mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2025-04-27 07:33:57 +00:00
Merge branch 'master' of github.com:adambard/learnxinyminutes-docs
This commit is contained in:
commit
77b42c38c1
@ -1,7 +1,8 @@
|
||||
---
|
||||
language: c
|
||||
author: Adam Bard
|
||||
author_url: http://adambard.com/
|
||||
filename: learnc.c
|
||||
contributors:
|
||||
- ["Adam Bard", "http://adambard.com/"]
|
||||
---
|
||||
|
||||
Ah, C. Still the language of modern high-performance computing.
|
||||
@ -12,6 +13,7 @@ memory management and C will take you as far as you need to go.
|
||||
|
||||
```c
|
||||
// Single-line comments start with //
|
||||
|
||||
/*
|
||||
Multi-line comments look like this.
|
||||
*/
|
||||
@ -19,6 +21,7 @@ Multi-line comments look like this.
|
||||
// Import headers with #include
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
// Declare function signatures in advance in a .h file, or at the top of
|
||||
// your .c file.
|
||||
@ -75,7 +78,7 @@ unsigned long long ux_long_long;
|
||||
// on your machine. sizeof(T) gives you the size of a variable with type T in
|
||||
// bytes so you can express the size of these types in a portable way.
|
||||
// For example,
|
||||
printf("%d\n", sizeof(int)); // => 4 (on machines with 4-byte words)
|
||||
printf("%lu\n", sizeof(int)); // => 4 (on machines with 4-byte words)
|
||||
|
||||
// Arrays must be initialized with a concrete size.
|
||||
char my_char_array[20]; // This array occupies 1 * 20 = 20 bytes
|
||||
@ -107,7 +110,7 @@ Char #17 is the NUL byte.
|
||||
Chars #18, 19 and 20 have undefined values.
|
||||
*/
|
||||
|
||||
printf("%d\n", a_string[16]); => 0
|
||||
printf("%d\n", a_string[16]); // => 0
|
||||
|
||||
///////////////////////////////////////
|
||||
// Operators
|
||||
@ -360,6 +363,36 @@ int area(rect r){
|
||||
return r.width * r.height;
|
||||
}
|
||||
|
||||
///////////////////////////////////////
|
||||
// Function pointers
|
||||
///////////////////////////////////////
|
||||
/*
|
||||
At runtime, functions are located at known memory addresses. Function pointers are
|
||||
much likely any other pointer (they just store a memory address), but can be used
|
||||
to invoke functions directly, and to pass handlers (or callback functions) around.
|
||||
However, definition syntax may be initially confusing.
|
||||
|
||||
Example: use str_reverse from a pointer
|
||||
*/
|
||||
void str_reverse_through_pointer(char * str_in) {
|
||||
// Define a function pointer variable, named f.
|
||||
void (*f)(char *); // Signature should exactly match the target function.
|
||||
f = &str_reverse; // Assign the address for the actual function (determined at runtime)
|
||||
(*f)(str_in); // Just calling the function through the pointer
|
||||
// f(str_in); // That's an alternative but equally valid syntax for calling it.
|
||||
}
|
||||
|
||||
/*
|
||||
As long as function signatures match, you can assign any function to the same pointer.
|
||||
Function pointers are usually typedef'd for simplicity and readability, as follows:
|
||||
*/
|
||||
|
||||
typedef void (*my_fnp_type)(char *);
|
||||
|
||||
// The used when declaring the actual pointer variable:
|
||||
// ...
|
||||
// my_fnp_type f;
|
||||
|
||||
```
|
||||
|
||||
## Further Reading
|
||||
|
@ -1,10 +1,11 @@
|
||||
---
|
||||
language: clojure
|
||||
author: Adam Bard
|
||||
author_url: http://adambard.com/
|
||||
filename: learnclojure.clj
|
||||
contributors:
|
||||
- ["Adam Bard", "http://adambard.com/"]
|
||||
---
|
||||
|
||||
Clojure is a variant of LISP developed for the Java Virtual Machine. It has
|
||||
Clojure is a Lisp family language developed for the Java Virtual Machine. It has
|
||||
a much stronger emphasis on pure [functional programming](https://en.wikipedia.org/wiki/Functional_programming) than
|
||||
Common Lisp, but includes several [STM](https://en.wikipedia.org/wiki/Software_transactional_memory) utilities to handle
|
||||
state as it comes up.
|
||||
@ -23,9 +24,9 @@ and often automatically.
|
||||
;
|
||||
; The clojure reader assumes that the first thing is a
|
||||
; function or macro to call, and the rest are arguments.
|
||||
;
|
||||
; Here's a function that sets the current namespace:
|
||||
(ns test)
|
||||
|
||||
; The first call in a file should be ns, to set the namespace
|
||||
(ns learnclojure)
|
||||
|
||||
; More basic examples:
|
||||
|
||||
@ -70,6 +71,7 @@ and often automatically.
|
||||
; Collections & Sequences
|
||||
;;;;;;;;;;;;;;;;;;;
|
||||
|
||||
; Lists are linked-list data structures, while Vectors are array-backed.
|
||||
; Vectors and Lists are java classes too!
|
||||
(class [1 2 3]); => clojure.lang.PersistentVector
|
||||
(class '(1 2 3)); => clojure.lang.PersistentList
|
||||
@ -78,16 +80,18 @@ and often automatically.
|
||||
; it to stop the reader thinking it's a function.
|
||||
; Also, (list 1 2 3) is the same as '(1 2 3)
|
||||
|
||||
; "Collections" are just groups of data
|
||||
; Both lists and vectors are collections:
|
||||
(coll? '(1 2 3)) ; => true
|
||||
(coll? [1 2 3]) ; => true
|
||||
|
||||
; "Sequences" (seqs) are abstract descriptions of lists of data.
|
||||
; Only lists are seqs.
|
||||
(seq? '(1 2 3)) ; => true
|
||||
(seq? [1 2 3]) ; => false
|
||||
|
||||
; Seqs are an interface for logical lists, which can be lazy.
|
||||
; "Lazy" means that a seq can define an infinite series, like so:
|
||||
; A seq need only provide an entry when it is accessed.
|
||||
; So, seqs which can be lazy -- they can define infinite series:
|
||||
(range 4) ; => (0 1 2 3)
|
||||
(range) ; => (0 1 2 3 4 ...) (an infinite series)
|
||||
(take 4 (range)) ; (0 1 2 3)
|
||||
@ -96,8 +100,8 @@ and often automatically.
|
||||
(cons 4 [1 2 3]) ; => (4 1 2 3)
|
||||
(cons 4 '(1 2 3)) ; => (4 1 2 3)
|
||||
|
||||
; Use conj to add an item to the beginning of a list,
|
||||
; or the end of a vector
|
||||
; Conj will add an item to a collection in the most efficient way.
|
||||
; For lists, they insert at the beginning. For vectors, they insert at the end.
|
||||
(conj [1 2 3] 4) ; => [1 2 3 4]
|
||||
(conj '(1 2 3) 4) ; => (4 1 2 3)
|
||||
|
||||
@ -167,20 +171,26 @@ x ; => 1
|
||||
; => "Hello Finn, you passed 3 extra args"
|
||||
|
||||
|
||||
; Hashmaps
|
||||
; Maps
|
||||
;;;;;;;;;;
|
||||
|
||||
; Hash maps and array maps share an interface. Hash maps have faster lookups
|
||||
; but don't retain key order.
|
||||
(class {:a 1 :b 2 :c 3}) ; => clojure.lang.PersistentArrayMap
|
||||
(class (hash-map :a 1 :b 2 :c 3)) ; => clojure.lang.PersistentHashMap
|
||||
|
||||
; Arraymaps will automatically become hashmaps through most operations
|
||||
; if they get big enough, so you don't need to worry.
|
||||
|
||||
; Maps can use any hashable type as a key, but usually keywords are best
|
||||
; Keywords are like strings with some efficiency bonuses
|
||||
(class :a) ; => clojure.lang.Keyword
|
||||
|
||||
; Maps can use any type as a key, but usually keywords are best
|
||||
(def stringmap (hash-map "a" 1, "b" 2, "c" 3))
|
||||
(def stringmap {"a" 1, "b" 2, "c" 3})
|
||||
stringmap ; => {"a" 1, "b" 2, "c" 3}
|
||||
|
||||
(def keymap (hash-map :a 1 :b 2 :c 3))
|
||||
keymap ; => {:a 1, :c 3, :b 2} (order is not guaranteed)
|
||||
(def keymap {:a 1, :b 2, :c 3})
|
||||
keymap ; => {:a 1, :c 3, :b 2}
|
||||
|
||||
; By the way, commas are always treated as whitespace and do nothing.
|
||||
|
||||
@ -199,7 +209,8 @@ keymap ; => {:a 1, :c 3, :b 2} (order is not guaranteed)
|
||||
(stringmap "d") ; => nil
|
||||
|
||||
; Use assoc to add new keys to hash-maps
|
||||
(assoc keymap :d 4) ; => {:a 1, :b 2, :c 3, :d 4}
|
||||
(def newkeymap (assoc keymap :d 4))
|
||||
newkeymap ; => {:a 1, :b 2, :c 3, :d 4}
|
||||
|
||||
; But remember, clojure types are immutable!
|
||||
keymap ; => {:a 1, :b 2, :c 3}
|
||||
@ -270,6 +281,7 @@ keymap ; => {:a 1, :b 2, :c 3}
|
||||
(require 'clojure.string)
|
||||
|
||||
; Use / to call functions from a module
|
||||
; Here, the module is clojure.string and the function is blank?
|
||||
(clojure.string/blank? "") ; => true
|
||||
|
||||
; You can give a module a shorter name on import
|
||||
@ -313,4 +325,56 @@ keymap ; => {:a 1, :b 2, :c 3}
|
||||
(doto (Calendar/getInstance)
|
||||
(.set 2000 1 1 0 0 0)
|
||||
.getTime) ; => A Date. set to 2000-01-01 00:00:00
|
||||
|
||||
; STM
|
||||
;;;;;;;;;;;;;;;;;
|
||||
|
||||
; Software Transactional Memory is the mechanism clojure uses to handle
|
||||
; persistent state. There are a few constructs in clojure that use this.
|
||||
|
||||
; An atom is the simplest. Pass it an initial value
|
||||
(def my-atom (atom {}))
|
||||
|
||||
; Update an atom with swap!.
|
||||
; swap! takes a function and calls it with the current value of the atom
|
||||
; as the first argument, and any trailing arguments as the second
|
||||
(swap! my-atom assoc :a 1) ; Sets my-atom to the result of (assoc {} :a 1)
|
||||
(swap! my-atom assoc :b 2) ; Sets my-atom to the result of (assoc {:a 1} :b 2)
|
||||
|
||||
; Use '@' to dereference the atom and get the value
|
||||
my-atom ;=> Atom<#...> (Returns the Atom object)
|
||||
@my-atom ; => {:a 1 :b 2}
|
||||
|
||||
; Here's a simple counter using an atom
|
||||
(def counter (atom 0))
|
||||
(defn inc-counter []
|
||||
(swap! counter inc))
|
||||
|
||||
(inc-counter)
|
||||
(inc-counter)
|
||||
(inc-counter)
|
||||
(inc-counter)
|
||||
(inc-counter)
|
||||
|
||||
@counter ; => 5
|
||||
|
||||
; Other STM constructs are refs and agents.
