mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-12-23 17:41:41 +00:00
Added F# examples.
This commit is contained in:
parent
0c0117a138
commit
6c4de9853c
431
fsharp.html.markdown
Normal file
431
fsharp.html.markdown
Normal file
@ -0,0 +1,431 @@
|
||||
---
|
||||
language: F#
|
||||
author: Scott Wlaschin
|
||||
author_url: http://fsharpforfunandprofit.com/
|
||||
---
|
||||
|
||||
F# is a general purpose functional/OO programming language. It's free and open source, and runs on Linux, Mac, Windows and more.
|
||||
|
||||
It has a powerful type system that traps many errors at compile time, but it uses type inference so that it read more like a dynamic language.
|
||||
|
||||
The syntax of F# is similar to Python:
|
||||
|
||||
* Curly braces are not used to delimit blocks of code. Instead, indentation is used.
|
||||
* Whitespace is used to separate parameters rather than commas.
|
||||
|
||||
If you want to try out the code below, you can go to [tryfsharp.org](http://www.tryfsharp.org/Create) and paste it into an interactive REPL.
|
||||
|
||||
```fsharp
|
||||
|
||||
// single line comments use a double slash
|
||||
(* multi line comments use (* . . . *) pair
|
||||
|
||||
-end of multi line comment- *)
|
||||
|
||||
// ================================================
|
||||
// Basic Syntax
|
||||
// ================================================
|
||||
|
||||
// ------ "Variables" (but not really) ------
|
||||
// The "let" keyword defines an (immutable) value
|
||||
let myInt = 5
|
||||
let myFloat = 3.14
|
||||
let myString = "hello" //note that no types needed
|
||||
|
||||
// ------ Lists ------
|
||||
let twoToFive = [2;3;4;5] // Square brackets create a list with
|
||||
// semicolon delimiters.
|
||||
let oneToFive = 1 :: twoToFive // :: creates list with new 1st element
|
||||
// The result is [1;2;3;4;5]
|
||||
let zeroToFive = [0;1] @ twoToFive // @ concats two lists
|
||||
|
||||
// IMPORTANT: commas are never used as delimiters, only semicolons!
|
||||
|
||||
// ------ Functions ------
|
||||
// The "let" keyword also defines a named function.
|
||||
let square x = x * x // Note that no parens are used.
|
||||
square 3 // Now run the function. Again, no parens.
|
||||
|
||||
let add x y = x + y // don't use add (x,y)! It means something
|
||||
// completely different.
|
||||
add 2 3 // Now run the function.
|
||||
|
||||
// to define a multiline function, just use indents. No semicolons needed.
|
||||
let evens list =
|
||||
let isEven x = x%2 = 0 // Define "isEven" as a sub function
|
||||
List.filter isEven list // List.filter is a library function
|
||||
// with two parameters: a boolean function
|
||||
// and a list to work on
|
||||
|
||||
evens oneToFive // Now run the function
|
||||
|
||||
// You can use parens to clarify precedence. In this example,
|
||||
// do "map" first, with two args, then do "sum" on the result.
|
||||
// Without the parens, "List.map" would be passed as an arg to List.sum
|
||||
let sumOfSquaresTo100 =
|
||||
List.sum ( List.map square [1..100] )
|
||||
|
||||
// You can pipe the output of one operation to the next using "|>"
|
||||
// Piping data around is very common in F#, similar to UNIX pipes.
|
||||
|
||||
// Here is the same sumOfSquares function written using pipes
|
||||
let sumOfSquaresTo100piped =
|
||||
[1..100] |> List.map square |> List.sum // "square" was defined earlier
|
||||
|
||||
// you can define lambdas (anonymous functions) using the "fun" keyword
|
||||
let sumOfSquaresTo100withFun =
|
||||
[1..100] |> List.map (fun x -> x*x) |> List.sum
|
||||
|
||||
// In F# there is no "return" keyword. A function always
|
||||
// returns the value of the last expression used.
|
||||
|
||||
// ------ Pattern Matching ------
|
||||
// Match..with.. is a supercharged case/switch statement.
|
||||
let simplePatternMatch =
|
||||
let x = "a"
|
||||
match x with
|
||||
| "a" -> printfn "x is a"
|
||||
| "b" -> printfn "x is b"
|
||||
| _ -> printfn "x is something else" // underscore matches anything
|
||||
|
||||
// F# doesn't allow nulls by default -- you must use an Option type
|
||||
// and then pattern match.
