
|
||||
|
||||
#\A ; => #\A
|
||||
#\λ ; => #\GREEK_SMALL_LETTER_LAMDA
|
||||
#\u03BB ; => #\GREEK_SMALL_LETTER_LAMDA
|
||||
|
||||
;;; Strings are fixed-length arrays of characters
|
||||
|
||||
;;; Strings are fixed-length arrays of characters.
|
||||
"Hello, world!"
|
||||
"Benjamin \"Bugsy\" Siegel" ; backslash is an escaping character
|
||||
|
||||
;; Strings can be concatenated too!
|
||||
(concatenate 'string "Hello " "world!") ; => "Hello world!"
|
||||
;;; Strings can be concatenated
|
||||
|
||||
(concatenate 'string "Hello, " "world!") ; => "Hello, world!"
|
||||
|
||||
;;; A string can be treated like a sequence of characters
|
||||
|
||||
;; A string can be treated like a sequence of characters
|
||||
(elt "Apple" 0) ; => #\A
|
||||
|
||||
;; format can be used to format strings:
|
||||
(format nil "~a can be ~a" "strings" "formatted")
|
||||
;;; FORMAT is used to create formatted output, which ranges from simple string
|
||||
;;; interpolation to loops and conditionals. The first argument to FORMAT
|
||||
;;; determines where will the formatted string go. If it is NIL, FORMAT
|
||||
;;; simply returns the formatted string as a value; if it is T, FORMAT outputs
|
||||
;;; to the standard output, usually the screen, then it returns NIL.
|
||||
|
||||
;; Printing is pretty easy; ~% is the format specifier for newline.
|
||||
(format t "Common Lisp is groovy. Dude.~%")
|
||||
(format nil "~A, ~A!" "Hello" "world") ; => "Hello, world!"
|
||||
(format t "~A, ~A!" "Hello" "world") ; => NIL
|
||||
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; 2. Variables
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; You can create a global (dynamically scoped) using defparameter
|
||||
;; a variable name can use any character except: ()",'`;#|\
|
||||
;;;-----------------------------------------------------------------------------
|
||||
;;; 2. Variables
|
||||
;;;-----------------------------------------------------------------------------
|
||||
|
||||
;; Dynamically scoped variables should have earmuffs in their name!
|
||||
;;; You can create a global (dynamically scoped) variable using DEFVAR and
|
||||
;;; DEFPARAMETER. The variable name can use any character except: ()",'`;#|\
|
||||
|
||||
;;; The difference between DEFVAR and DEFPARAMETER is that re-evaluating a
|
||||
;;; DEFVAR expression doesn't change the value of the variable. DEFPARAMETER,
|
||||
;;; on the other hand, does.
|
||||
|
||||
;;; By convention, dynamically scoped variables have earmuffs in their name.
|
||||
|
||||
(defparameter *some-var* 5)
|
||||
*some-var* ; => 5
|
||||
|
||||
;; You can also use unicode characters.
|
||||
;;; You can also use unicode characters.
|
||||
(defparameter *AΛB* nil)
|
||||
|
||||
;;; Accessing a previously unbound variable is an undefined behavior, but
|
||||
;;; possible. Don't do it.
|
||||
|
||||
;; Accessing a previously unbound variable is an
|
||||
;; undefined behavior (but possible). Don't do it.
|
||||
;;; You can create local bindings with LET. In the following snippet, `me` is
|
||||
;;; bound to "dance with you" only within the (let ...). LET always returns
|
||||
;;; the value of the last `form` in the LET form.
|
||||
|
||||
(let ((me "dance with you")) me) ; => "dance with you"
|
||||
|
||||
|
||||
;; Local binding: `me` is bound to "dance with you" only within the
|
||||
;; (let ...). Let always returns the value of the last `form` in the
|
||||
;; let form.