|
||||
; Refs: http://clojure.org/refs
|
||||
; Agents: http://clojure.org/agents
|
||||
```
|
||||
|
||||
### Further Reading
|
||||
|
||||
This is far from exhaustive, but hopefully it's enought o get you on your feet.
|
||||
|
||||
Clojure.org has lots of articles:
|
||||
[http://clojure.org/](http://clojure.org/)
|
||||
|
||||
Clojuredocs.org has documentation with examples for most core functions:
|
||||
[http://clojuredocs.org/quickref/Clojure%20Core](http://clojuredocs.org/quickref/Clojure%20Core)
|
||||
|
||||
4Clojure is a great way to build your clojure/FP skills:
|
||||
[http://www.4clojure.com/](http://www.4clojure.com/)
|
||||
|
||||
Clojure-doc.org (yeah, really) has a number of getting started articles:
|
||||
[http://clojure-doc.org/](http://clojure-doc.org/)
|
||||
|
@ -1,7 +1,8 @@
|
||||
---
|
||||
language: dart
|
||||
author: Joao Pedrosa
|
||||
author_url: https://github.com/jpedrosa/
|
||||
filename: learndart.dart
|
||||
contributors:
|
||||
- ["Joao Pedrosa", "https://github.com/jpedrosa/"]
|
||||
---
|
||||
|
||||
Dart is a newcomer into the realm of programming languages.
|
||||
|
398
elixir.html.markdown
Normal file
398
elixir.html.markdown
Normal file
@ -0,0 +1,398 @@
|
||||
---
|
||||
language: elixir
|
||||
contributors:
|
||||
- ["Joao Marques", "http://github.com/mrshankly"]
|
||||
filename: learnelixir.ex
|
||||
---
|
||||
|
||||
Elixir is a modern functional language built on top of the Erlang VM.
|
||||
It's fully compatible with Erlang, but features a more standard syntax
|
||||
and many more features.
|
||||
|
||||
```ruby
|
||||
|
||||
# Single line comments start with a hashtag.
|
||||
|
||||
# There's no multi-line comment,
|
||||
# but you can stack multiple comments.
|
||||
|
||||
# To use the elixir shell use the `iex` command.
|
||||
# Compile your modules with the `elixirc` command.
|
||||
|
||||
# Both should be in your path if you installed elixir correctly.
|
||||
|
||||
## ---------------------------
|
||||
## -- Basic types
|
||||
## ---------------------------
|
||||
|
||||
# There are numbers
|
||||
3 # integer
|
||||
0x1F # integer
|
||||
3.0 # float
|
||||
|
||||
# Atoms, that are literals, a constant with name. They start with `:`.
|
||||
:hello # atom
|
||||
|
||||
# Tuples that are stored contigously in memory.
|
||||
{1,2,3} # tuple
|
||||
|
||||
# We can access a tuple element with the `elem` function:
|
||||
elem({1, 2, 3}, 0) #=> 1
|
||||
|
||||
# Lists that are implemented as linked lists.
|
||||
[1,2,3] # list
|
||||
|
||||
# We can access the head and tail of a list as follows:
|
||||
[head | tail] = [1,2,3]
|
||||
head #=> 1
|
||||
tail #=> [2,3]
|
||||
|
||||
# In elixir, just like in erlang, the `=` denotes pattern matching and
|
||||
# not an assignment.
|
||||
#
|
||||
# This means that the left-hand side (pattern) is matched against a
|
||||
# right-hand side.
|
||||
#
|
||||
# This is how the above example of accessing the head and tail of a list works.
|
||||
|
||||
# A pattern match will error when the sides don't match, in this example
|
||||
# the tuples have different sizes.
|
||||
# {a, b, c} = {1, 2} #=> ** (MatchError) no match of right hand side value: {1,2}
|
||||
|
||||
# There's also binaries
|
||||
<<1,2,3>> # binary
|
||||
|
||||
# Strings and char lists
|
||||
"hello" # string
|
||||
'hello' # char list
|
||||
|
||||
# Multi-line strings
|
||||
"""
|
||||
I'm a multi-line
|
||||
string.
|
||||
"""
|
||||
#=> "I'm a multi-line\nstring.\n"
|
||||
|
||||
# Strings are all encoded in UTF-8:
|
||||
"héllò" #=> "héllò"
|
||||
|
||||
# Strings are really just binaries, and char lists are just lists.
|
||||
<<?a, ?b, ?c>> #=> "abc"
|
||||
[?a, ?b, ?c] #=> 'abc'
|
||||
|
||||
# `?a` in elixir returns the ASCII integer for the letter `a`
|
||||
?a #=> 97
|
||||
|
||||
# To concatenate lists use `++`, for binaries use `<>`
|
||||
[1,2,3] ++ [4,5] #=> [1,2,3,4,5]
|
||||
'hello ' ++ 'world' #=> 'hello world'
|
||||
|
||||
<<1,2,3>> <> <<4,5>> #=> <<1,2,3,4,5>>
|
||||
"hello " <> "world" #=> "hello world"
|
||||
|
||||
## ---------------------------
|
||||
## -- Operators
|
||||
## ---------------------------
|
||||
|
||||
# Some math
|
||||
1 + 1 #=> 2
|
||||
10 - 5 #=> 5
|
||||
5 * 2 #=> 10
|
||||
10 / 2 #=> 5.0
|
||||
|
||||
# In elixir the operator `/` always returns a float.
|
||||
|
||||
# To do integer division use `div`
|
||||
div(10, 2) #=> 5
|
||||
|
||||
# To get the division remainder use `rem`
|
||||
rem(10, 3) #=> 1
|
||||
|
||||
# There's also boolean operators: `or`, `and` and `not`.
|
||||
# These operators expect a boolean as their first argument.
|
||||
true and true #=> true
|
||||
false or true #=> true
|
||||
# 1 and true #=> ** (ArgumentError) argument error
|
||||
|
||||
# Elixir also provides `||`, `&&` and `!` which accept arguments of any type.
|
||||
# All values except `false` and `nil` will evaluate to true.
|
||||
1 || true #=> 1
|
||||
false && 1 #=> false
|
||||
nil && 20 #=> nil
|
||||
|
||||
!true #=> false
|
||||
|
||||
# For comparisons we have: `==`, `!=`, `===`, `!==`, `<=`, `>=`, `<` and `>`
|
||||
1 == 1 #=> true
|
||||
1 != 1 #=> false
|
||||
1 < 2 #=> true
|
||||
|
||||
# `===` and `!==` are more strict when comparing integers and floats:
|
||||
1 == 1.0 #=> true
|
||||
1 === 1.0 #=> false
|
||||
|
||||
# We can also compare two different data types:
|
||||
1 < :hello #=> true
|
||||
|
||||
# The overall sorting order is defined below:
|
||||
# number < atom < reference < functions < port < pid < tuple < list < bit string
|
||||
|
||||
# To quote Joe Armstrong on this: "The actual order is not important,
|
||||
# but that a total ordering is well defined is important."
|
||||
|
||||
## ---------------------------
|
||||
## -- Control Flow
|
||||
## ---------------------------
|
||||
|
||||
# `if` expression
|
||||
if false do
|
||||
"This will never be seen"
|
||||
else
|
||||
"This will"
|
||||
end
|
||||
|
||||
# There's also `unless`
|
||||
unless true do
|
||||
"This will never be seen"
|
||||
else
|
||||
"This will"
|
||||
end
|
||||
|
||||
# Remember pattern matching? Many control-flow structures in elixir rely on it.
|
||||
|
||||
# `case` allows us to compare a value against many patterns:
|
||||
case {:one, :two} do
|
||||
{:four, :five} ->
|
||||
"This won't match"
|
||||
{:one, x} ->
|
||||
"This will match and assign `x` to `:two`"
|
||||
_ ->
|
||||
"This will match any value"
|
||||
end
|
||||
|
||||
# It's common practive to assign a value to `_` if we don't need it.
|
||||
# For example, if only the head of a list matters to us:
|
||||
[head | _] = [1,2,3]
|
||||
head #=> 1
|
||||
|
||||
# For better readability we can do the following:
|
||||
[head | _tail] = [:a, :b, :c]
|
||||
head #=> :a
|
||||
|
||||
# `cond` lets us check for many conditions at the same time.
|
||||
# Use `cond` instead of nesting many `if` expressions.
|
||||
cond do
|
||||
1 + 1 == 3 ->
|
||||
"I will never be seen"
|
||||
2 * 5 == 12 ->
|
||||
"Me neither"
|
||||
1 + 2 == 3 ->
|
||||
"But I will"
|
||||
end
|
||||
|
||||
# It is common to see a last condition equal to `true`, which will always match.
|
||||
cond do
|
||||
1 + 1 == 3 ->
|
||||
"I will never be seen"
|
||||
2 * 5 == 12 ->
|
||||
"Me neither"
|
||||
true ->
|
||||
"But I will (this is essentially an else)"
|
||||
end
|
||||
|
||||
# `try/catch` is used to catch values that are thrown, it also supports an
|
||||
# `after` clause that is invoked whether or not a value is catched.
|
||||
try do
|
||||
throw(:hello)
|
||||
catch
|
||||
message -> "Got #{message}."
|
||||
after
|
||||
IO.puts("I'm the after clause.")
|
||||
end
|
||||
#=> I'm the after clause
|
||||
# "Got :hello"
|
||||
|
||||
## ---------------------------
|
||||
## -- Modules and Functions
|
||||
## ---------------------------
|
||||
|
||||
# Anonymous functions (notice the dot)
|
||||
square = fn(x) -> x * x end
|
||||
square.(5) #=> 25
|
||||
|
||||
# They also accept many clauses and guards.
|
||||
# Guards let you fine tune pattern matching,
|
||||
# they are indicated by the `when` keyword:
|
||||
f = fn
|
||||
x, y when x > 0 -> x + y
|
||||
x, y -> x * y
|
||||
end
|
||||
|
||||
f.(1, 3) #=> 4
|
||||
f.(-1, 3) #=> -3
|
||||
|
||||
# Elixir also provides many built-in functions.
|
||||
# These are available in the current scope.
|
||||
is_number(10) #=> true
|
||||
is_list("hello") #=> false
|
||||
elem({1,2,3}, 0) #=> 1
|
||||
|
||||
# You can group several functions into a module. Inside a module use `def`
|
||||
# to define your functions.
|
||||
defmodule Math do
|
||||
def sum(a, b) do
|
||||
a + b
|
||||
end
|
||||
|
||||
def square(x) do
|
||||
x * x
|
||||
end
|
||||
end
|
||||
|
||||
Math.sum(1, 2) #=> 3
|
||||
Math.square(3) #=> 9
|
||||
|
||||
# To compile our simple Math module save it as `math.ex` and use `elixirc`
|
||||
# in your terminal: elixirc math.ex
|
||||
|
||||
# Inside a module we can define functions with `def` and private functions with `defp`.
|
||||
# A function defined with `def` is available to be invoked from other modules,
|
||||
# a private function can only be invoked locally.
|
||||
defmodule PrivateMath do
|
||||
def sum(a, b) do
|
||||
do_sum(a, b)
|
||||
end
|
||||
|
||||
defp do_sum(a, b) do
|
||||
a + b
|
||||
end
|
||||
end
|
||||
|
||||
PrivateMath.sum(1, 2) #=> 3
|
||||
# PrivateMath.do_sum(1, 2) #=> ** (UndefinedFunctionError)
|
||||
|
||||
# Function declarations also support guards and multiple clauses:
|
||||
defmodule Geometry do
|
||||
def area({:rectangle, w, h}) do
|
||||
w * h
|
||||
end
|
||||
|
||||
def area({:circle, r}) when is_number(r) do
|
||||
3.14 * r * r
|
||||
end
|
||||
end
|
||||
|
||||
Geometry.area({:rectangle, 2, 3}) #=> 6
|
||||
Geometry.area({:circle, 3}) #=> 28.25999999999999801048
|
||||
# Geometry.area({:circle, "not_a_number"})
|
||||
#=> ** (FunctionClauseError) no function clause matching in Geometry.area/1
|
||||
|
||||
# Due to immutability, recursion is a big part of elixir
|
||||
defmodule Recursion do
|
||||
def sum_list([head | tail], acc) do
|
||||
sum_list(tail, acc + head)
|
||||
end
|
||||
|
||||
def sum_list([], acc) do
|
||||
acc
|
||||
end
|
||||
end
|
||||
|
||||
Recursion.sum_list([1,2,3], 0) #=> 6
|
||||
|
||||
# Elixir modules support attributes, there are built-in attributes and you
|
||||
# may also add custom attributes.
|
||||
defmodule MyMod do
|
||||
@moduledoc """
|
||||
This is a built-in attribute on a example module.