|
||||
// Some(..) and None are roughly analogous to Nullable wrappers
|
||||
let validValue = Some(99)
|
||||
let invalidValue = None
|
||||
|
||||
// In this example, match..with matches the "Some" and the "None",
|
||||
// and also unpacks the value in the "Some" at the same time.
|
||||
let optionPatternMatch input =
|
||||
match input with
|
||||
| Some i -> printfn "input is an int=%d" i
|
||||
| None -> printfn "input is missing"
|
||||
|
||||
optionPatternMatch validValue
|
||||
optionPatternMatch invalidValue
|
||||
|
||||
// ------ Printing ------
|
||||
// The printf/printfn functions are similar to the
|
||||
// Console.Write/WriteLine functions in C#.
|
||||
printfn "Printing an int %i, a float %f, a bool %b" 1 2.0 true
|
||||
printfn "A string %s, and something generic %A" "hello" [1;2;3;4]
|
||||
|
||||
// There are also sprintf/sprintfn functions for formatting data
|
||||
// into a string, similar to String.Format in C#.
|
||||
|
||||
// ================================================
|
||||
// More on functions
|
||||
// ================================================
|
||||
|
||||
// F# is a true functional language -- functions are first
|
||||
// class entities and can be combined easy to make powerful
|
||||
// constructs
|
||||
|
||||
// Modules are used to group functions together
|
||||
// Indentation is needed for each nested module.
|
||||
module Addition =
|
||||
|
||||
// define a simple adding function
|
||||
let add x y = x + y
|
||||
|
||||
// basic usage of a function
|
||||
let a = add 1 2
|
||||
printfn "1+2 = %i" a
|
||||
|
||||
// partial application
|
||||
let add42 = add 42
|
||||
let b = add42 1
|
||||
printfn "42+1 = %i" b
|
||||
|
||||
// composition
|
||||
let add1 = add 1
|
||||
let add2 = add 2
|
||||
let add3 = add1 >> add2
|
||||
let c = add3 7
|
||||
printfn "3+7 = %i" c
|
||||
|
||||
// higher order functions
|
||||
[1..10] |> List.map add3 |> printfn "new list is %A"
|
||||
|
||||
// lists of functions, and more
|
||||
let add6 = [add1; add2; add3] |> List.reduce (>>)
|
||||
let d = add6 7
|
||||
printfn "1+2+3+7 = %i" d
|
||||
|
||||
// ================================================
|
||||
// Data Types
|
||||
// ================================================
|
||||
|
||||
|
||||
module DataTypeExamples =
|
||||
|
||||
// All data is immutable by default
|
||||
|
||||
// Tuples are quick 'n easy anonymous types
|
||||
let twoTuple = 1,2
|
||||
let threeTuple = "a",2,true
|
||||
|
||||
// Record types have named fields
|
||||
type Person = {First:string; Last:string}
|
||||
let person1 = {First="john"; Last="Doe"}
|
||||
|
||||
// Union types (aka variants) have a set of choices
|
||||
// Only case can be valid at a time.
|
||||
type Temp =
|
||||
| DegreesC of float
|
||||
| DegreesF of float
|
||||
let temp1 = DegreesF 98.6
|
||||
let temp2 = DegreesC 37.0
|
||||
|
||||
// Union types are great for modelling state without using flags
|
||||
type EmailAddress =
|
||||
| ValidEmailAddress of string
|
||||
| InvalidEmailAddress of string
|
||||
|
||||
let trySendEmail email =
|
||||
match email with // use pattern matching
|
||||
| ValidEmailAddress address -> () // send
|
||||
| InvalidEmailAddress address -> () // dont send
|
||||
|
||||
// Types can be combined recursively in complex ways
|
||||
// without having to create subclasses
|
||||
type Employee =
|
||||
| Worker of Person
|
||||
| Manager of Employee list
|
||||
|
||||
let jdoe = {First="John";Last="Doe"}
|
||||
let worker = Worker jdoe
|
||||
|
||||
// The combination of union types and record types together
|
||||
// provide a great foundation for domain driven design.
|
||||
// You can create hundreds of little types that accurately
|
||||
// reflect the domain.