|
||||
;;;-----------------------------------------------------------------------------;
|
||||
;;; 3. Structs and collections
|
||||
;;;-----------------------------------------------------------------------------;
|
||||
|
||||
(let ((me "dance with you"))
|
||||
me)
|
||||
;; => "dance with you"
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; 3. Structs and Collections
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;;; Structs
|
||||
|
||||
;; Structs
|
||||
(defstruct dog name breed age)
|
||||
(defparameter *rover*
|
||||
(make-dog :name "rover"
|
||||
:breed "collie"
|
||||
:age 5))
|
||||
*rover* ; => #S(DOG :NAME "rover" :BREED "collie" :AGE 5)
|
||||
|
||||
(dog-p *rover*) ; => true #| -p signifies "predicate". It's used to
|
||||
check if *rover* is an instance of dog. |#
|
||||
*rover* ; => #S(DOG :NAME "rover" :BREED "collie" :AGE 5)
|
||||
(dog-p *rover*) ; => T
|
||||
(dog-name *rover*) ; => "rover"
|
||||
|
||||
;; Dog-p, make-dog, and dog-name are all created by defstruct!
|
||||
;;; DOG-P, MAKE-DOG, and DOG-NAME are all automatically created by DEFSTRUCT
|
||||
|
||||
|
||||
;;; Pairs
|
||||
;; `cons' constructs pairs, `car' and `cdr' extract the first
|
||||
;; and second elements
|
||||
(cons 'SUBJECT 'VERB) ; => '(SUBJECT . VERB)
|
||||
(car (cons 'SUBJECT 'VERB)) ; => SUBJECT
|
||||
(cdr (cons 'SUBJECT 'VERB)) ; => VERB
|
||||
|
||||
;;; CONS constructs pairs. CAR and CDR return the head and tail of a CONS-pair.
|
||||
|
||||
(cons 'SUBJECT 'VERB) ; => '(SUBJECT . VERB)
|
||||
(car (cons 'SUBJECT 'VERB)) ; => SUBJECT
|
||||
(cdr (cons 'SUBJECT 'VERB)) ; => VERB
|
||||
|
||||
|
||||
;;; Lists
|
||||
|
||||
;; Lists are linked-list data structures, made of `cons' pairs and end
|
||||
;; with a `nil' (or '()) to mark the end of the list
|
||||
(cons 1 (cons 2 (cons 3 nil))) ; => '(1 2 3)
|
||||
;; `list' is a convenience variadic constructor for lists
|
||||
(list 1 2 3) ; => '(1 2 3)
|
||||
;; and a quote can also be used for a literal list value
|
||||
'(1 2 3) ; => '(1 2 3)
|
||||
;;; Lists are linked-list data structures, made of CONS pairs and end with a
|
||||
;;; NIL (or '()) to mark the end of the list
|
||||
|
||||
;; Can still use `cons' to add an item to the beginning of a list
|
||||
(cons 4 '(1 2 3)) ; => '(4 1 2 3)
|
||||
(cons 1 (cons 2 (cons 3 nil))) ; => '(1 2 3)
|
||||
|
||||
;; Use `append' to - surprisingly - append lists together
|
||||
(append '(1 2) '(3 4)) ; => '(1 2 3 4)
|
||||
;;; LIST is a convenience variadic constructor for lists
|
||||
|
||||
;; Or use concatenate -
|
||||
(list 1 2 3) ; => '(1 2 3)
|
||||
|
||||
(concatenate 'list '(1 2) '(3 4))
|
||||
;;; When the first argument to CONS is an atom and the second argument is a
|
||||
;;; list, CONS returns a new CONS-pair with the first argument as the first
|
||||
;;; item and the second argument as the rest of the CONS-pair
|
||||
|
||||
(cons 4 '(1 2 3)) ; => '(4 1 2 3)
|
||||
|
||||
;;; Use APPEND to join lists
|
||||
|
||||
(append '(1 2) '(3 4)) ; => '(1 2 3 4)
|
||||
|
||||
;;; Or CONCATENATE
|
||||
|
||||
(concatenate 'list '(1 2) '(3 4)) ; => '(1 2 3 4)
|
||||
|
||||
;;; Lists are a very central type, so there is a wide variety of functionality for
|
||||
;;; them, a few examples:
|
||||
|
||||
;; Lists are a very central type, so there is a wide variety of functionality for
|
||||
;; them, a few examples:
|
||||
(mapcar #'1+ '(1 2 3)) ; => '(2 3 4)
|
||||
(mapcar #'+ '(1 2 3) '(10 20 30)) ; => '(11 22 33)
|
||||
(remove-if-not #'evenp '(1 2 3 4)) ; => '(2 4)
|
||||
(every #'evenp '(1 2 3 4)) ; => nil
|
||||
(every #'evenp '(1 2 3 4)) ; => NIL
|
||||
(some #'oddp '(1 2 3 4)) ; => T
|
||||
(butlast '(subject verb object)) ; => (SUBJECT VERB)
|
||||
|
||||
|
||||
;;; Vectors
|
||||
|
||||
;; Vector's literals are fixed-length arrays
|
||||
;;; Vector's literals are fixed-length arrays
|
||||
|
||||
#(1 2 3) ; => #(1 2 3)
|
||||
|
||||
;; Use concatenate to add vectors together
|
||||
;;; Use CONCATENATE to add vectors together
|
||||
|
||||
(concatenate 'vector #(1 2 3) #(4 5 6)) ; => #(1 2 3 4 5 6)
|
||||
|
||||
|
||||
;;; Arrays
|
||||
|
||||
;; Both vectors and strings are special-cases of arrays.