|
||||
"""
|
||||
|
||||
@my_data 100 # This is a custom attribute.
|
||||
IO.inspect(@my_data) #=> 100
|
||||
end
|
||||
|
||||
## ---------------------------
|
||||
## -- Records and Exceptions
|
||||
## ---------------------------
|
||||
|
||||
# Records are basically structures that allow you to associate a name with
|
||||
# a particular value.
|
||||
defrecord Person, name: nil, age: 0, height: 0
|
||||
|
||||
joe_info = Person.new(name: "Joe", age: 30, height: 180)
|
||||
#=> Person[name: "Joe", age: 30, height: 180]
|
||||
|
||||
# Access the value of name
|
||||
joe_info.name #=> "Joe"
|
||||
|
||||
# Update the value of age
|
||||
joe_info = joe_info.age(31) #=> Person[name: "Joe", age: 31, height: 180]
|
||||
|
||||
# The `try` block with the `rescue` keyword is used to handle exceptions
|
||||
try do
|
||||
raise "some error"
|
||||
rescue
|
||||
RuntimeError -> "rescued a runtime error"
|
||||
_error -> "this will rescue any error"
|
||||
end
|
||||
|
||||
# All exceptions have a message
|
||||
try do
|
||||
raise "some error"
|
||||
rescue
|
||||
x in [RuntimeError] ->
|
||||
x.message
|
||||
end
|
||||
|
||||
## ---------------------------
|
||||
## -- Concurrency
|
||||
## ---------------------------
|
||||
|
||||
# Elixir relies on the actor model for concurrency. All we need to write
|
||||
# concurrent programs in elixir are three primitives: spawning processes,
|
||||
# sending messages and receiving messages.
|
||||
|
||||
# To start a new process we use the `spawn` function, which takes a function
|
||||
# as argument.
|
||||
f = fn -> 2 * 2 end #=> #Function<erl_eval.20.80484245>
|
||||
spawn(f) #=> #PID<0.40.0>
|
||||
|
||||
# `spawn` returns a pid (process identifier), you can use this pid to send
|
||||
# messages to the process. To do message passing we use the `<-` operator.
|
||||
# For all of this to be useful we need to be able to receive messages. This is
|
||||
# achived with the `receive` mechanism:
|
||||
defmodule Geometry do
|
||||
def area_loop do
|
||||
receive do
|
||||
{:rectangle, w, h} ->
|
||||
IO.puts("Area = #{w * h}")
|
||||
area_loop()
|
||||
{:circle, r} ->
|
||||
IO.puts("Area = #{3.14 * r * r}")
|
||||
area_loop()
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
# Compile the module and create a process that evaluates `area_loop` in the shell
|
||||
pid = spawn(fn -> Geometry.area_loop() end) #=> #PID<0.40.0>
|
||||
|
||||
# Send a message to `pid` that will match a pattern in the receive statement
|
||||
pid <- {:rectangle, 2, 3}
|
||||
#=> Area = 6
|
||||
# {:rectangle,2,3}
|
||||
|
||||
pid <- {:circle, 2}
|
||||
#=> Area = 12.56000000000000049738
|
||||
# {:circle,2}
|
||||
|
||||
# The shell is also a process, you can use `self` to get the current pid
|
||||
self() #=> #PID<0.27.0>
|
||||
```
|
||||
|
||||
## References
|
||||
|
||||
* [Getting started guide](http://elixir-lang.org/getting_started/1.html) from [elixir webpage](http://elixir-lang.org)
|
||||
* [Elixir Documentation](http://elixir-lang.org/docs/master/)
|
||||
* ["Learn You Some Erlang for Great Good!"](http://learnyousomeerlang.com/) by Fred Hebert
|
||||
* "Programming Erlang: Software for a Concurrent World" by Joe Armstrong
|
239
erlang.html.markdown
Normal file
239
erlang.html.markdown
Normal file
@ -0,0 +1,239 @@
|
||||
---
|
||||
language: erlang
|
||||
contributor:
|
||||
- ["Giovanni Cappellotto", "http://www.focustheweb.com/"]
|
||||
filename: learnerlang.erl
|
||||
---
|
||||
|
||||
```erlang
|
||||
% Percent sign start a one-line comment.
|
||||
|
||||
%% Two percent characters shall be used to comment functions.
|
||||
|
||||
%%% Three percent characters shall be used to comment modules.
|
||||
|
||||
% We use three types of punctuation in Erlang.
|
||||
% Commas (`,`) separate arguments in function calls, data constructors, and
|
||||
% patterns.
|
||||
% Periods (`.`) (followed by whitespace) separate entire functions and
|
||||
% expressions in the shell.
|
||||
% Semicolons (`;`) separate clauses. We find clauses in several contexts: in kn
|
||||
% function definitions and in `case`, `if`, `try..catch` and `receive`
|
||||
% expressions.
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%% 1. Variables and pattern matching.
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
Num = 42. % All variable names must start with an uppercase letter.
|
||||
% Erlang has single assignment variables, if you try to assign a different value
|
||||
% to the variable `Num`, you’ll get an error.
|
||||
|
||||
% In most languages, `=` denotes an assignment statement. In Erlang, however,
|
||||
% `=` denotes a pattern matching operation. `Lhs = Rhs` really means this:
|
||||
% evaluate the right side (Rhs), and then match the result against the pattern
|
||||
% on the left side (Lhs).
|
||||
Num = 7 * 6.
|
||||
|
||||
% Floating point number.
|
||||
Pi = 3.14159.
|
||||
|
||||
% Atoms, are used to represent different non-numerical constant values. Atoms
|
||||
% start with lowercase letters, followed by a sequence of alphanumeric
|
||||
% characters or the underscore (`_`) or at (`@`) sign.
|
||||
Hello = hello.
|
||||
|
||||
% Tuples are similar to structs in C.
|
||||
Point = {point, 10, 45}.
|
||||
|
||||
% If we want to extract some values from a tuple, we use the pattern matching
|
||||
% operator `=`.
|
||||
{point, X, Y} = Point. % X = 10, Y = 45
|
||||
|
||||
% We can use `_` as a placeholder for variables that we’re not interested in.
|
||||
% The symbol `_` is called an anonymous variable. Unlike regular variables,
|
||||
% several occurrences of _ in the same pattern don’t have to bind to the same
|
||||
% value.
|
||||
Person = {person, {name, {first, joe}, {last, armstrong}}, {footsize, 42}}.
|
||||
{_, {_, {_, Who}, _}, _} = Person. % Who = joe
|
||||
|
||||
% We create a list by enclosing the list elements in square brackets and
|
||||
% separating them with commas.
|
||||
% The individual elements of a list can be of any type.
|
||||
% The first element of a list the head of the list. If you imagine removing the
|
||||
% head from the list, what’s left is called the tail of the list.
|
||||
ThingsToBuy = [{apples, 10}, {pears, 6}, {milk, 3}].
|
||||
|
||||
% If `T` is a list, then `[H|T]` is also a list, with head H and tail T.
|
||||
% The vertical bar (`|`) separates the head of a list from its tail.
|
||||
% `[]` is the empty list.
|
||||
% We can extract elements from a list with a pattern matching operation. If we
|
||||
% have the nonempty list `L`, then the expression `[X|Y] = L`, where `X` and `Y`
|
||||
% are unbound variables, will extract the head of the list into `X` and the tail
|
||||
% of the list into `Y`.
|
||||
[FirstThing|OtherThingsToBuy] = ThingsToBuy.
|
||||
% FirstThing = {apples, 10}
|
||||
% OtherThingsToBuy = {pears, 6}, {milk, 3}
|
||||
|
||||
% There are no strings in Erlang. Strings are really just lists of integers.
|
||||
% Strings are enclosed in double quotation marks (`"`).
|
||||
Name = "Hello".
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%% 2. Sequential programming.
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
% Modules are the basic unit of code in Erlang. All the functions we write are
|
||||
% stored in modules. Modules are stored in files with `.erl` extensions.
|
||||
% Modules must be compiled before the code can be run. A compiled module has the
|
||||
% extension `.beam`.
|
||||
-module(geometry).
|
||||
-export([area/1]).
|
||||
|
||||
% The function area consists of two clauses. The clauses are separated by a
|
||||
% semicolon, and the final clause is terminated by dot-whitespace.
|
||||
% Each clause has a head and a body; the head consists of a function name
|
||||
% followed by a pattern (in parentheses), and the body consists of a sequence of
|
||||
% expressions, which are evaluated if the pattern in the head is successfully
|
||||
% matched against the calling arguments. The patterns are matched in the order
|
||||
% they appear in the function definition.
|
||||
area({rectangle, Width, Ht}) -> Width * Ht;
|
||||
area({circle, R}) -> 3.14159 * R * R.
|
||||
|
||||
% Compile the code in the file geometry.erl.
|
||||
c(geometry). % {ok,geometry}
|
||||
|
||||
% We need to include the module name together with the function name in order to
|
||||
% identify exactly which function we want to call.
|
||||
geometry:area({rectangle, 10, 5}). % 50
|
||||
geometry:area({circle, 1.4}). % 6.15752
|
||||
|
||||
% In Erlang, two functions with the same name and different arity in the same
|
||||
% module represent entirely different functions.
|
||||
-module(lib_misc).
|
||||
-export([sum/1]).
|
||||
sum(L) -> sum(L, 0).
|
||||
sum([], N) -> N;
|
||||
sum([H|T], N) -> sum(T, H+N).
|
||||
|
||||
% Funs are "anonymous" functions. They are called this because they have no
|
||||
% name.
|
||||
Double = fun(X) -> 2*X end.
|
||||
Double(2). % 4
|
||||
|
||||
% Functions accept funs as their arguments and can return funs.
|
||||
Mult = fun(Times) -> ( fun(X) -> X * Times end ) end.
|
||||
Triple = Mult(3).
|
||||
Triple(5). % 15
|
||||
|
||||
% List comprehensions are expressions that create lists without having to use
|
||||
% funs, maps, or filters.
|
||||
% The notation `[F(X) || X <- L]` means "the list of `F(X)` where `X` is taken
|
||||
% from the list `L`."
|
||||
L = [1,2,3,4,5].
