mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-12-23 17:41:41 +00:00
[standard-ml/en-en] Created tutorial from scratch
This commit is contained in:
parent
a36cee194b
commit
6e6d88e25f
334
standard-ml.html.markdown
Normal file
334
standard-ml.html.markdown
Normal file
@ -0,0 +1,334 @@
|
|||||||
|
---
|
||||||
|
language: Standard ML
|
||||||
|
contributors:
|
||||||
|
- ["Simon Shine", "http://shine.eu.org/"]
|
||||||
|
lang: en-en
|
||||||
|
---
|
||||||
|
|
||||||
|
Standard ML is a functional programming language with type inference and some
|
||||||
|
side-effects. Some of the hard parts of learning Standard ML are: Recursion,
|
||||||
|
pattern matching, type inference (guessing the right types but never allowing
|
||||||
|
implicit type conversion). If you have an imperative background, not being able
|
||||||
|
to update variables can feel severely inhibiting.
|
||||||
|
|
||||||
|
```
|
||||||
|
(* Comments in Standard ML begin with (* and end with *). Comments can be
|
||||||
|
nested which means that all (* tags must end with a *) tag. This comment
|
||||||
|
contains two nested comments. *)
|
||||||
|
|
||||||
|
(* A Standard ML program consists of declarations, e.g. value declarations: *)
|
||||||
|
val rent = 1200
|
||||||
|
val phone_no = 5551337
|
||||||
|
val pi = 3.14159
|
||||||
|
val negative_number = ~15 (* Yeah, unary minus is a so-called 'tilde' *)
|
||||||
|
|
||||||
|
(* And just as importantly, functions: *)
|
||||||
|
fun is_large(x : int) = if x > 37 then true else false
|
||||||
|
|
||||||
|
(* Floating-point numbers are called "reals". *)
|
||||||
|
val tau = 2.0 * pi (* You can multiply reals *)
|
||||||
|
val twice_rent = 2 * rent (* You can multiply ints *)
|
||||||
|
(* val meh = 1.25 * 10 *) (* But you can't multiply an int and a real *)
|
||||||
|
|
||||||
|
(* +, - and * are overloaded so they work for both int and real. *)
|
||||||
|
(* The same cannot be said for division which has separate operators: *)
|
||||||
|
val real_division = 14.0 / 4.0 (* gives 3.5 *)
|
||||||
|
val int_division = 14 div 4 (* gives 3, rounding down *)
|
||||||
|
val int_remainder = 14 mod 4 (* gives 2, since 3*4 = 12 *)
|
||||||
|
|
||||||
|
(* ~ is actually sometimes a function (e.g. when put in front of variables) *)
|
||||||
|
val negative_rent = ~(rent) (* Would also have worked if rent were a "real" *)
|
||||||
|
|
||||||
|
(* There are also booleans and boolean operators *)
|
||||||
|
val got_milk = true
|
||||||
|
val got_bread = false
|
||||||
|
val has_breakfast = got_milk andalso got_bread (* Yes, it's called andalso *)
|
||||||
|
val has_something = got_milk orelse got_bread (* Yes, it's called orelse *)
|
||||||
|
val is_sad = not(has_something) (* not is a function *)
|
||||||
|
|
||||||
|
(* Many values can be compared using equality operators: = and <> *)
|
||||||
|
val pays_same_rent = (rent = 1300) (* false *)
|
||||||
|
val is_wrong_phone_no = (phone_no <> 5551337) (* false *)
|
||||||
|
|
||||||
|
(* The operator <> is what most other languages call != *)
|
||||||
|
|
||||||
|
|
||||||
|
(* Actually, most of the parentheses above are unnecessary. Here are some
|
||||||
|
different ways to say some of the things mentioned above: *)
|
||||||
|
fun is_large x = x > 37 (* The parens above were necessary because of ': int' *)
|
||||||
|