|
||||
;;; Both vectors and strings are special-cases of arrays.
|
||||
|
||||
;; 2D arrays
|
||||
;;; 2D arrays
|
||||
|
||||
(make-array (list 2 2))
|
||||
(make-array (list 2 2)) ; => #2A((0 0) (0 0))
|
||||
(make-array '(2 2)) ; => #2A((0 0) (0 0))
|
||||
(make-array (list 2 2 2)) ; => #3A(((0 0) (0 0)) ((0 0) (0 0)))
|
||||
|
||||
;; (make-array '(2 2)) works as well.
|
||||
;;; Caution: the default initial values of MAKE-ARRAY are implementation-defined.
|
||||
;;; To explicitly specify them:
|
||||
|
||||
; => #2A((0 0) (0 0))
|
||||
(make-array '(2) :initial-element 'unset) ; => #(UNSET UNSET)
|
||||
|
||||
(make-array (list 2 2 2))
|
||||
;;; To access the element at 1, 1, 1:
|
||||
|
||||
; => #3A(((0 0) (0 0)) ((0 0) (0 0)))
|
||||
(aref (make-array (list 2 2 2)) 1 1 1) ; => 0
|
||||
|
||||
;; Caution- the default initial values are
|
||||
;; implementation-defined. Here's how to define them:
|
||||
|
||||
(make-array '(2) :initial-element 'unset)
|
||||
|
||||
; => #(UNSET UNSET)
|
||||
|
||||
;; And, to access the element at 1,1,1 -
|
||||
(aref (make-array (list 2 2 2)) 1 1 1)
|
||||
|
||||
; => 0
|
||||
|
||||
;;; Adjustable vectors
|
||||
|
||||
;; Adjustable vectors have the same printed representation
|
||||
;; as fixed-length vector's literals.
|
||||
;;; Adjustable vectors have the same printed representation as
|
||||
;;; fixed-length vector's literals.
|
||||
|
||||
(defparameter *adjvec* (make-array '(3) :initial-contents '(1 2 3)
|
||||
:adjustable t :fill-pointer t))
|
||||
|
||||
:adjustable t :fill-pointer t))
|
||||
*adjvec* ; => #(1 2 3)
|
||||
|
||||
;; Adding new element:
|
||||
(vector-push-extend 4 *adjvec*) ; => 3
|
||||
;;; Adding new elements
|
||||
|
||||
*adjvec* ; => #(1 2 3 4)
|
||||
(vector-push-extend 4 *adjvec*) ; => 3
|
||||
*adjvec* ; => #(1 2 3 4)
|
||||
|
||||
|
||||
;;; Sets, naively, are just lists:
|
||||
|
||||
;;; Naively, sets are just lists:
|
||||
(set-difference '(1 2 3 4) '(4 5 6 7)) ; => (3 2 1)
|
||||
(intersection '(1 2 3 4) '(4 5 6 7)) ; => 4
|
||||
(union '(1 2 3 4) '(4 5 6 7)) ; => (3 2 1 4 5 6 7)
|
||||
(adjoin 4 '(1 2 3 4)) ; => (1 2 3 4)
|
||||
|
||||
(set-difference '(1 2 3 4) '(4 5 6 7)) ; => (3 2 1)
|
||||
(intersection '(1 2 3 4) '(4 5 6 7)) ; => 4
|
||||
(union '(1 2 3 4) '(4 5 6 7)) ; => (3 2 1 4 5 6 7)
|
||||
(adjoin 4 '(1 2 3 4)) ; => (1 2 3 4)
|
||||
|
||||
;; But you'll want to use a better data structure than a linked list
|
||||
;; for performant work!