|
||||
[2*X || X <- L]. % [2,4,6,8,10]
|
||||
|
||||
% Guards are constructs that we can use to increase the power of pattern
|
||||
% matching. Using guards, we can perform simple tests and comparisons on the
|
||||
% variables in a pattern.
|
||||
% You can use guards in the heads of function definitions where they are
|
||||
% introduced by the `when` keyword, or you can use them at any place in the
|
||||
% language where an expression is allowed.
|
||||
max(X, Y) when X > Y -> X;
|
||||
max(X, Y) -> Y.
|
||||
|
||||
% A guard is a series of guard expressions, separated by commas (`,`).
|
||||
% The guard `GuardExpr1, GuardExpr2, ..., GuardExprN` is true if all the guard
|
||||
% expressions `GuardExpr1, GuardExpr2, ...` evaluate to true.
|
||||
is_cat(A) when is_atom(A), A =:= cat -> true;
|
||||
is_cat(A) -> false.
|
||||
is_dog(A) when is_atom(A), A =:= dog -> true;
|
||||
is_dog(A) -> false.
|
||||
|
||||
% A `guard sequence` is either a single guard or a series of guards, separated
|
||||
%by semicolons (`;`). The guard sequence `G1; G2; ...; Gn` is true if at least
|
||||
% one of the guards `G1, G2, ...` evaluates to true.
|
||||
is_pet(A) when is_dog(A); is_cat(A) -> true;
|
||||
is_pet(A) -> false.
|
||||
|
||||
% Records provide a method for associating a name with a particular element in a
|
||||
% tuple.
|
||||
% Record definitions can be included in Erlang source code files or put in files
|
||||
% with the extension `.hrl`, which are then included by Erlang source code
|
||||
% files.
|
||||
-record(todo, {
|
||||
status = reminder, % Default value
|
||||
who = joe,
|
||||
text
|
||||
}).
|
||||
|
||||
% We have to read the record definitions into the shell before we can define a
|
||||
% record. We use the shell function `rr` (short for read records) to do this.
|
||||
rr("records.hrl"). % [todo]
|
||||
|
||||
% Creating and updating records:
|
||||
X = #todo{}.
|
||||
% #todo{status = reminder, who = joe, text = undefined}
|
||||
X1 = #todo{status = urgent, text = "Fix errata in book"}.
|
||||
% #todo{status = urgent, who = joe, text = "Fix errata in book"}
|
||||
X2 = X1#todo{status = done}.
|
||||
% #todo{status = done,who = joe,text = "Fix errata in book"}
|
||||
|
||||
% `case` expressions.
|
||||
% `filter` returns a list of all those elements `X` in `L` for which `P(X)` is
|
||||
% true.
|
||||
filter(P, [H|T]) ->
|
||||
case P(H) of
|
||||
true -> [H|filter(P, T)];
|
||||
false -> filter(P, T)
|
||||
end;
|
||||
filter(P, []) -> [].
|
||||
|
||||
% `if` expressions.
|
||||
max(X, Y) ->
|
||||
if
|
||||
X > Y -> X;
|
||||
X < Y -> Y;
|
||||
true -> nil;
|
||||
end.
|
||||
|
||||
% Warning: at least one of the guards in the if expression must evaluate to true;
|
||||
% otherwise, an exception will be raised.
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%% 3. Exceptions.
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
% Exceptions are raised by the system when internal errors are encountered or
|
||||
% explicitly in code by calling `throw(Exception)`, `exit(Exception)` or
|
||||
% `erlang:error(Exception)`.
|
||||
generate_exception(1) -> a;
|
||||
generate_exception(2) -> throw(a);
|
||||
generate_exception(3) -> exit(a);
|
||||
generate_exception(4) -> {'EXIT', a};
|
||||
generate_exception(5) -> erlang:error(a).
|
||||
|
||||
% Erlang has two methods of catching an exception. One is to enclose the call to
|
||||
% the function, which raised the exception within a `try...catch` expression.
|
||||
catcher(N) ->
|
||||
try generate_exception(N) of
|
||||
Val -> {N, normal, Val}
|
||||
catch
|
||||
throw:X -> {N, caught, thrown, X};
|
||||
exit:X -> {N, caught, exited, X};
|
||||
error:X -> {N, caught, error, X}
|
||||
end.
|
||||
|
||||
% The other is to enclose the call in a `catch` expression. When you catch an
|
||||
% exception, it is converted into a tuple that describes the error.
|
||||
catcher(N) -> catch generate_exception(N).
|
||||
|
||||
```
|
||||
|
||||
## References
|
||||
|
||||
* "Programming Erlang: Software for a Concurrent World" by Joe Armstrong
|
||||
* [Erlang - Programming Rules and Conventions](http://www.erlang.se/doc/programming_rules.shtml)
|
||||
* [Erlang/OTP Documentation](http://www.erlang.org/doc/)
|
@ -1,7 +1,8 @@
|
||||
---
|
||||
language: F#
|
||||
author: Scott Wlaschin
|
||||
author_url: http://fsharpforfunandprofit.com/
|
||||
contributors:
|
||||
- ["Scott Wlaschin", "http://fsharpforfunandprofit.com/"]
|
||||
filename: learnfsharp.fs
|
||||
---
|
||||
|
||||
F# is a general purpose functional/OO programming language. It's free and open source, and runs on Linux, Mac, Windows and more.
|
||||
|
@ -1,17 +1,17 @@
|
||||
---
|
||||
language: haskell
|
||||
author: Adit Bhargava
|
||||
author_url: http://adit.io
|
||||
contributors:
|
||||
- ["Adit Bhargava", "http://adit.io"]
|
||||
---
|
||||
|
||||
Haskell was designed as a practical, purely functional programming language. It's famous for
|
||||
it's monads and it's type system, but I keep coming back to it because of it's elegance. Haskell
|
||||
its monads and its type system, but I keep coming back to it because of its elegance. Haskell
|
||||
makes coding a real joy for me.
|
||||
|
||||
```haskell
|
||||
-- Single line comments start with two dashes.
|
||||
{- Multiline comments can be enclosed
|
||||
in a block like this.
|
||||
en a block like this.
|
||||
-}
|
||||
|
||||
----------------------------------------------------
|
||||
@ -44,15 +44,21 @@ not False -- True
|
||||
1 /= 1 -- False
|
||||
1 < 10 -- True
|
||||
|
||||
-- In the above examples, `not` is a function that takes one value.
|
||||
-- Haskell doesn't need parentheses for function calls...all the arguments
|
||||
-- are just listed after the function. So the general pattern is:
|
||||
-- func arg1 arg2 arg3...
|
||||
-- See the section on functions for information on how to write your own.
|
||||
|
||||
-- Strings and characters
|
||||
"This is a string."
|
||||
'a' -- character
|
||||
'You cant use single quotes for strings.' -- error!
|
||||
|
||||
-- Strings can be added too!
|
||||
-- Strings can be concatenated
|
||||
"Hello " ++ "world!" -- "Hello world!"
|
||||
|
||||
-- A string can be treated like a list of characters
|
||||
-- A string is a list of characters
|
||||
"This is a string" !! 0 -- 'T'
|
||||
|
||||
|
||||
@ -68,14 +74,24 @@ not False -- True
|
||||
-- You can also have infinite lists in Haskell!
|
||||
[1..] -- a list of all the natural numbers
|
||||
|
||||
-- joining two lists
|
||||
-- Infinite lists work because Haskell has "lazy evaluation". This means
|
||||
-- that Haskell only evaluates things when it needs to. So you can ask for
|
||||
-- the 1000th element of your list and Haskell will give it to you:
|
||||
|
||||
[1..] !! 999 -- 1000
|
||||
|
||||
-- And now Haskell has evaluated elements 1 - 1000 of this list...but the
|
||||
-- rest of the elements of this "infinite" list don't exist yet! Haskell won't
|
||||
-- actually evaluate them until it needs to.
|
||||
|
||||
- joining two lists
|
||||
[1..5] ++ [6..10]
|
||||
|
||||
-- adding to the head of a list
|
||||
0:[1..5] -- [0, 1, 2, 3, 4, 5]
|
||||
|
||||
-- indexing into a list
|
||||
[0..] !! 5 -- 4
|
||||
[0..] !! 5 -- 5
|
||||
|
||||
-- more list operations
|
||||
head [1..5] -- 1
|
||||
@ -136,19 +152,19 @@ fib x = fib (x - 1) + fib (x - 2)
|
||||
-- Pattern matching on tuples:
|
||||
foo (x, y) = (x + 1, y + 2)
|
||||
|
||||
-- Pattern matching on arrays. Here `x` is the first element
|
||||
-- in the array, and `xs` is the rest of the array. We can write
|
||||
-- Pattern matching on lists. Here `x` is the first element
|
||||
-- in the list, and `xs` is the rest of the list. We can write
|
||||
-- our own map function:
|
||||
map func [x] = [func x]
|
||||
map func (x:xs) = func x:(map func xs)
|
||||
myMap func [] = []
|
||||
myMap func (x:xs) = func x:(myMap func xs)
|
||||
|
||||
-- Anonymous functions are created with a backslash followed by
|
||||
-- all the arguments.
|
||||
map (\x -> x + 2) [1..5] -- [3, 4, 5, 6, 7]
|
||||
myMap (\x -> x + 2) [1..5] -- [3, 4, 5, 6, 7]
|
||||
|
||||
-- using fold (called `inject` in some languages) with an anonymous
|
||||
-- function. foldl1 means fold left, and use the first value in the
|
||||
-- array as the initial value for the accumulator.
|
||||
-- list as the initial value for the accumulator.
|
||||
foldl1 (\acc x -> acc + x) [1..5] -- 15
|
||||
|
||||
----------------------------------------------------
|
||||
@ -183,10 +199,10 @@ foo 5 -- 75
|
||||
-- of parentheses:
|
||||
|
||||
-- before
|
||||
(even (double 7)) -- true
|
||||
(even (fib 7)) -- true
|
||||
|
||||
-- after
|
||||
even . double $ 7 -- true
|
||||
even . fib $ 7 -- true
|
||||
|
||||
----------------------------------------------------
|
||||
-- 5. Type signatures
|
||||
@ -201,13 +217,17 @@ True :: Bool
|
||||
|
||||
-- Functions have types too.
|
||||
-- `not` takes a boolean and returns a boolean:
|
||||
not :: Bool -> Bool
|
||||
-- not :: Bool -> Bool
|
||||
|
||||
-- Here's a function that takes two arguments:
|
||||
add :: Integer -> Integer -> Integer
|
||||
-- add :: Integer -> Integer -> Integer
|
||||
|
||||
-- When you define a value, it's good practice to write its type above it:
|
||||
double :: Integer -> Integer
|
||||
double x = x * 2
|
||||
|
||||
----------------------------------------------------
|
||||
-- 6. Control Flow
|
||||
-- 6. Control Flow and If Statements
|
||||
----------------------------------------------------
|
||||
|
||||
-- if statements
|
||||
@ -225,7 +245,7 @@ case args of
|
||||
_ -> putStrLn "bad args"
|
||||
|
||||
-- Haskell doesn't have loops because it uses recursion instead.