val is_sad = not has_something
|
||||||
|
val pays_same_rent = rent = 1300 (* Looks confusing, but works *)
|
||||||
|
val is_wrong_phone_no = phone_no <> 5551337
|
||||||
|
val negative_rent = ~rent (* ~ rent (notice the space) would also work *)
|
||||||
|
|
||||||
|
(* Parens are mostly necessary when grouping things: *)
|
||||||
|
val some_answer = is_large (5 + 5) (* Without parens, this would break! *)
|
||||||
|
(* val some_answer = is_large 5 + 5 *) (* Read as: (is_large 5) + 5. Bad! *)
|
||||||
|
|
||||||
|
|
||||||
|
(* Besides booleans, ints and reals, Standard ML also has chars and strings: *)
|
||||||
|
val foo = "Hello, World!\n" (* The \n is the escape sequence for linebreaks *)
|
||||||
|
val one_letter = #"a" (* That funky syntax is just one character, a *)
|
||||||
|
|
||||||
|
val combined = "Hello " ^ "there, " ^ "fellow!\n" (* Concatenate strings *)
|
||||||
|
|
||||||
|
val _ = print foo (* You can print things. We are not interested in the *)
|
||||||
|
val _ = print combined (* result of this computation, so we throw it away. *)
|
||||||
|
(* val _ = print one_letter *) (* Only strings can be printed this way *)
|
||||||
|
|
||||||
|
|
||||||
|
val bar = [ #"H", #"e", #"l", #"l", #"o" ] (* SML also has lists! *)
|
||||||
|
(* val _ = print bar *) (* Lists are unfortunately not the same as strings *)
|
||||||
|
|
||||||
|
(* Fortunately they can be converted. String is a library and implode and size
|
||||||
|
are functions available in that library that take strings as argument. *)
|
||||||
|
val bob = String.implode bar (* gives "Hello" *)
|
||||||
|
val bob_char_count = String.size bob (* gives 5 *)
|
||||||
|
val _ = print (bob ^ "\n") (* For good measure, add a linebreak *)
|
||||||
|
|
||||||
|
(* You can have lists of any kind *)
|
||||||
|
val numbers = [1, 3, 3, 7, 229, 230, 248] (* : int list *)
|
||||||
|
val names = [ "Fred", "Jane", "Alice" ] (* : string list *)
|
||||||
|
val groups = [ [ "Alice", "Bob" ],
|
||||||
|
[ "Huey", "Dewey", "Louie" ],
|
||||||
|
[ "Bonnie", "Clyde" ] ] (* : string list list *)
|
||||||
|
|
||||||
|
val number_count = List.length numbers (* gives 7 *)
|
||||||
|
|
||||||
|
(* You can put single values in front of lists of the same kind *)
|
||||||
|
val more_numbers = 13 :: numbers (* gives [13, 1, 3, 3, 7, ...] *)
|
||||||
|
val more_groups = ["Batman","Superman"] :: groups
|
||||||
|
|
||||||
|
(* Lists of the same kind can be appended using the @ ("append") operator *)
|
||||||
|
val guest_list = [ "Mom", "Dad" ] @ [ "Aunt", "Uncle" ]
|
||||||
|
|
||||||
|
(* This could have been done with the :: operator (pronounced "cons") *)
|
||||||
|
val guest_list = "Mom" :: "Dad" :: [ "Aunt", "Uncle" ]
|
||||||
|
|
||||||
|
(* If you have many lists of the same kind, you can concatenate them all *)
|
||||||
|
val everyone = List.concat groups (* [ "Alice", "Bob", "Huey", ... ] *)
|
||||||
|
|
||||||
|
(* A list can contain any (finite) amount of values *)
|
||||||
|
val lots = [ 5, 5, 5, 6, 4, 5, 6, 5, 4, 5, 7, 3 ] (* still just an int list *)
|
||||||
|
|
||||||
|
(* Lists can only contain one kind of thing... *)
|
||||||
|
(* val bad_list = [ 1, "Hello", 3.14159 ] : ??? list *)
|
||||||
|
|
||||||
|
|
||||||
|
(* Tuples, on the other hand, can contain a fixed number of different things *)
|
||||||
|
val person1 = ("Simon", 28, 3.14159) (* : string * int * real *)