|
||||
;;; However, you'll need a better data structure than linked lists when working
|
||||
;;; with larger data sets
|
||||
|
||||
;;; Dictionaries are implemented as hash tables.
|
||||
|
||||
;; Create a hash table
|
||||
;;; Create a hash table
|
||||
|
||||
(defparameter *m* (make-hash-table))
|
||||
|
||||
;; set a value
|
||||
;;; Set value
|
||||
|
||||
(setf (gethash 'a *m*) 1)
|
||||
|
||||
;; Retrieve a value
|
||||
(gethash 'a *m*) ; => 1, t
|
||||
;;; Retrieve value
|
||||
|
||||
;; Detail - Common Lisp has multiple return values possible. gethash
|
||||
;; returns t in the second value if anything was found, and nil if
|
||||
;; not.
|
||||
(gethash 'a *m*) ; => 1, T
|
||||
|
||||
;; Retrieving a non-present value returns nil
|
||||
(gethash 'd *m*) ;=> nil, nil
|
||||
;;; CL expressions have the ability to return multiple values.
|
||||
|
||||
(values 1 2) ; => 1, 2
|
||||
|
||||
;;; which can be bound with MULTIPLE-VALUE-BIND
|
||||
|
||||
(multiple-value-bind (x y)
|
||||
(values 1 2)
|
||||
(list y x))
|
||||
|
||||
; => '(2 1)
|
||||
|
||||
;;; GETHASH is an example of a function that returns multiple values. The first
|
||||
;;; value it return is the value of the key in the hash table; if the key is
|
||||
;;; not found it returns NIL.
|
||||
|
||||
;;; The second value determines if that key is indeed present in the hash
|
||||
;;; table. If a key is not found in the table it returns NIL. This behavior
|
||||
;;; allows us to check if the value of a key is actually NIL.
|
||||
|
||||
;;; Retrieving a non-present value returns nil
|
||||
|
||||
(gethash 'd *m*) ;=> NIL, NIL
|
||||
|
||||
;;; You can provide a default value for missing keys
|
||||
|
||||
;; You can provide a default value for missing keys
|
||||
(gethash 'd *m* :not-found) ; => :NOT-FOUND
|
||||
|
||||
;; Let's handle the multiple return values here in code.
|
||||
;;; Let's handle the multiple return values here in code.
|
||||
|
||||
(multiple-value-bind
|
||||
(a b)
|
||||
(multiple-value-bind (a b)
|
||||
(gethash 'd *m*)
|
||||
(list a b))
|
||||
; => (NIL NIL)
|
||||
|
||||
(multiple-value-bind
|
||||
(a b)
|
||||
(multiple-value-bind (a b)
|
||||
(gethash 'a *m*)
|
||||
(list a b))
|
||||
; => (1 T)
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; 3. Functions
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
;; Use `lambda' to create anonymous functions.
|
||||
;; A function always returns the value of its last expression.
|
||||
;; The exact printable representation of a function will vary...
|
||||
;;;-----------------------------------------------------------------------------
|
||||
;;; 3. Functions
|
||||
;;;-----------------------------------------------------------------------------
|
||||
|
||||
;;; Use LAMBDA to create anonymous functions. Functions always returns the
|
||||
;;; value of the last expression. The exact printable representation of a
|
||||
;;; function varies between implementations.