|
||||
-- map a function over every element in an array
|
||||
-- map applies a function over every element in an array
|
||||
|
||||
map (*2) [1..5] -- [2, 4, 6, 8, 10]
|
||||
|
||||
@ -238,6 +258,19 @@ for [0..5] $ \i -> show i
|
||||
-- we could've written that like this too:
|
||||
for [0..5] show
|
||||
|
||||
-- You can use foldl or foldr to reduce a list
|
||||
-- foldl <fn> <initial value> <list>
|
||||
foldl (\x y -> 2*x + y) 4 [1,2,3] -- 43
|
||||
|
||||
-- This is the same as
|
||||
(2 * (2 * (2 * 4 + 1) + 2) + 3)
|
||||
|
||||
-- foldl is left-handed, foldr is right-
|
||||
foldr (\x y -> 2*x + y) 4 [1,2,3] -- 16
|
||||
|
||||
-- This is now the same as
|
||||
(2 * 3 + (2 * 2 + (2 * 1 + 4)))
|
||||
|
||||
----------------------------------------------------
|
||||
-- 7. Data Types
|
||||
----------------------------------------------------
|
||||
@ -248,43 +281,100 @@ data Color = Red | Blue | Green
|
||||
|
||||
-- Now you can use it in a function:
|
||||
|
||||
say :: Color -> IO String
|
||||
say Red = putStrLn "You are Red!"
|
||||
say Blue = putStrLn "You are Blue!"
|
||||
say Green = putStrLn "You are Green!"
|
||||
|
||||
say :: Color -> String
|
||||
say Red = "You are Red!"
|
||||
say Blue = "You are Blue!"
|
||||
say Green = "You are Green!"
|
||||
|
||||
-- Your data types can have parameters too:
|
||||
|
||||
data Maybe a = Nothing | Just a
|
||||
|
||||
-- These are all of type Maybe
|
||||
Nothing
|
||||
Just "hello"
|
||||
Just 1
|
||||
Just "hello" -- of type `Maybe String`
|
||||
Just 1 -- of type `Maybe Int`
|
||||
Nothing -- of type `Maybe a` for any `a`
|
||||
|
||||
----------------------------------------------------
|
||||
-- 8. Haskell IO
|
||||
----------------------------------------------------
|
||||
|
||||
-- While IO can't be explained fully without explaining monads
|
||||
-- it is not hard to explain enough to get going
|
||||
-- While IO can't be explained fully without explaining monads,
|
||||
-- it is not hard to explain enough to get going.
|
||||
|
||||
-- An IO a value is an IO action: you can chain them with do blocks
|
||||
-- When a Haskell program is executed, the function `main` is
|
||||
-- called. It must return a value of type `IO ()`. For example:
|
||||
|
||||
main :: IO ()
|
||||
main = putStrLn $ "Hello, sky! " ++ (say Blue)
|
||||
-- putStrLn has type String -> IO ()
|
||||
|
||||
-- It is easiest to do IO if you can implement your program as
|
||||
-- a function from String to String. The function
|
||||
-- interact :: (String -> String) -> IO ()
|
||||
-- inputs some text, runs a function on it, and prints out the
|
||||
-- output.
|
||||
|
||||
countLines :: String -> String
|
||||
countLines = show . length . lines
|
||||
|
||||
main' = interact countLines
|
||||
|
||||
-- You can think of a value of type `IO ()` as representing a
|
||||
-- sequence of actions for the computer to do, much like a
|
||||
-- computer program written in an imperative language. We can use
|
||||
-- the `do` notation to chain actions together. For example:
|
||||
|
||||
sayHello :: IO ()
|
||||
sayHello = do
|
||||
putStrLn "What is your name?"
|
||||
name <- getLine -- this gets a line and gives it the name "input"
|
||||
putStrLn $ "Hello, " ++ name
|
||||
|
||||
-- Exercise: write your own version of `interact` that only reads
|
||||
-- one line of input.
|
||||
|
||||
-- The code in `sayHello` will never be executed, however. The only
|
||||
-- action that ever gets executed is the value of `main`.
|
||||
-- To run `sayHello` comment out the above definition of `main`
|
||||
-- and replace it with:
|
||||
-- main = sayHello
|
||||
|
||||
-- Let's understand better how the function `getLine` we just
|
||||
-- used works. Its type is:
|
||||
-- getLine :: IO String
|
||||
-- You can think of a value of type `IO a` as representing a
|
||||
-- computer program that will generate a value of type `a`
|
||||
-- when executed (in addition to anything else it does). We can
|
||||
-- store and reuse this value using `<-`. We can also
|
||||
-- make our own action of type `IO String`:
|
||||
|
||||
action :: IO String
|
||||
action = do
|
||||
putStrLn "This is a line. Duh"
|
||||
input <- getLine -- this gets a line and gives it the name "input"
|
||||
input1 <- getLine
|
||||
input2 <- getLine
|
||||
return (input1++"\n"++input2) -- This is the result of the whole action
|
||||
-- The type of the `do` statement is that of its last line.
|
||||
-- `return` is not a keyword, but merely a function
|
||||
return (input1 ++ "\n" ++ input2) -- return :: String -> IO String
|
||||
|
||||
-- This didn't actually do anything. When a haskell program is executed
|
||||
-- an IO action called "main" is read and interprete
|
||||
-- We can use this just like we used `getLine`:
|
||||
|
||||
main = do
|
||||
putStrLn "Our first program. How exciting!"
|
||||
result <- action -- our defined action is just like the default ones
|
||||
main'' = do
|
||||
putStrLn "I will echo two lines!"
|
||||
result <- action
|
||||
putStrLn result
|
||||
putStrLn "This was all, folks!"
|
||||
|
||||
|
||||
-- The type `IO` is an example of a "monad". The way Haskell uses a monad to
|
||||
-- do IO allows it to be a purely functional language. Any function that
|
||||
-- interacts with the outside world (i.e. does IO) gets marked as `IO` in its
|
||||
-- type signature. This lets us reason about what functions are "pure" (don't
|
||||
-- interact with the outside world or modify state) and what functions aren't.
|
||||
|
||||
-- This is a powerful feature, because it's easy to run pure functions
|
||||
-- concurrently; so, concurrency in Haskell is very easy.
|
||||
|
||||
|
||||
----------------------------------------------------
|
||||
@ -301,6 +391,14 @@ let foo = 5
|
||||
|
||||
>:t foo
|
||||
foo :: Integer
|
||||
|
||||
-- You can also run any action of type `IO ()`
|
||||
|
||||
> sayHello
|
||||
What is your name?
|
||||
Friend!
|
||||
Hello, Friend!
|
||||
|
||||
```
|
||||
|
||||
There's a lot more to Haskell, including typeclasses and monads. These are the big ideas that make Haskell such fun to code in. I'll leave you with one final Haskell example: an implementation of quicksort in Haskell:
|
||||
|
369
java.html.markdown
Normal file
369
java.html.markdown
Normal file
@ -0,0 +1,369 @@
|
||||
---
|
||||
|
||||
language: java
|
||||
contributors:
|
||||
- ["Jake Prather", "http://github.com/JakeHP"]
|
||||
filename: LearnJava.java
|
||||
|
||||
---
|
||||
|
||||
Java is a general-purpose, concurrent, class-based, object-oriented computer programming language.
|
||||
[Read more here.](http://docs.oracle.com/javase/tutorial/java/index.html)
|
||||
|
||||
```java
|
||||
// Single-line comments start with //
|
||||
/*
|
||||
Multi-line comments look like this.
|
||||
*/
|
||||
|
||||
// Import ArrayList class inside of the java.util package
|
||||
import java.util.ArrayList;
|
||||
// Import all classes inside of java.security package
|
||||
import java.security.*;
|
||||
|
||||
// Each .java file contains one public class, with the same name as the file.
|
||||
public class LearnJava {
|
||||
|
||||
// A program must have a main method as an entry point
|
||||
public static void main (String[] args) {
|
||||
|
||||
// Use System.out.println to print lines
|
||||
System.out.println("Hello World!");
|
||||
System.out.println(
|
||||
"Integer: " + 10 +
|
||||
" Double: " + 3.14 +
|
||||
" Boolean: " + true);
|
||||
|
||||
// To print without a newline, use System.out.print
|
||||
System.out.print("Hello ");
|
||||
System.out.print("World");
|
||||
|
||||
|
||||
///////////////////////////////////////
|
||||
// Types & Variables
|
||||
///////////////////////////////////////
|
||||
|
||||
// Declare a variable using <type> <name> [
|
||||
// Byte - 8-bit signed two's complement integer
|
||||
// (-128 <= byte <= 127)
|
||||
byte fooByte = 100;
|
||||
|
||||
// Short - 16-bit signed two's complement integer
|
||||
// (-32,768 <= short <= 32,767)
|
||||
short fooShort = 10000;
|
||||
|
||||
// Integer - 32-bit signed two's complement integer
|
||||
// (-2,147,483,648 <= int <= 2,147,483,647)
|
||||
int fooInt = 1;
|
||||
|
||||
// Long - 64-bit signed two's complement integer
|
||||
// (-9,223,372,036,854,775,808 <= long <= 9,223,372,036,854,775,807)
|
||||
long fooLong = 100000L;
|
||||
|
||||
// (Java has no unsigned types)
|
||||
|
||||
// Float - Single-precision 32-bit IEEE 754 Floating Point
|
||||
float fooFloat = 234.5f;
|
||||
|
||||
// Double - Double-precision 64-bit IEEE 754 Floating Point
|
||||
double fooDouble = 123.4;
|
||||
|
||||
// Boolean - true & false
|
||||
boolean fooBoolean = true;
|
||||
boolean barBoolean = false;
|
||||
|
||||
// Char - A single 16-bit Unicode character
|
||||
char fooChar = 'A';
|
||||
|
||||
// Use final to make a variable immutable
|
||||
final int HOURS_I_WORK_PER_WEEK = 9001;
|
||||
|
||||
// Strings
|
||||
String fooString = "My String Is Here!";
|
||||
|
||||
// \n is an escaped character that starts a new line
|
||||
String barString = "Printing on a new line?\nNo Problem!";
|
||||
System.out.println(fooString);
|
||||
System.out.println(barString);
|
||||
|
||||
// Arrays
|
||||
//The array size must be decided upon declaration
|
||||
//The format for declaring an array is follows:
|
||||
//<datatype> [] <var name> = new <datatype>[<array size>];
|
||||
int [] intArray = new int[10];
|
||||
String [] stringArray = new String[1];
|
||||
boolean [] booleanArray = new boolean[100];
|
||||
|
||||
// Another way to declare & initialize an array
|
||||
int [] y = {9000, 1000, 1337};
|
||||
|
||||
// Indexing an array - Accessing an element
|
||||
System.out.println("intArray @ 0: " + intArray[0]);
|
||||
|
||||
// Arrays are zero-indexed and mutable.
|
||||
intArray[1] = 1;
|
||||
System.out.println("intArray @ 1: " + intArray[1]); // => 1
|
||||
|
||||
// Others to check out
|
||||
// ArrayLists - Like arrays except more functionality is offered,
|
||||
// and the size is mutable
|
||||
// LinkedLists
|
||||
// Maps
|
||||
// HashMaps
|
||||
|
||||
///////////////////////////////////////
|
||||
// Operators
|
||||
///////////////////////////////////////
|
||||
System.out.println("\n->Operators");
|
||||
|
||||
int i1 = 1, i2 = 2; // Shorthand for multiple declarations
|
||||
|
||||
// Arithmetic is straightforward
|
||||
System.out.println("1+2 = " + (i1 + i2)); // => 3
|
||||
System.out.println("2-1 = " + (i2 - i1)); // => 1
|
||||
System.out.println("2*1 = " + (i2 * i1)); // => 2
|
||||
System.out.println("1/2 = " + (i1 / i2)); // => 0 (0.5 truncated down)
|
||||
|
||||
// Modulo
|
||||
System.out.println("11%3 = "+(11 % 3)); // => 2
|
||||
|
||||
// Comparison operators
|
||||
System.out.println("3 == 2? " + (3 == 2)); // => 0 (false)
|
||||
System.out.println("3 != 2? " + (3 != 2)); // => 1 (true)
|
||||
System.out.println("3 > 2? " + (3 > 2)); // => 1
|
||||
System.out.println("3 < 2? " + (3 < 2)); // => 0
|
||||
System.out.println("2 <= 2? " + (2 <= 2)); // => 1
|
||||
System.out.println("2 >= 2? " + (2 >= 2)); // => 1
|
||||
|
||||
// Bitwise operators!