|
||||||
|
|
||||||
|
(* You can even have tuples inside lists and lists inside tuples *)
|
||||||
|
val likes = [ ("Alice", "ice cream"),
|
||||||
|
("Bob", "hot dogs"),
|
||||||
|
("Bob", "Alice") ] (* : (string * string) list *)
|
||||||
|
|
||||||
|
val mixup = [ ("Alice", 39),
|
||||||
|
("Bob", 37),
|
||||||
|
("Eve", 41) ] (* : (string * int) list *)
|
||||||
|
|
||||||
|
val good_bad_stuff =
|
||||||
|
(["ice cream", "hot dogs", "chocolate"],
|
||||||
|
["liver", "paying the rent" ]) (* string list * string list *)
|
||||||
|
|
||||||
|
|
||||||
|
(* Functions! *)
|
||||||
|
fun add_them (a, b) = a + b (* A simple function that adds two numbers *)
|
||||||
|
val test_it = add_them (3, 4) (* gives 7 *)
|
||||||
|
|
||||||
|
(* Larger functions are usually broken into several lines for readability *)
|
||||||
|
fun thermometer temp =
|
||||||
|
if temp < 37
|
||||||
|
then "Cold"
|
||||||
|
else if temp > 37
|
||||||
|
then "Warm"
|
||||||
|
else "Normal"
|
||||||
|
|
||||||
|
val test_thermo = thermometer 40 (* gives "Warm" *)
|
||||||
|
|
||||||
|
(* if-sentences are actually expressions and not statements/declarations.
|
||||||
|
A function body can only contain one expression. There are some tricks
|
||||||
|
for making a function do more than just one thing, though. *)
|
||||||
|
|
||||||
|
(* A function can call itself as part of its result (recursion!) *)
|
||||||
|
fun fibonacci n =
|
||||||
|
if n = 0 then 0 else (* Base case *)
|
||||||
|
if n = 1 then 1 else (* Base case *)
|
||||||
|
fibonacci (n - 1) + fibonacci (n - 2) (* Recursive case *)
|
||||||
|
|
||||||
|
(* Sometimes recursion is best understood by evaluating a function by hand:
|
||||||
|
|
||||||
|
fibonacci 4
|
||||||
|
~> fibonacci (4 - 1) + fibonacci (4 - 2)
|
||||||
|
~> fibonacci 3 + fibonacci 2
|
||||||
|
~> (fibonacci (3 - 1) + fibonacci (3 - 2)) + fibonacci 2
|
||||||
|
~> (fibonacci 2 + fibonacci 1) + fibonacci 2
|
||||||
|
~> ((fibonacci (2 - 1) + fibonacci (2 - 2)) + fibonacci 1) + fibonacci 2
|
||||||
|
~> ((fibonacci 1 + fibonacci 0) + fibonacci 1) + fibonacci 2
|
||||||
|
~> ((1 + fibonacci 0) + fibonacci 1) + fibonacci 2
|
||||||
|
~> ((1 + 0) + fibonacci 1) + fibonacci 2
|
||||||
|
~> (1 + fibonacci 1) + fibonacci 2
|
||||||
|
~> (1 + 1) + fibonacci 2
|
||||||
|
~> 2 + fibonacci 2
|
||||||
|
~> 2 + (fibonacci (2 - 1) + fibonacci (2 - 2))
|
||||||
|
~> 2 + (fibonacci (2 - 1) + fibonacci (2 - 2))
|
||||||
|
~> 2 + (fibonacci 1 + fibonacci 0)
|
||||||
|
~> 2 + (1 + fibonacci 0)
|
||||||
|
~> 2 + (1 + 0)
|
||||||
|
~> 2 + 1
|
||||||
|
~> 3 which is the 4th Fibonacci number, according to this definition
|
||||||
|
|
||||||
|
*)
|
||||||
|
|
||||||
|
(* A function cannot change the variables it can refer to. It can only
|
||||||
|
temporarily shadow them with new variables that have the same names. In this
|
||||||
|
sense, variables are really constants and only behave like variables when
|
||||||
|
dealing with recursion. For this reason, variables are also called value
|
||||||
|
bindings. An example of this: *)
|
||||||
|
|
||||||
|
val x = 42
|
||||||
|
fun answer(question) =
|
||||||
|
if question = "What is the meaning of life, the universe and everything?"
|
||||||
|
then x
|
||||||
|
else raise Fail "I'm an exception. Also, I don't know what the answer is."