|
||||
|
||||
(lambda () "Hello World") ; => #<FUNCTION (LAMBDA ()) {1004E7818B}>
|
||||
|
||||
;; Use funcall to call lambda functions
|
||||
(funcall (lambda () "Hello World")) ; => "Hello World"
|
||||
;;; Use FUNCALL to call anonymous functions
|
||||
|
||||
;; Or Apply
|
||||
(funcall (lambda () "Hello World")) ; => "Hello World"
|
||||
(funcall #'+ 1 2 3) ; => 6
|
||||
|
||||
;;; A call to FUNCALL is also implied when the lambda expression is the CAR of
|
||||
;;; an unquoted list
|
||||
|
||||
((lambda () "Hello World")) ; => "Hello World"
|
||||
((lambda (val) val) "Hello World") ; => "Hello World"
|
||||
|
||||
;;; FUNCALL is used when the arguments are known beforehand. Otherwise, use APPLY
|
||||
|
||||
(apply #'+ '(1 2 3)) ; => 6
|
||||
(apply (lambda () "Hello World") nil) ; => "Hello World"
|
||||
|
||||
;; De-anonymize the function
|
||||
(defun hello-world ()
|
||||
"Hello World")
|
||||
;;; To name a function, use DEFUN
|
||||
|
||||
(defun hello-world () "Hello World")
|
||||
(hello-world) ; => "Hello World"
|
||||
|
||||
;; The () in the above is the list of arguments for the function
|
||||
(defun hello (name)
|
||||
(format nil "Hello, ~a" name))
|
||||
;;; The () in the definition above is the list of arguments
|
||||
|
||||
(defun hello (name) (format nil "Hello, ~A" name))
|
||||
(hello "Steve") ; => "Hello, Steve"
|
||||
|
||||
;; Functions can have optional arguments; they default to nil
|
||||
;;; Functions can have optional arguments; they default to NIL
|
||||
|
||||
(defun hello (name &optional from)
|
||||
(if from
|
||||
(format t "Hello, ~a, from ~a" name from)
|
||||
(format t "Hello, ~a" name)))
|
||||
(if from
|
||||
(format t "Hello, ~A, from ~A" name from)
|
||||
(format t "Hello, ~A" name)))
|
||||
|
||||
(hello "Jim" "Alpacas") ;; => Hello, Jim, from Alpacas
|
||||
(hello "Jim" "Alpacas") ; => Hello, Jim, from Alpacas
|
||||
|
||||
;;; The default values can also be specified
|
||||
|
||||
;; And the defaults can be set...
|
||||
(defun hello (name &optional (from "The world"))
|
||||
(format t "Hello, ~a, from ~a" name from))
|
||||
(format nil "Hello, ~A, from ~A" name from))
|
||||
|
||||
(hello "Steve")
|
||||
; => Hello, Steve, from The world
|
||||
(hello "Steve") ; => Hello, Steve, from The world
|
||||
(hello "Steve" "the alpacas") ; => Hello, Steve, from the alpacas
|
||||
|
||||
(hello "Steve" "the alpacas")
|
||||
; => Hello, Steve, from the alpacas
|
||||
|
||||
|
||||
;; And of course, keywords are allowed as well... usually more
|
||||
;; flexible than &optional.
|
||||
;;; Functions also have keyword arguments to allow non-positional arguments
|
||||
|
||||
(defun generalized-greeter (name &key (from "the world") (honorific "Mx"))
|
||||
(format t "Hello, ~a ~a, from ~a" honorific name from))
|
||||
(format t "Hello, ~A ~A, from ~A" honorific name from))
|
||||
|
||||
(generalized-greeter "Jim") ; => Hello, Mx Jim, from the world
|
||||
(generalized-greeter "Jim")
|
||||
; => Hello, Mx Jim, from the world
|
||||
|
||||
(generalized-greeter "Jim" :from "the alpacas you met last summer" :honorific "Mr")
|
||||
; => Hello, Mr Jim, from the alpacas you met last summer
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; 4. Equality
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
;; Common Lisp has a sophisticated equality system. A couple are covered here.
|
||||
;;;-----------------------------------------------------------------------------
|
||||
;;; 4. Equality
|
||||
;;;-----------------------------------------------------------------------------
|
||||
|
||||
;; for numbers use `='
|
||||
(= 3 3.0) ; => t
|
||||
(= 2 1) ; => nil
|
||||
;;; CL has a sophisticated equality system. Some are covered here.