|
||||
|
||||
type CartItem = { ProductCode: string; Qty: int }
|
||||
type Payment = Payment of float
|
||||
type ActiveCartData = { UnpaidItems: CartItem list }
|
||||
type PaidCartData = { PaidItems: CartItem list; Payment: Payment}
|
||||
|
||||
type ShoppingCart =
|
||||
| EmptyCart // no data
|
||||
| ActiveCart of ActiveCartData
|
||||
| PaidCart of PaidCartData
|
||||
|
||||
// All complex types have pretty printing built in for free
|
||||
printfn "twoTuple=%A,\nPerson=%A,\nTemp=%A,\nEmployee=%A"
|
||||
twoTuple person1 temp1 worker
|
||||
|
||||
// ================================================
|
||||
// Active patterns
|
||||
// ================================================
|
||||
|
||||
module ActivePatternExamples =
|
||||
|
||||
// F# has a special type of pattern matching called "active patterns"
|
||||
// where the pattern can be parsed or detected dynamically.
|
||||
|
||||
// for example, define an "active" pattern to match character types...
|
||||
let (|Digit|Letter|Whitespace|Other|) ch =
|
||||
if System.Char.IsDigit(ch) then Digit
|
||||
else if System.Char.IsLetter(ch) then Letter
|
||||
else if System.Char.IsWhiteSpace(ch) then Whitespace
|
||||
else Other
|
||||
|
||||
// ... and then use it to make parsing logic much clearer
|
||||
let printChar ch =
|
||||
match ch with
|
||||
| Digit -> printfn "%c is a Digit" ch
|
||||
| Letter -> printfn "%c is a Letter" ch
|
||||
| Whitespace -> printfn "%c is a Whitespace" ch
|
||||
| _ -> printfn "%c is something else" ch
|
||||
|
||||
// print a list
|
||||
['a';'b';'1';' ';'-';'c'] |> List.iter printChar
|
||||
|
||||
|
||||
// ================================================
|
||||
// Conciseness
|
||||
// ================================================
|
||||
|
||||
module AlgorithmExamples =
|
||||
|
||||
// F# has a high signal/noise ratio, so code reads
|
||||
// almost like the actual algorithm
|
||||
|
||||
// ------ Example: define sumOfSquares function ------
|
||||
let sumOfSquares n =
|
||||
[1..n] // 1) take all the numbers from 1 to n
|
||||
|> List.map square // 2) square each one
|
||||
|> List.sum // 3) sum the results
|
||||
|
||||
// test
|
||||
sumOfSquares 100 |> printfn "Sum of squares = %A"
|
||||
|
||||
// ------ Example: define a sort function ------
|
||||
let rec sort list =
|
||||
match list with
|
||||
// If the list is empty
|
||||
| [] ->
|
||||
[] // return an empty list
|
||||
// If the list is not empty
|
||||
| firstElem::otherElements -> // take the first element
|
||||
let smallerElements = // extract the smaller elements
|
||||
otherElements // from the remaining ones
|
||||
|> List.filter (fun e -> e < firstElem)
|
||||
|> sort // and sort them
|
||||
let largerElements = // extract the larger ones
|
||||
otherElements // from the remaining ones
|
||||
|> List.filter (fun e -> e >= firstElem)
|
||||
|> sort // and sort them
|
||||
// Combine the 3 parts into a new list and return it
|
||||
List.concat [smallerElements; [firstElem]; largerElements]
|
||||
|
||||
// test
|
||||
sort [1;5;23;18;9;1;3] |> printfn "Sorted = %A"
|
||||
|
||||
// ================================================
|
||||
// Asynchronous Code
|
||||
// ================================================
|
||||
|
||||
module AsyncExample =
|
||||
|
||||
// F# has some built-in features to help with async code
|
||||
// without encountering the "pyramid of doom"
|
||||
//
|
||||
// The following example downloads a set of web pages in parallel.
|
||||
|
||||
open System.Net
|
||||
open System
|
||||
open System.IO
|
||||
open Microsoft.FSharp.Control.CommonExtensions
|
||||
|
||||
// Fetch the contents of a URL asynchronously
|
||||
let fetchUrlAsync url =
|
||||
async {
|
||||
let req = WebRequest.Create(Uri(url))
|
||||
use! resp = req.AsyncGetResponse()
|
||||
use stream = resp.GetResponseStream()
|
||||
use reader = new IO.StreamReader(stream)
|
||||
let html = reader.ReadToEnd()
|
||||
printfn "finished downloading %s" url
|
||||
}
|
||||
|
||||
// a list of sites to fetch
|
||||
let sites = ["http://www.bing.com";
|
||||
"http://www.google.com";
|
||||
"http://www.microsoft.com";
|
||||
"http://www.amazon.com";
|
||||
"http://www.yahoo.com"]
|
||||
|
||||
// do it
|
||||
sites
|
||||
|> List.map fetchUrlAsync // make a list of async tasks
|
||||
|> Async.Parallel // set up the tasks to run in parallel
|
||||
|> Async.RunSynchronously // start them off
|
||||
|
||||
// ================================================
|
||||
// .NET compatability
|
||||
// ================================================
|
||||
|
||||
module NetCompatibilityExamples =
|
||||
|
||||
// F# can do almost everything C# can do, and it integrates
|
||||
// seamlessly with .NET or Mono libraries.