|
||||||
|
val x = 43
|
||||||
|
val hmm = answer "What is the meaning of life, the universe and everything?"
|
||||||
|
(* Now, hmm has the value 42. This is because the function answer refers to
|
||||||
|
the copy of x that was visible before its own function definition. *)
|
||||||
|
|
||||||
|
|
||||||
|
(* Functions can take several arguments by taking one tuples as argument: *)
|
||||||
|
fun solve2 (a : real, b : real, c : real) =
|
||||||
|
( Math.sqrt (~b + Math.sqrt(b * b - 4.0*a*c) / (2.0 * a),
|
||||||
|
Math.sqrt (~b - Math.sqrt(b * b - 4.0*a*c) / (2.0 * a) )
|
||||||
|
|
||||||
|
(* Sometimes, the same computation is carried out several times. It makes sense
|
||||||
|
to save and re-use the result the first time. We can use "let-bindings": *)
|
||||||
|
fun solve2 (a : real, b : real, c : real) =
|
||||||
|
let val discr = b * b - 4.0*a*c
|
||||||
|
val sqr = Math.sqrt d
|
||||||
|
val denom = 2.0 * a
|
||||||
|
in (~b + sq / denom,
|
||||||
|
~b - sq / denom) end
|
||||||
|
|
||||||
|
|
||||||
|
(* Pattern matching is a funky part of functional programming. It is an
|
||||||
|
alternative to if-sentences. The fibonacci function can be rewritten: *)
|
||||||
|
fun fibonacci 0 = 0 (* Base case *)
|
||||||
|
| fibonacci 1 = 1 (* Base case *)
|
||||||
|
| fibonacci n = fibonacci (n - 1) + fibonacci (n - 2) (* Recursive case *)
|
||||||
|
|
||||||
|
(* Pattern matching is also possible on composite types like tuples and lists.
|
||||||
|
Writing "fun solve2 (a, b, c) = ..." is in fact a pattern match on the one
|
||||||
|
three-tuple solve2 takes as argument. Similarly, but less intuitively, you
|
||||||
|
can match on a list consisting of elements in it (from the beginning of the
|
||||||
|
list only). *)
|
||||||
|
fun first_elem (x::xs) = x
|
||||||
|
fun second_elem (x::y::xs) = y
|
||||||
|
fun evenly_positioned_elems (odd::even::xs) = even::evenly_positioned_elems xs
|
||||||
|
| evenly_positioned_elems [odd] = [] (* Base case: throw away *)
|
||||||
|
| evenly_positioned_elems [] = [] (* Base case *)
|
||||||
|
|
||||||
|
|
||||||
|
(* Higher order functions: Functions can take other functions as arguments.
|
||||||
|
Functions are just other kinds of values, and functions don't need names
|
||||||
|
to exist. Functions without names are called "anonymous functions" or
|
||||||
|
lambda expressions or closures (since they also have a lexical scope). *)
|
||||||
|
val is_large = (fn x => x > 37)
|
||||||
|
val add_them = fn (a,b) => a + b
|
||||||
|
val thermometer =
|
||||||
|
fn temp => if temp < 37
|
||||||
|
then "Cold"
|
||||||
|
else if temp > 37
|
||||||
|
then "Warm"
|
||||||
|
else "Normal"
|
||||||
|
|
||||||
|
(* The following uses an anonymous function directly and gives "ColdWarm" *)
|
||||||
|
val some_result = (fn x => thermometer (x - 5) ^ thermometer (x + 5)) 37
|
||||||
|
|
||||||
|
(* Here is a higher-order function that works on lists (a list combinator) *)
|
||||||
|
val readings = [ 34, 39, 37, 38, 35, 36, 37, 37, 37 ] (* first an int list *)
|
||||||
|
val opinions = List.map thermometer readings (* gives [ "Cold", "Warm", ... ] *)
|
||||||
|
|
||||||
|
(* And here is another one for filtering lists *)
|
||||||
|
val warm_readings = List.filter is_large readings (* gives [39, 38] *)
|
||||||
|
|
||||||
|
(* You can create your own higher-order functions, too. Functions can also take
|
||||||
|
several arguments by "currying" them. Syntax-wise this means adding spaces
|
||||||
|
between function arguments instead of commas and surrounding parentheses. *)
|
||||||
|
fun map f [] = []
|
||||||
|
| map f (x::xs) = f(x) :: map f xs
|
||||||
|
|
||||||
|
(* map has type ('a -> 'b) -> 'a list -> 'b list and is called polymorphic. *)
|
||||||
|
(* 'a is called a type variable. *)
|
||||||
|
|
||||||
|
(* Datatypes are useful for creating both simple and complex structures *)
|
||||||
|
datatype color = Red | Green | Blue
|
||||||
|
|
||||||
|
(* Here is a function that takes one of these as argument *)
|
||||||
|
fun say(col) =
|
||||||
|
if col = Red then "You are red!" else
|
||||||
|
if col = Green then "You are green!" else
|
||||||
|
if col = Blue then "You are blue!" else
|
||||||
|
raise Fail "Unknown color"
|
||||||
|
|
||||||
|
(* Datatypes are very often used in combination with pattern matching *)
|
||||||
|
fun say Red = "You are red!"