|
||||
|
||||
;; for object identity (approximately) use `eql`
|
||||
(eql 3 3) ; => t
|
||||
(eql 3 3.0) ; => nil
|
||||
(eql (list 3) (list 3)) ; => nil
|
||||
;;; For numbers, use `='
|
||||
(= 3 3.0) ; => T
|
||||
(= 2 1) ; => NIL
|
||||
|
||||
;; for lists, strings, and bit-vectors use `equal'
|
||||
(equal (list 'a 'b) (list 'a 'b)) ; => t
|
||||
(equal (list 'a 'b) (list 'b 'a)) ; => nil
|
||||
;;; For object identity (approximately) use EQL
|
||||
(eql 3 3) ; => T
|
||||
(eql 3 3.0) ; => NIL
|
||||
(eql (list 3) (list 3)) ; => NIL
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; 5. Control Flow
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;;; for lists, strings, and bit-vectors use EQUAL
|
||||
(equal (list 'a 'b) (list 'a 'b)) ; => T
|
||||
(equal (list 'a 'b) (list 'b 'a)) ; => NIL
|
||||
|
||||
|
||||
;;;-----------------------------------------------------------------------------
|
||||
;;; 5. Control Flow
|
||||
;;;-----------------------------------------------------------------------------
|
||||
|
||||
;;; Conditionals
|
||||
|
||||
@ -404,71 +462,75 @@ nil ; for false - and the empty list
|
||||
"this is false") ; else expression
|
||||
; => "this is true"
|
||||
|
||||
;; In conditionals, all non-nil values are treated as true
|
||||
;;; In conditionals, all non-NIL values are treated as true
|
||||
|
||||
(member 'Groucho '(Harpo Groucho Zeppo)) ; => '(GROUCHO ZEPPO)
|
||||
(if (member 'Groucho '(Harpo Groucho Zeppo))
|
||||
'yep
|
||||
'nope)
|
||||
; => 'YEP
|
||||
|
||||
;; `cond' chains a series of tests to select a result
|
||||
;;; COND chains a series of tests to select a result
|
||||
(cond ((> 2 2) (error "wrong!"))
|
||||
((< 2 2) (error "wrong again!"))
|
||||
(t 'ok)) ; => 'OK
|
||||
|
||||
;; Typecase switches on the type of the value
|
||||
;;; TYPECASE switches on the type of the value
|
||||
(typecase 1
|
||||
(string :string)
|
||||
(integer :int))
|
||||
|
||||
; => :int
|
||||
|
||||
|
||||
;;; Looping
|
||||
|
||||
;;; Recursion
|
||||
|
||||
(defun fact (n)
|
||||
(if (< n 2)
|
||||
1
|
||||
(* n (fact(- n 1)))))
|
||||
|
||||
(fact 5) ; => 120
|
||||
|
||||
;;; Iteration
|
||||
|
||||
;; Of course recursion is supported:
|
||||
(defun fact (n)
|
||||
(loop :for result = 1 :then (* result i)
|
||||
:for i :from 2 :to n
|
||||
:finally (return result)))
|
||||
|
||||
(defun walker (n)
|
||||
(if (zerop n)
|
||||
:walked
|
||||
(walker (- n 1))))
|
||||
|
||||
(walker 5) ; => :walked
|
||||
|
||||
;; Most of the time, we use DOLIST or LOOP
|
||||
(fact 5) ; => 120
|
||||
|
||||
(loop :for x :across "abc" :collect x)
|
||||
; => (#\a #\b #\c #\d)
|
||||
|
||||
(dolist (i '(1 2 3 4))
|
||||
(format t "~a" i))
|
||||
|
||||
(format t "~A" i))
|
||||
; => 1234
|
||||
|
||||
(loop for i from 0 below 10
|
||||
collect i)
|
||||
|
||||
; => (0 1 2 3 4 5 6 7 8 9)
|
||||
;;;-----------------------------------------------------------------------------
|
||||
;;; 6. Mutation
|
||||
;;;-----------------------------------------------------------------------------
|
||||
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; 6. Mutation
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
;; Use `setf' to assign a new value to an existing variable. This was
|
||||
;; demonstrated earlier in the hash table example.
|
||||
;;; Use SETF to assign a new value to an existing variable. This was
|
||||
;;; demonstrated earlier in the hash table example.
|
||||
|
||||
(let ((variable 10))
|
||||
(setf variable 2))
|
||||
; => 2
|
||||
; => 2
|
||||
|
||||
;;; Good Lisp style is to minimize the use of destructive functions and to avoid
|
||||
;;; mutation when reasonable.
|
||||
|
||||
|
||||
;; Good Lisp style is to minimize destructive functions and to avoid
|
||||
;; mutation when reasonable.
|
||||
;;;-----------------------------------------------------------------------------
|
||||
;;; 7. Classes and objects
|
||||
;;;-----------------------------------------------------------------------------
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; 7. Classes and Objects
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
;; No more Animal classes, let's have Human-Powered Mechanical
|
||||
;; Conveyances.
|
||||
;;; No more animal classes. Let's have Human-Powered Mechanical
|
||||
;;; Conveyances.