|
||||
|
||||
// ------- work with existing library functions -------
|
||||
|
||||
let (i1success,i1) = System.Int32.TryParse("123");
|
||||
if i1success then printfn "parsed as %i" i1 else printfn "parse failed"
|
||||
|
||||
// ------- Implement interfaces on the fly! -------
|
||||
|
||||
// create a new object that implements IDisposable
|
||||
let makeResource name =
|
||||
{ new System.IDisposable
|
||||
with member this.Dispose() = printfn "%s disposed" name }
|
||||
|
||||
let useAndDisposeResources =
|
||||
use r1 = makeResource "first resource"
|
||||
printfn "using first resource"
|
||||
for i in [1..3] do
|
||||
let resourceName = sprintf "\tinner resource %d" i
|
||||
use temp = makeResource resourceName
|
||||
printfn "\tdo something with %s" resourceName
|
||||
use r2 = makeResource "second resource"
|
||||
printfn "using second resource"
|
||||
printfn "done."
|
||||
|
||||
// ------- Object oriented code -------
|
||||
|
||||
// F# is also a fully fledged OO language.
|
||||
// It supports classes, inheritance, virtual methods, etc.
|
||||
|
||||
// interface
|
||||
type IEnumerator<'a> =
|
||||
abstract member Current : 'a
|
||||
abstract MoveNext : unit -> bool
|
||||
|
||||
// abstract base class with virtual methods
|
||||
[<AbstractClass>]
|
||||
type Shape() =
|
||||
//readonly properties
|
||||
abstract member Width : int with get
|
||||
abstract member Height : int with get
|
||||
//non-virtual method
|
||||
member this.BoundingArea = this.Height * this.Width
|
||||
//virtual method with base implementation
|
||||
abstract member Print : unit -> unit
|
||||
default this.Print () = printfn "I'm a shape"
|
||||
|
||||
// concrete class that inherits from base class and overrides
|
||||
type Rectangle(x:int, y:int) =
|
||||
inherit Shape()
|
||||
override this.Width = x
|
||||
override this.Height = y
|
||||
override this.Print () = printfn "I'm a Rectangle"
|
||||
|
||||
//test
|
||||
let r = Rectangle(2,3)
|
||||
printfn "The width is %i" r.Width
|
||||
printfn "The area is %i" r.BoundingArea
|
||||
r.Print()
|
||||
|
||||
// ------- extension methods -------
|
||||
|
||||
//Just as in C#, F# can extend existing classes with extension methods.
|
||||
type System.String with
|
||||
member this.StartsWithA = this.StartsWith "A"
|
||||
|
||||
//test
|
||||
let s = "Alice"
|
||||
printfn "'%s' starts with an 'A' = %A" s s.StartsWithA
|
||||
|
||||
// ------- events -------
|
||||
|
||||
type MyButton() =
|
||||
let clickEvent = new Event<_>()
|
||||
|
||||
[<CLIEvent>]
|
||||
member this.OnClick = clickEvent.Publish
|
||||
|
||||
member this.TestEvent(arg) =
|
||||
clickEvent.Trigger(this, arg)
|
||||
|
||||
// test
|
||||
let myButton = new MyButton()
|
||||
myButton.OnClick.Add(fun (sender, arg) ->
|
||||
printfn "Click event with arg=%O" arg)
|
||||
|
||||
myButton.TestEvent("Hello World!")
|
||||
|
||||
```
|
||||
|
||||
## More Information
|
||||
|
||||
For more demonstrations of F#, go to the [Try F#](http://www.tryfsharp.org/Learn) site, or my [why use F#](http://fsharpforfunandprofit.com/why-use-fsharp/) series.
|
||||
|
||||
Read more about F# at [fsharp.org](http://fsharp.org/).
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user