|
||||||
|
| say Green = "You are green!"
|
||||||
|
| say Blue = "You are blue!"
|
||||||
|
| _ = raise Fail "Unknown color"
|
||||||
|
|
||||||
|
|
||||||
|
(* Here is a binary tree datatype *)
|
||||||
|
datatype 'a btree = Leaf of 'a
|
||||||
|
| Node of 'a btree * 'a * 'a btree (* three-arg constructor *)
|
||||||
|
|
||||||
|
(* Here is a binary tree *)
|
||||||
|
val myTree = Node (Leaf 9, 8, Node (Leaf 3, 5, Leaf 7))
|
||||||
|
|
||||||
|
(* Drawing it, it might look something like...
|
||||||
|
|
||||||
|
8
|
||||||
|
/ \
|
||||||
|
leaf -> 9 5
|
||||||
|
/ \
|
||||||
|
leaf -> 3 7 <- leaf
|
||||||
|
*)
|
||||||
|
|
||||||
|
(* This function counts the sum of all the elements in a tree *)
|
||||||
|
fun count (Leaf n) = n
|
||||||
|
| count (Node (leftTree, n, rightTree)) = count leftTree + n + count rightTree
|
||||||
|
|
||||||
|
|
||||||
|
(* File I/O! *)
|
||||||
|
(* Write a nice poem to a file *)
|
||||||
|
fun writePoem(filename) =
|
||||||
|
let val file = TextIO.openOut(filename)
|
||||||
|
val _ = TextIO.output(file, "Roses are red,\nViolets are blue.\n")
|
||||||
|
val _ = TextIO.output(file, "I have a gun.\nGet in the van.\n")
|
||||||
|
in TextIO.closeOut(file) end
|
||||||
|
|
||||||
|
(* Read a nice poem from a file into a list of strings *)
|
||||||
|
fun readPoem(filename) =
|
||||||
|
let val file = TextIO.openIn filename
|
||||||
|
val poem = TextIO.inputAll file
|
||||||
|
val _ = TextIO.closeIn file
|
||||||
|
in String.tokens (fn c => c = #"\n") poem
|
||||||
|
end
|
||||||
|
|
||||||
|
val _ = writePoem "roses.txt"
|
||||||
|
val test_poem = readPoem "roses.txt" (* gives [ "Roses are red,",
|
||||||
|
"Violets are blue.",
|
||||||
|
"I have a gun.",
|
||||||
|
"Get in the van." ] *)
|
||||||
|
~~~~
|
||||||
|
|
||||||
|
## Further learning
|
||||||
|
|
||||||
|
* Install an interactive compiler (REPL), for example
|
||||||
|
[http://www.polyml.org/](Poly/ML),
|
||||||
|
[http://mosml.org](Moscow ML) or
|
||||||
|
[http://smlnj.org/](SML/NJ).
|
||||||
|
* Follow the Coursera course [Programming Languages](https://www.coursera.org/course/proglang).
|
||||||
|
* Get the book *ML for the Working Programmer* by Larry C. Paulson.
|
||||||
|
|
Loading…
Reference in New Issue
Block a user