|
||||
/*
|
||||
~ Unary bitwise complement
|
||||
<< Signed left shift
|
||||
>> Signed right shift
|
||||
>>> Unsigned right shift
|
||||
& Bitwise AND
|
||||
^ Bitwise exclusive OR
|
||||
| Bitwise inclusive OR
|
||||
*/
|
||||
|
||||
// Incrementations
|
||||
int i=0;
|
||||
System.out.println("\n->Inc/Dec-rementation");
|
||||
System.out.println(i++); //i = 1. Post-Incrementation
|
||||
System.out.println(++i); //i = 2. Pre-Incrementation
|
||||
System.out.println(i--); //i = 1. Post-Decrementation
|
||||
System.out.println(--i); //i = 0. Pre-Decrementation
|
||||
|
||||
///////////////////////////////////////
|
||||
// Control Structures
|
||||
///////////////////////////////////////
|
||||
System.out.println("\n->Control Structures");
|
||||
|
||||
// If statements are c-like
|
||||
if (false){
|
||||
System.out.println("I never run");
|
||||
}else if (false) {
|
||||
System.out.println("I am also never run");
|
||||
} else {
|
||||
System.out.println("I print");
|
||||
}
|
||||
|
||||
// While loop
|
||||
int fooWhile = 0;
|
||||
while(fooWhile < 100)
|
||||
{
|
||||
//System.out.println(fooWhile);
|
||||
//Increment the counter
|
||||
//Iterated 99 times, fooWhile 0->99
|
||||
fooWhile++;
|
||||
}
|
||||
System.out.println("fooWhile Value: " + fooWhile);
|
||||
|
||||
// Do While Loop
|
||||
int fooDoWhile = 0;
|
||||
do
|
||||
{
|
||||
//System.out.println(fooDoWhile);
|
||||
//Increment the counter
|
||||
//Iterated 99 times, fooDoWhile 0->99
|
||||
fooDoWhile++;
|
||||
}while(fooDoWhile < 100);
|
||||
System.out.println("fooDoWhile Value: " + fooDoWhile);
|
||||
|
||||
// For Loop
|
||||
int fooFor;
|
||||
//for loop structure => for(<start_statement>; <conditional>; <step>)
|
||||
for(fooFor=0; fooFor<10; fooFor++){
|
||||
//System.out.println(fooFor);
|
||||
//Iterated 10 times, fooFor 0->9
|
||||
}
|
||||
System.out.println("fooFor Value: " + fooFor);
|
||||
|
||||
// Switch Case
|
||||
int month = 3;
|
||||
String monthString;
|
||||
switch (month){
|
||||
case 1: monthString = "January";
|
||||
break;
|
||||
case 2: monthString = "February";
|
||||
break;
|
||||
case 3: monthString = "March";
|
||||
break;
|
||||
default: monthString = "Some other month";
|
||||
break;
|
||||
}
|
||||
System.out.println("Switch Case Result: " + monthString);
|
||||
|
||||
|
||||
///////////////////////////////////////
|
||||
// Converting Data Types And Typcasting
|
||||
///////////////////////////////////////
|
||||
|
||||
// Converting data
|
||||
|
||||
// Convert String To Integer
|
||||
Integer.parseInt("123");//returns an integer version of "123"
|
||||
|
||||
// Convert Integer To String
|
||||
Integer.toString(123);//returns a string version of 123
|
||||
|
||||
// For other conversions check out the following classes:
|
||||
// Double
|
||||
// Long
|
||||
// String
|
||||
|
||||
// Typecasting
|
||||
// You can also cast java objects, there's a lot of details and
|
||||
// deals with some more intermediate concepts.
|
||||
// Feel free to check it out here:
|
||||
// http://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html
|
||||
|
||||
|
||||
///////////////////////////////////////
|
||||
// Classes And Functions
|
||||
///////////////////////////////////////
|
||||
|
||||
System.out.println("\n->Classes & Functions");
|
||||
|
||||
// (definition of the Bicycle class follows)
|
||||
|
||||
// Use new to instantiate a class
|
||||
Bicycle trek = new Bicycle();
|
||||
|
||||
// Call object methods
|
||||
trek.speedUp(3);
|
||||
trek.setCadence(100);
|
||||
|
||||
// toString is a convention
|
||||
System.out.println("trek info: " + trek.toString());
|
||||
|
||||
} // End main method
|
||||
} // End LearnJava class
|
||||
|
||||
|
||||
// You can include other, non-public classes in a .java file
|
||||
|
||||
|
||||
// Class Declaration Syntax:
|
||||
// <public/private/protected> class <class name>{
|
||||
// //data fields, constructors, functions all inside
|
||||
// }
|
||||
|
||||
class Bicycle {
|
||||
|
||||
// Bicycle's Fields/Variables
|
||||
public int cadence; // Public: Can be accessed from anywhere
|
||||
private int speed; // Private: Only accessable from within the class
|
||||
protected int gear; // Protected: Accessible from the class and subclasses
|
||||
|
||||
// Constructors are a way of creating classes
|
||||
// This is a default constructor
|
||||
public Bicycle() {
|
||||
gear = 1;
|
||||
cadence = 50;
|
||||
speed = 5;
|
||||
}
|
||||
|
||||
// This is a specified constructor (it contains arguments)
|
||||
public Bicycle(int startCadence, int startSpeed, int startGear) {
|
||||
gear = startGear;
|
||||
cadence = startCadence;
|
||||
speed = startSpeed;
|
||||
}
|
||||
|
||||
// Function Syntax:
|
||||
// <public/private/protected> <return type> <function name>(<args>)
|
||||
|
||||
// Java classes often implement getters and setters for their fields
|
||||
|
||||
// Method declaration syntax:
|
||||
// <scope> <return type> <method name>(<args>)
|
||||
public int getCadence() {
|
||||
return cadence;
|
||||
}
|
||||
|
||||
// void methods require no return statement
|
||||
public void setCadence(int newValue) {
|
||||
cadence = newValue;
|
||||
}
|
||||
|
||||
public void setGear(int newValue) {
|
||||
gear = newValue;
|
||||
}
|
||||
|
||||
public void speedUp(int increment) {
|
||||
speed += increment;
|
||||
}
|
||||
|
||||
public void slowDown(int decrement) {
|
||||
speed -= decrement;
|
||||
}
|
||||
|
||||
public String toString() {
|
||||
return "gear: "+Integer.toString(gear)+
|
||||
" cadence: "+Integer.toString(cadence)+
|
||||
" speed: "+Integer.toString(speed);
|
||||
}
|
||||
} // end class Bicycle
|
||||
|
||||
// PennyFarthing is a subclass of Bicycle
|
||||
class PennyFarthing extends Bicycle {
|
||||
// (Penny Farthings are those bicycles with the big front wheel.
|
||||
// They have no gears.)
|
||||
|
||||
public PennyFarthing(int startCadence, int startSpeed){
|
||||
// Call the parent constructor with super
|
||||
super(startCadence, startSpeed, 0);
|
||||
}
|
||||
|
||||
// You should mark a method you're overriding with an @annotation
|
||||
// To learn more about what annotations are and their purpose
|
||||
// check this out: http://docs.oracle.com/javase/tutorial/java/annotations/
|
||||
@Override
|
||||
public void setGear(int gear) {
|
||||
gear = 0;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
## Further Reading
|
||||
|
||||
Other Topics To Research:
|
||||
|
||||
* [Inheritance](http://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html)
|
||||
|
||||
* [Polymorphism](http://docs.oracle.com/javase/tutorial/java/IandI/polymorphism.html)
|
||||
|
||||
* [Abstraction](http://docs.oracle.com/javase/tutorial/java/IandI/abstract.html)
|
||||
|
||||
* [Exceptions](http://docs.oracle.com/javase/tutorial/essential/exceptions/index.html)
|
||||
|
||||
* [Interfaces](http://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html)
|
||||
|
||||
* [Generics](http://docs.oracle.com/javase/tutorial/java/generics/index.html)
|
||||
|
||||
* [Java Code Conventions](http://www.oracle.com/technetwork/java/codeconv-138413.html)
|
||||
|
||||
* The links provided are just to get an understanding of the topic, feel free to google and find specific examples
|
433
javascript.html.markdown
Normal file
433
javascript.html.markdown
Normal file
@ -0,0 +1,433 @@
|
||||
---
|
||||
language: javascript
|
||||
author: Adam Brenecki
|
||||
author_url: http://adam.brenecki.id.au
|
||||
---
|
||||
|
||||
Javascript was created by Netscape's Brendan Eich in 1995. It was originally
|
||||
intended as a simpler scripting language for websites, complimenting the use of
|
||||
Java for more complex web applications, but its tight integration with Web pages
|
||||
and built-in support in browsers has caused it to become far more common than
|
||||
Java in web frontends.
|
||||
|
||||
JavaScript isn't just limited to web browsers, though: Node.js, a project that
|
||||
provides a standalone runtime for Google Chrome's V8 JavaScript engine, is
|
||||
becoming more and more popular.
|
||||
|
||||
Feedback would be highly appreciated! You can reach me at
|
||||
[@adambrenecki](https://twitter.com/adambrenecki), or
|
||||
[adam@brenecki.id.au](mailto:adam@brenecki.id.au).
|
||||
|
||||
```js
|
||||
// Comments are like C. Single-line comments start with two slashes,
|
||||
/* and multiline comments start with slash-star
|
||||
and end with star-slash */
|
||||
|
||||
// Statements can be terminated by ;
|
||||
doStuff();
|
||||
|
||||
// ... but they don't have to be, as semicolons are automatically inserted
|
||||
// wherever there's a newline, except in certain cases.
|
||||
doStuff()
|
||||
|
||||
// We'll leave semicolons off here; whether you do or not will depend on your
|
||||
// personal preference or your project's style guide.
|
||||
|
||||
///////////////////////////////////
|
||||
// 1. Numbers, Strings and Operators
|
||||
|
||||
// Javascript has one number type (which is a 64-bit IEEE 754 double).
|
||||
3 // = 3
|
||||
1.5 // = 1.5
|
||||
|
||||
// All the basic arithmetic works as you'd expect.
|
||||
1 + 1 // = 2
|
||||
8 - 1 // = 7
|
||||
10 * 2 // = 20
|
||||
35 / 5 // = 7
|
||||
|
||||
// Including uneven division.
|
||||
5 / 2 // = 2.5
|
||||
|
||||
// Bitwise operations also work; when you perform a bitwise operation your float
|
||||
// is converted to a signed int *up to* 32 bits.
|
||||
1 << 2 // = 4
|
||||
|
||||
// Precedence is enforced with parentheses.