|
||||
|
||||
(defclass human-powered-conveyance ()
|
||||
((velocity
|
||||
@ -479,14 +541,16 @@ nil ; for false - and the empty list
|
||||
:initarg :average-efficiency))
|
||||
(:documentation "A human powered conveyance"))
|
||||
|
||||
;; defclass, followed by name, followed by the superclass list,
|
||||
;; followed by slot list, followed by optional qualities such as
|
||||
;; :documentation.
|
||||
;;; The arguments to DEFCLASS, in order are:
|
||||
;;; 1. class name
|
||||
;;; 2. superclass list
|
||||
;;; 3. slot list
|
||||
;;; 4. optional specifiers
|
||||
|
||||
;; When no superclass list is set, the empty list defaults to the
|
||||
;; standard-object class. This *can* be changed, but not until you
|
||||
;; know what you're doing. Look up the Art of the Metaobject Protocol
|
||||
;; for more information.
|
||||
;;; When no superclass list is set, the empty list defaults to the
|
||||
;;; standard-object class. This *can* be changed, but not until you
|
||||
;;; know what you're doing. Look up the Art of the Metaobject Protocol
|
||||
;;; for more information.
|
||||
|
||||
(defclass bicycle (human-powered-conveyance)
|
||||
((wheel-size
|
||||
@ -500,7 +564,7 @@ nil ; for false - and the empty list
|
||||
(defclass recumbent (bicycle)
|
||||
((chain-type
|
||||
:accessor chain-type
|
||||
:initarg :chain-type)))
|
||||
:initarg :chain-type)))
|
||||
|
||||
(defclass unicycle (human-powered-conveyance) nil)
|
||||
|
||||
@ -509,8 +573,7 @@ nil ; for false - and the empty list
|
||||
:accessor number-of-rowers
|
||||
:initarg :number-of-rowers)))
|
||||
|
||||
|
||||
;; Calling DESCRIBE on the human-powered-conveyance class in the REPL gives:
|
||||
;;; Calling DESCRIBE on the HUMAN-POWERED-CONVEYANCE class in the REPL gives:
|
||||
|
||||
(describe 'human-powered-conveyance)
|
||||
|
||||
@ -532,47 +595,42 @@ nil ; for false - and the empty list
|
||||
; Readers: AVERAGE-EFFICIENCY
|
||||
; Writers: (SETF AVERAGE-EFFICIENCY)
|
||||
|
||||
;; Note the reflective behavior available to you! Common Lisp is
|
||||
;; designed to be an interactive system
|
||||
;;; Note the reflective behavior available. CL was designed to be an
|
||||
;;; interactive system
|
||||
|
||||
;; To define a method, let's find out what our circumference of the
|
||||
;; bike wheel turns out to be using the equation: C = d * pi
|
||||
;;; To define a method, let's find out what our circumference of the
|
||||
;;; bike wheel turns out to be using the equation: C = d * pi
|
||||
|
||||
(defmethod circumference ((object bicycle))
|
||||
(* pi (wheel-size object)))
|
||||
|
||||
;; pi is defined in Lisp already for us!
|
||||
;;; PI is defined as a built-in in CL
|
||||
|
||||
;; Let's suppose we find out that the efficiency value of the number
|
||||
;; of rowers in a canoe is roughly logarithmic. This should probably be set
|
||||
;; in the constructor/initializer.
|
||||
;;; Let's suppose we find out that the efficiency value of the number
|
||||
;;; of rowers in a canoe is roughly logarithmic. This should probably be set
|
||||
;;; in the constructor/initializer.
|
||||
|
||||
;; Here's how to initialize your instance after Common Lisp gets done
|
||||
;; constructing it:
|
||||
;;; To initialize your instance after CL gets done constructing it:
|
||||
|
||||
(defmethod initialize-instance :after ((object canoe) &rest args)
|
||||
(setf (average-efficiency object) (log (1+ (number-of-rowers object)))))
|
||||
|
||||
;; Then to construct an instance and check the average efficiency...
|
||||
;;; Then to construct an instance and check the average efficiency...
