mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-12-23 17:41:41 +00:00
update julia docs to 0.4
This commit is contained in:
parent
44ca091c73
commit
6f5efb6883
@ -8,7 +8,7 @@ filename: learnjulia.jl
|
|||||||
Julia is a new homoiconic functional language focused on technical computing.
|
Julia is a new homoiconic functional language focused on technical computing.
|
||||||
While having the full power of homoiconic macros, first-class functions, and low-level control, Julia is as easy to learn and use as Python.
|
While having the full power of homoiconic macros, first-class functions, and low-level control, Julia is as easy to learn and use as Python.
|
||||||
|
|
||||||
This is based on Julia 0.3.
|
This is based on Julia 0.4.
|
||||||
|
|
||||||
```ruby
|
```ruby
|
||||||
|
|
||||||
@ -22,7 +22,7 @@ This is based on Julia 0.3.
|
|||||||
## 1. Primitive Datatypes and Operators
|
## 1. Primitive Datatypes and Operators
|
||||||
####################################################
|
####################################################
|
||||||
|
|
||||||
# Everything in Julia is a expression.
|
# Everything in Julia is an expression.
|
||||||
|
|
||||||
# There are several basic types of numbers.
|
# There are several basic types of numbers.
|
||||||
3 # => 3 (Int64)
|
3 # => 3 (Int64)
|
||||||
@ -262,8 +262,8 @@ values(filled_dict)
|
|||||||
# Note - Same as above regarding key ordering.
|
# Note - Same as above regarding key ordering.
|
||||||
|
|
||||||
# Check for existence of keys in a dictionary with in, haskey
|
# Check for existence of keys in a dictionary with in, haskey
|
||||||
in(("one", 1), filled_dict) # => true
|
in(("one" => 1), filled_dict) # => true
|
||||||
in(("two", 3), filled_dict) # => false
|
in(("two" => 3), filled_dict) # => false
|
||||||
haskey(filled_dict, "one") # => true
|
haskey(filled_dict, "one") # => true
|
||||||
haskey(filled_dict, 1) # => false
|
haskey(filled_dict, 1) # => false
|
||||||
|
|
||||||
@ -282,7 +282,7 @@ get(filled_dict,"four",4) # => 4
|
|||||||
# Use Sets to represent collections of unordered, unique values
|
# Use Sets to represent collections of unordered, unique values
|
||||||
empty_set = Set() # => Set{Any}()
|
empty_set = Set() # => Set{Any}()
|
||||||
# Initialize a set with values
|
# Initialize a set with values
|
||||||
filled_set = Set(1,2,2,3,4) # => Set{Int64}(1,2,3,4)
|
filled_set = Set([1,2,2,3,4]) # => Set{Int64}(1,2,3,4)
|
||||||
|
|
||||||
# Add more values to a set
|
# Add more values to a set
|
||||||
push!(filled_set,5) # => Set{Int64}(5,4,2,3,1)
|
push!(filled_set,5) # => Set{Int64}(5,4,2,3,1)
|
||||||
@ -292,7 +292,7 @@ in(2, filled_set) # => true
|
|||||||
in(10, filled_set) # => false
|
in(10, filled_set) # => false
|
||||||
|
|
||||||
# There are functions for set intersection, union, and difference.
|
# There are functions for set intersection, union, and difference.
|
||||||
other_set = Set(3, 4, 5, 6) # => Set{Int64}(6,4,5,3)
|
other_set = Set([3, 4, 5, 6]) # => Set{Int64}(6,4,5,3)
|
||||||
intersect(filled_set, other_set) # => Set{Int64}(3,4,5)
|
intersect(filled_set, other_set) # => Set{Int64}(3,4,5)
|
||||||
union(filled_set, other_set) # => Set{Int64}(1,2,3,4,5,6)
|
union(filled_set, other_set) # => Set{Int64}(1,2,3,4,5,6)
|
||||||
setdiff(Set(1,2,3,4),Set(2,3,5)) # => Set{Int64}(1,4)
|
setdiff(Set(1,2,3,4),Set(2,3,5)) # => Set{Int64}(1,4)
|
||||||
@ -404,12 +404,10 @@ varargs(1,2,3) # => (1,2,3)
|
|||||||
# We just used it in a function definition.
|
# We just used it in a function definition.
|
||||||
# It can also be used in a fuction call,
|
# It can also be used in a fuction call,
|
||||||
# where it will splat an Array or Tuple's contents into the argument list.
|
# where it will splat an Array or Tuple's contents into the argument list.
|
||||||
Set([1,2,3]) # => Set{Array{Int64,1}}([1,2,3]) # produces a Set of Arrays
|
add([5,6]...) # this is equivalent to add(5,6)
|
||||||
Set([1,2,3]...) # => Set{Int64}(1,2,3) # this is equivalent to Set(1,2,3)
|
|
||||||
|
|
||||||
x = (1,2,3) # => (1,2,3)
|
x = (5,6) # => (5,6)
|
||||||
Set(x) # => Set{(Int64,Int64,Int64)}((1,2,3)) # a Set of Tuples
|
add(x...) # this is equivalent to add(5,6)
|
||||||
Set(x...) # => Set{Int64}(2,3,1)
|
|
||||||
|
|
||||||
|
|
||||||
# You can define functions with optional positional arguments
|
# You can define functions with optional positional arguments
|
||||||
@ -531,12 +529,8 @@ abstract Cat # just a name and point in the type hierarchy
|
|||||||
|
|
||||||
# Abstract types cannot be instantiated, but can have subtypes.
|
# Abstract types cannot be instantiated, but can have subtypes.
|
||||||
# For example, Number is an abstract type
|
# For example, Number is an abstract type
|
||||||
subtypes(Number) # => 6-element Array{Any,1}:
|
subtypes(Number) # => 2-element Array{Any,1}:
|
||||||
# Complex{Float16}
|
|
||||||
# Complex{Float32}
|
|
||||||
# Complex{Float64}
|
|
||||||
# Complex{T<:Real}
|
# Complex{T<:Real}
|
||||||
# ImaginaryUnit
|
|
||||||
# Real
|
# Real
|
||||||
subtypes(Cat) # => 0-element Array{Any,1}
|
subtypes(Cat) # => 0-element Array{Any,1}
|
||||||
|
|
||||||
@ -554,10 +548,11 @@ subtypes(AbstractString) # 8-element Array{Any,1}:
|
|||||||
# Every type has a super type; use the `super` function to get it.
|
# Every type has a super type; use the `super` function to get it.
|
||||||
typeof(5) # => Int64
|
typeof(5) # => Int64
|
||||||
super(Int64) # => Signed
|
super(Int64) # => Signed
|
||||||
super(Signed) # => Real
|
super(Signed) # => Integer
|
||||||
|
super(Integer) # => Real
|
||||||
super(Real) # => Number
|
super(Real) # => Number
|
||||||
super(Number) # => Any
|
super(Number) # => Any
|
||||||
super(super(Signed)) # => Number
|
super(super(Signed)) # => Real
|
||||||
super(Any) # => Any
|
super(Any) # => Any
|
||||||
# All of these type, except for Int64, are abstract.
|
# All of these type, except for Int64, are abstract.
|
||||||
typeof("fire") # => ASCIIString
|
typeof("fire") # => ASCIIString
|
||||||
|
Loading…
Reference in New Issue
Block a user