|
||||
(1 + 3) * 2 // = 8
|
||||
|
||||
// There are three special not-a-real-number values:
|
||||
Infinity // result of e.g. 1/0
|
||||
-Infinity // result of e.g. -1/0
|
||||
NaN // result of e.g. 0/0
|
||||
|
||||
// There's also a boolean type.
|
||||
true
|
||||
false
|
||||
|
||||
// Strings are created with ' or ".
|
||||
'abc'
|
||||
"Hello, world"
|
||||
|
||||
// Negation uses the ! symbol
|
||||
!true // = false
|
||||
!false // = true
|
||||
|
||||
// Equality is ==
|
||||
1 == 1 // = true
|
||||
2 == 1 // = false
|
||||
|
||||
// Inequality is !=
|
||||
1 != 1 // = false
|
||||
2 != 1 // = true
|
||||
|
||||
// More comparisons
|
||||
1 < 10 // = true
|
||||
1 > 10 // = false
|
||||
2 <= 2 // = true
|
||||
2 >= 2 // = true
|
||||
|
||||
// Strings are concatenated with +
|
||||
"Hello " + "world!" // = "Hello world!"
|
||||
|
||||
// and are compared with < and >
|
||||
"a" < "b" // = true
|
||||
|
||||
// Type coercion is performed for comparisons...
|
||||
"5" == 5 // = true
|
||||
|
||||
// ...unless you use ===
|
||||
"5" === 5 // = false
|
||||
|
||||
// You can access characters in a string with charAt
|
||||
"This is a string".charAt(0)
|
||||
|
||||
// There's also null and undefined
|
||||
null // used to indicate a deliberate non-value
|
||||
undefined // used to indicate a value that hasn't been set yet
|
||||
|
||||
// null, undefined, NaN, 0 and "" are falsy, and everything else is truthy.
|
||||
// Note that 0 is falsy and "0" is truthy, even though 0 == "0".
|
||||
|
||||
///////////////////////////////////
|
||||
// 2. Variables, Arrays and Objects
|
||||
|
||||
// Variables are declared with the var keyword. Javascript is dynamically typed,
|
||||
// so you don't need to specify type. Assignment uses a single = character.
|
||||
var someVar = 5
|
||||
|
||||
// if you leave the var keyword off, you won't get an error...
|
||||
someOtherVar = 10
|
||||
|
||||
// ...but your variable will be created in the global scope, not in the scope
|
||||
// you defined it in.
|
||||
|
||||
// Variables declared without being assigned to are set to undefined.
|
||||
var someThirdVar // = undefined
|
||||
|
||||
// There's shorthand for performing math operations on variables:
|
||||
someVar += 5 // equivalent to someVar = someVar + 5; someVar is 10 now
|
||||
someVar *= 10 // now someVar is 100
|
||||
|
||||
// and an even-shorter-hand for adding or subtracting 1
|
||||
someVar++ // now someVar is 101
|
||||
someVar-- // back to 100
|
||||
|
||||
// Arrays are ordered lists of values, of any type.
|
||||
var myArray = ["Hello", 45, true]
|
||||
|
||||
// Their members can be accessed using the square-brackets subscript syntax.
|
||||
// Array indices start at zero.
|
||||
myArray[1] // = 45
|
||||
|
||||
// JavaScript's objects are equivalent to 'dictionaries' or 'maps' in other
|
||||
// languages: an unordered collection of key-value pairs.
|
||||
{key1: "Hello", key2: "World"}
|
||||
|
||||
// Keys are strings, but quotes aren't required if they're a valid
|
||||
// JavaScript identifier. Values can be any type.
|
||||
var myObj = {myKey: "myValue", "my other key": 4}
|
||||
|
||||
// Object attributes can also be accessed using the subscript syntax,
|
||||
myObj["my other key"] // = 4
|
||||
|
||||
// ... or using the dot syntax, provided the key is a valid identifier.
|
||||
myObj.myKey // = "myValue"
|
||||
|
||||
// Objects are mutable; values can be changed and new keys added.
|
||||
myObj.myThirdKey = true
|
||||
|
||||
// If you try to access a value that's not yet set, you'll get undefined.
|
||||
myObj.myFourthKey // = undefined
|
||||
|
||||
///////////////////////////////////
|
||||
// 3. Logic and Control Structures
|
||||
|
||||
// The if structure works as you'd expect.
|
||||
var count = 1
|
||||
if (count == 3){
|
||||
// evaluated if count is 3
|
||||
} else if (count == 4) {
|
||||
// evaluated if count is 4
|
||||
} else {
|
||||
// evaluated if it's not either 3 or 4
|
||||
}
|
||||
|
||||
// As does while.
|
||||
while (true) {
|
||||
// An infinite loop!
|
||||
}
|
||||
|
||||
// Do-while loops are like while loops, except they always run at least once.
|
||||
var input
|
||||
do {
|
||||
input = getInput()
|
||||
} while (!isValid(input))
|
||||
|
||||
// the for loop is the same as C and Java:
|
||||
// initialisation; continue condition; iteration.
|
||||
for (var i = 0; i < 5; i++){
|
||||
// will run 5 times
|
||||
}
|
||||
|
||||
// && is logical and, || is logical or
|
||||
if (house.size == "big" && house.colour == "blue"){
|
||||
house.contains = "bear"
|
||||
}
|
||||
if (colour == "red" || colour == "blue"){
|
||||
// colour is either red or blue
|
||||
}
|
||||
|
||||
// && and || "short circuit", which is useful for setting default values.
|
||||
var name = otherName || "default"
|
||||
|
||||
///////////////////////////////////
|
||||
// 4. Functions, Scope and Closures
|
||||
|
||||
// JavaScript functions are declared with the function keyword.
|
||||
function myFunction(thing){
|
||||
return thing.toUpperCase()
|
||||
}
|
||||
myFunction("foo") // = "FOO"
|
||||
|
||||
// Functions can also be defined "anonymously" - without a name:
|
||||
function(thing){
|
||||
return thing.toLowerCase()
|
||||
}
|
||||
// (we can't call our function, since we don't have a name to refer to it with)
|
||||
|
||||
// JavaScript functions are first class objects, so they can be reassigned to
|
||||
// different variable names and passed to other functions as arguments - for
|
||||
// example, when supplying an event handler:
|
||||
function myFunction(){
|
||||
// this code will be called in 5 seconds' time
|
||||
}
|
||||
setTimeout(myFunction, 5000)
|
||||
|
||||
// You can even write the function statement directly in the call to the other
|
||||
// function.
|
||||
|
||||
setTimeout(function myFunction(){
|
||||
// this code will be called in 5 seconds' time
|
||||
}, 5000)
|
||||
|
||||
// JavaScript has function scope; functions get their own scope but other blocks
|
||||
// do not.
|
||||
if (true){
|
||||
var i = 5
|
||||
}
|
||||
i // = 5 - not undefined as you'd expect in a block-scoped language
|
||||
|
||||
// This has led to a common pattern of "immediately-executing anonymous
|
||||
// functions", which prevent temporary variables from leaking into the global
|
||||
// scope.
|
||||
function(){
|
||||
var temporary = 5
|
||||
// We can access the global scope by assiging to the 'global object', which
|
||||
// in a web browser is always 'window'. The global object may have a
|
||||
// different name in non-browser environments such as Node.js.
|
||||
window.permanent = 10
|
||||
// Or, as previously mentioned, we can just leave the var keyword off.
|
||||
permanent2 = 15
|
||||
}()
|
||||
temporary // raises ReferenceError
|
||||
permanent // = 10
|
||||
permanent2 // = 15
|
||||
|
||||
// One of JavaScript's most powerful features is closures. If a function is
|
||||
// defined inside another function, the inner function has access to all the
|
||||
// outer function's variables.
|
||||
function sayHelloInFiveSeconds(name){
|
||||
var prompt = "Hello, " + name + "!"
|
||||
function inner(){
|
||||
alert(prompt)
|
||||
}
|
||||
setTimeout(inner, 5000)
|
||||
// setTimeout is asynchronous, so this function will finish without waiting
|
||||
// 5 seconds. However, once the 5 seconds is up, inner will still have
|
||||
// access to the value of prompt.
|
||||
}
|
||||
sayHelloInFiveSeconds("Adam") // will open a popup with "Hello, Adam!" in 5s
|
||||
|
||||
///////////////////////////////////
|
||||
// 5. More about Objects; Constructors and Prototypes
|
||||
|
||||
// Objects can contain functions.
|
||||
var myObj = {
|
||||
myFunc: function(){
|
||||
return "Hello world!"
|
||||
}
|
||||
}
|
||||
myObj.myFunc() // = "Hello world!"
|
||||
|
||||
// When functions attached to an object are called, they can access the object
|
||||
// they're attached to using the this keyword.
|
||||
myObj = {
|
||||
myString: "Hello world!",
|
||||
myFunc: function(){
|
||||
return this.myString
|
||||
}
|
||||
}
|
||||
myObj.myFunc() // = "Hello world!"
|
||||
|
||||
// What this is set to has to do with how the function is called, not where
|
||||
// it's defined. So, our function doesn't work if it isn't called in the
|
||||
// context of the object.
|
||||
var myFunc = myObj.myFunc
|
||||
myFunc() // = undefined
|
||||
|
||||
// Inversely, a function can be assigned to the object and gain access to it
|
||||
// through this, even if it wasn't attached when it was defined.
|
||||
var myOtherFunc = function(){
|
||||
return this.myString.toUpperCase()
|
||||
}
|
||||
myObj.myOtherFunc = myOtherFunc
|
||||
myObj.myOtherFunc() // = "HELLO WORLD!"
|
||||
|
||||
// When you call a function with the new keyword, a new object is created, and
|
||||
// made available to the function via this. Functions designed to be called
|
||||
// like this are called constructors.
|
||||
|
||||
var MyConstructor = function(){
|
||||
this.myNumber = 5
|
||||
}
|
||||
myNewObj = new MyConstructor() // = {myNumber: 5}
|
||||
myNewObj.myNumber // = 5
|
||||
|
||||
// Every JavaScript object has a 'prototype'. When you go to access a property
|
||||
// on an object that doesn't exist on the actual object, the interpreter will
|
||||
// look at its prototype.
|
||||
|
||||
// Some JS implementations let you access an object's prototype on the magic
|
||||
// property __proto__. While this is useful for explaining prototypes it's not
|
||||
// part of the standard; we'll get to standard ways of using prototypes later.
|
||||
var myObj = {
|
||||
myString: "Hello world!",
|
||||
}
|
||||
var myPrototype = {
|
||||
meaningOfLife: 42,
|
||||
myFunc: function(){
|
||||
return this.myString.toLowerCase()
|
||||
}
|
||||
}
|
||||
myObj.__proto__ = myPrototype
|
||||
myObj.meaningOfLife // = 42
|
||||
|
||||
// This works for functions, too.
|
||||
myObj.myFunc() // = "hello world!"
|
||||
|
||||
// Of course, if your property isn't on your prototype, the prototype's
|
||||
// prototype is searched, and so on.
|
||||
myPrototype.__proto__ = {
|
||||
myBoolean: true
|
||||
}
|
||||
myObj.myBoolean // = true
|
||||
|
||||
// There's no copying involved here; each object stores a reference to its
|
||||
// prototype. This means we can alter the prototype and our changes will be
|
||||
// reflected everywhere.
|
||||
myPrototype.meaningOfLife = 43
|
||||
myObj.meaningOfLife // = 43
|
||||
|
||||
// We mentioned that __proto__ was non-standard, and there's no standard way to
|
||||
// change the prototype of an existing object. However, there's two ways to
|
||||
// create a new object with a given prototype.