|
||||
|
||||
(average-efficiency (make-instance 'canoe :number-of-rowers 15))
|
||||
; => 2.7725887
|
||||
|
||||
|
||||
;;;-----------------------------------------------------------------------------
|
||||
;;; 8. Macros
|
||||
;;;-----------------------------------------------------------------------------
|
||||
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; 8. Macros
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
;; Macros let you extend the syntax of the language
|
||||
|
||||
;; Common Lisp doesn't come with a WHILE loop- let's add one.
|
||||
;; If we obey our assembler instincts, we wind up with:
|
||||
;;; Macros let you extend the syntax of the language. CL doesn't come
|
||||
;;; with a WHILE loop, however, it's trivial to write one. If we obey our
|
||||
;;; assembler instincts, we wind up with:
|
||||
|
||||
(defmacro while (condition &body body)
|
||||
"While `condition` is true, `body` is executed.
|
||||
|
||||
`condition` is tested prior to each execution of `body`"
|
||||
(let ((block-name (gensym)) (done (gensym)))
|
||||
`(tagbody
|
||||
@ -584,47 +642,47 @@ nil ; for false - and the empty list
|
||||
(go ,block-name)
|
||||
,done)))
|
||||
|
||||
;; Let's look at the high-level version of this:
|
||||
|
||||
;;; Let's look at the high-level version of this:
|
||||
|
||||
(defmacro while (condition &body body)
|
||||
"While `condition` is true, `body` is executed.
|
||||
|
||||
`condition` is tested prior to each execution of `body`"
|
||||
`(loop while ,condition
|
||||
do
|
||||
(progn
|
||||
,@body)))
|
||||
|
||||
;; However, with a modern compiler, this is not required; the LOOP
|
||||
;; form compiles equally well and is easier to read.
|
||||
;;; However, with a modern compiler, this is not required; the LOOP form
|
||||
;;; compiles equally well and is easier to read.
|
||||
|
||||
;; Note that ``` is used, as well as `,` and `@`. ``` is a quote-type operator
|
||||
;; known as quasiquote; it allows the use of `,` . `,` allows "unquoting"
|
||||
;; variables. @ interpolates lists.
|
||||
;;; Note that ``` is used, as well as `,` and `@`. ``` is a quote-type operator
|
||||
;;; known as quasiquote; it allows the use of `,` . `,` allows "unquoting"
|
||||
;;; variables. @ interpolates lists.
|
||||
|
||||
;; Gensym creates a unique symbol guaranteed to not exist elsewhere in
|
||||
;; the system. This is because macros are expanded at compile time and
|
||||
;; variables declared in the macro can collide with variables used in
|
||||
;; regular code.
|
||||
;;; GENSYM creates a unique symbol guaranteed to not exist elsewhere in
|
||||
;;; the system. This is because macros are expanded at compile time and
|
||||
;;; variables declared in the macro can collide with variables used in
|
||||
;;; regular code.
|
||||
|
||||
;; See Practical Common Lisp for more information on macros.
|
||||
;;; See Practical Common Lisp and On Lisp for more information on macros.
|
||||
```
|
||||
|
||||
|
||||
## Further Reading
|
||||
## Further reading
|
||||
|
||||
* [Keep moving on to the Practical Common Lisp book.](http://www.gigamonkeys.com/book/)
|
||||
* [A Gentle Introduction to...](https://www.cs.cmu.edu/~dst/LispBook/book.pdf)
|
||||
- [Practical Common Lisp](http://www.gigamonkeys.com/book/)
|
||||
- [Common Lisp: A Gentle Introduction to Symbolic Computation](https://www.cs.cmu.edu/~dst/LispBook/book.pdf)
|
||||
|
||||
|
||||
## Extra Info
|
||||
## Extra information
|
||||
|
||||
* [CLiki](http://www.cliki.net/)
|
||||
* [common-lisp.net](https://common-lisp.net/)
|
||||
* [Awesome Common Lisp](https://github.com/CodyReichert/awesome-cl)
|
||||
- [CLiki](http://www.cliki.net/)
|
||||
- [common-lisp.net](https://common-lisp.net/)
|
||||
- [Awesome Common Lisp](https://github.com/CodyReichert/awesome-cl)
|
||||
- [Lisp Lang](http://lisp-lang.org/)
|
||||
|
||||
## Credits.
|
||||
|
||||
## Credits
|
||||
|
||||
Lots of thanks to the Scheme people for rolling up a great starting
|
||||
point which could be easily moved to Common Lisp.
|
||||
|
Loading…
Reference in New Issue
Block a user