|
||||
|
||||
// The first is Object.create, which is a recent addition to JS, and therefore
|
||||
// not available in all implementations yet.
|
||||
var myObj = Object.create(myPrototype)
|
||||
myObj.meaningOfLife // = 43
|
||||
|
||||
// The second way, which works anywhere, has to do with constructors.
|
||||
// Constructors have a property called prototype. This is *not* the prototype of
|
||||
// the constructor function itself; instead, it's the prototype that new objects
|
||||
// are given when they're created with that constructor and the new keyword.
|
||||
myConstructor.prototype = {
|
||||
getMyNumber: function(){
|
||||
return self.myNumber
|
||||
}
|
||||
}
|
||||
var myNewObj2 = new myConstructor()
|
||||
myNewObj2.getMyNumber() // = 5
|
||||
|
||||
// Built-in types like strings and numbers also have constructors that create
|
||||
// equivalent wrapper objects.
|
||||
var myNumber = 12
|
||||
var myNumberObj = new Number(12)
|
||||
myNumber == myNumberObj // = true
|
||||
|
||||
// Except, they aren't exactly equivalent.
|
||||
typeof(myNumber) // = 'number'
|
||||
typeof(myNumberObj) // = 'object'
|
||||
myNumber === myNumberObj // = false
|
||||
if (0){
|
||||
// This code won't execute, because 0 is falsy.
|
||||
}
|
||||
if (Number(0)){
|
||||
// This code *will* execute, because Number(0) is truthy.
|
||||
}
|
||||
|
||||
// However, the wrapper objects and the regular builtins share a prototype, so
|
||||
// you can actually add functionality to a string, for instance.
|
||||
String.prototype.firstCharacter = function(){
|
||||
return this.charAt(0)
|
||||
}
|
||||
"abc".firstCharacter() // = "a"
|
||||
|
||||
// This fact is often used in "polyfilling", which is implementing newer
|
||||
// features of JavaScript in an older subset of JavaScript, so that they can be
|
||||
// used in older environments such as outdated browsers.
|
||||
|
||||
// For instance, we mentioned that Object.create isn't yet available in all
|
||||
// implementations, but we can still use it with this polyfill:
|
||||
if (Object.create === undefined){ // don't overwrite it if it exists
|
||||
Object.create = function(proto){
|
||||
// make a temporary constructor with the right prototype
|
||||
var Constructor = function(){}
|
||||
Constructor.prototype = proto
|
||||
// then use it to create a new, appropriately-prototyped object
|
||||
return new Constructor()
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Further Reading
|
||||
|
||||
The [Mozilla Developer
|
||||
Network](https://developer.mozilla.org/en-US/docs/Web/JavaScript) provides
|
||||
excellent documentation for JavaScript as it's used in browsers. Plus, it's a
|
||||
wiki, so as you learn more you can help others out by sharing your own
|
||||
knowledge.
|
||||
|
||||
MDN's [A re-introduction to
|
||||
JavaScript](https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript)
|
||||
covers much of the concepts covered here in more detail. This guide has quite
|
||||
deliberately only covered the JavaScript language itself; if you want to learn
|
||||
more about how to use JavaScript in web pages, start by learning about the
|
||||
[Document Object
|
||||
Model](https://developer.mozilla.org/en-US/docs/Using_the_W3C_DOM_Level_1_Core)
|
||||
|
||||
In addition to direct contributors to this article, some content is adapted
|
||||
from Louie Dinh's Python tutorial on this site, and the [JS
|
||||
Tutorial](https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript)
|
||||
on the Mozilla Developer Network.
|
525
julia.html.markdown
Normal file
525
julia.html.markdown
Normal file
@ -0,0 +1,525 @@
|
||||
---
|
||||
language: julia
|
||||
contributors:
|
||||
- ["Leah Hanson", "http://leahhanson.us"]
|
||||
filename: learnjulia.jl
|
||||
---
|
||||
|
||||
Julia is a new homoiconic functional language focused on technical computing.
|
||||
While having the full power of homoiconic macros, first-class functions, and low-level control, Julia is as easy to learn and use as Python.
|
||||
|
||||
This is based on the current development version of Julia, as of June 29th, 2013.
|
||||
|
||||
```ruby
|
||||
|
||||
# Single line comments start with a hash.
|
||||
|
||||
####################################################
|
||||
## 1. Primitive Datatypes and Operators
|
||||
####################################################
|
||||
|
||||
# Everything in Julia is a expression.
|
||||
|
||||
# You have numbers
|
||||
3 #=> 3 (Int64)
|
||||
3.2 #=> 3.2 (Float64)
|
||||
2 + 1im #=> 2 + 1im (Complex{Int64})
|
||||
2//3 #=> 2//3 (Rational{Int64})
|
||||
|
||||
# Math is what you would expect
|
||||
1 + 1 #=> 2
|
||||
8 - 1 #=> 7
|
||||
10 * 2 #=> 20
|
||||
35 / 5 #=> 7.0
|
||||
5 \ 35 #=> 7.0
|
||||
5 / 2 #=> 2.5
|
||||
div(5, 2) #=> 2
|
||||
2 ^ 2 #=> 4 # power, not bitwise xor
|
||||
12 % 10 #=> 2
|
||||
|
||||
# Enforce precedence with parentheses
|
||||
(1 + 3) * 2 #=> 8
|
||||
|
||||
# Bitwise Operators
|
||||
~2 #=> -3 # bitwise not
|
||||
3 & 5 #=> 1 # bitwise and
|
||||
2 | 4 #=> 6 # bitwise or
|
||||
2 $ 4 #=> 6 # bitwise xor
|
||||
2 >>> 1 #=> 1 # logical shift right
|
||||
2 >> 1 #=> 1 # arithmetic shift right
|
||||
2 << 1 #=> 4 # logical/arithmetic shift left
|
||||
|
||||
# You can use the bits function to see the binary representation of a number.
|
||||
bits(12345)
|
||||
#=> "0000000000000000000000000000000000000000000000000011000000111001"
|
||||
bits(12345.0)
|
||||
#=> "0100000011001000000111001000000000000000000000000000000000000000"
|
||||
|
||||
# Boolean values are primitives
|
||||
true
|
||||
false
|
||||
|
||||
# Boolean operators
|
||||
!true #=> false
|
||||
!false #=> true
|
||||
1 == 1 #=> true
|
||||
2 == 1 #=> false
|
||||
1 != 1 #=> false
|
||||
2 != 1 #=> true
|
||||
1 < 10 #=> true
|
||||
1 > 10 #=> false
|
||||
2 <= 2 #=> true
|
||||
2 >= 2 #=> true
|
||||
# Comparisons can be chained
|
||||
1 < 2 < 3 #=> true
|
||||
2 < 3 < 2 #=> false
|
||||
|
||||
# Strings are created with "
|
||||
"This is a string."
|
||||
|
||||
# Character literals written with '
|
||||
'a'
|
||||
|
||||
# A string can be treated like a list of characters
|
||||
"This is a string"[1] #=> 'T' # Julia indexes from 1
|
||||
|
||||
# $ can be used for string interpolation:
|
||||
"2 + 2 = $(2 + 2)" #=> "2 + 2 = 4"
|
||||
# You can put any Julia expression inside the parenthesis.
|
||||
|
||||
# Another way to format strings is the printf macro.
|
||||
@printf "%d is less than %f" 4.5 5.3 # 5 is less than 5.300000
|
||||
|
||||
####################################################
|
||||
## 2. Variables and Collections
|
||||
####################################################
|
||||
|
||||
# Printing is pretty easy
|
||||
println("I'm Julia. Nice to meet you!")
|
||||
|
||||
# No need to declare variables before assigning to them.
|
||||
some_var = 5 #=> 5
|
||||
some_var #=> 5
|
||||
|
||||
# Accessing a previously unassigned variable is an error
|
||||
try
|
||||
some_other_var #=> ERROR: some_other_var not defined
|
||||
catch e
|
||||
println(e)
|
||||
end
|
||||
|
||||
# Variable name start with a letter. You can use uppercase letters, digits,
|
||||
# and exclamation points as well after the initial alphabetic character.
|
||||
SomeOtherVar123! = 6 #=> 6
|
||||
|
||||
# You can also use unicode characters
|
||||
☃ = 8 #=> 8
|
||||
|
||||
# A note on naming conventions in Julia:
|
||||
#
|
||||
# * Names of variables are in lower case, with word separation indicated by
|
||||
# underscores ('\_').
|
||||
#
|
||||
# * Names of Types begin with a capital letter and word separation is shown
|
||||
# with CamelCase instead of underscores.
|
||||
#
|
||||
# * Names of functions and macros are in lower case, without underscores.
|
||||
#
|
||||
# * Functions that modify their inputs have names that end in !. These
|
||||
# functions are sometimes called mutating functions or in-place functions.
|
||||
|
||||
# Arrays store a sequence of values indexed by integers 1 through n:
|
||||
a = Int64[] #=> 0-element Int64 Array
|
||||
|
||||
# 1-dimensional array literals can be written with comma-separated values.
|
||||
b = [4, 5, 6] #=> 3-element Int64 Array: [4, 5, 6]
|
||||
b[1] #=> 4
|
||||
b[end] #=> 6
|
||||
|
||||
# 2-dimentional arrays use space-separated values and semicolon-separated rows.
|
||||
matrix = [1 2; 3 4] #=> 2x2 Int64 Array: [1 2; 3 4]
|
||||
|
||||
# Add stuff to the end of a list with push! and append!
|
||||
push!(a,1) #=> [1]
|
||||
push!(a,2) #=> [1,2]
|
||||
push!(a,4) #=> [1,2,4]
|
||||
push!(a,3) #=> [1,2,4,3]
|
||||
append!(a,b) #=> [1,2,4,3,4,5,6]
|
||||
|
||||
# Remove from the end with pop
|
||||
pop!(a) #=> 6 and b is now [4,5]
|
||||
|
||||
# Let's put it back
|
||||
push!(b,6) # b is now [4,5,6] again.
|
||||
|
||||
a[1] #=> 1 # remember that Julia indexes from 1, not 0!
|
||||
|
||||
# end is a shorthand for the last index. It can be used in any
|
||||
# indexing expression
|
||||
a[end] #=> 6
|
||||
|
||||
# Function names that end in exclamations points indicate that they modify
|
||||
# their argument.
|
||||
arr = [5,4,6] #=> 3-element Int64 Array: [5,4,6]
|
||||
sort(arr) #=> [4,5,6]; arr is still [5,4,6]
|
||||
sort!(arr) #=> [4,5,6]; arr is now [4,5,6]
|
||||
|
||||
# Looking out of bounds is a BoundsError
|
||||
try
|
||||
a[0] #=> ERROR: BoundsError() in getindex at array.jl:270
|
||||
a[end+1] #=> ERROR: BoundsError() in getindex at array.jl:270
|
||||
catch e
|
||||
println(e)
|
||||
end
|
||||
|
||||
# Errors list the line and file they came from, even if it's in the standard
|
||||
# library. If you built Julia from source, you can look in the folder base
|
||||
# inside the julia folder to find these files.
|
||||
|
||||
# You can initialize arrays from ranges
|
||||
a = [1:5] #=> 5-element Int64 Array: [1,2,3,4,5]
|
||||
|
||||
# You can look at ranges with slice syntax.
|
||||
a[1:3] #=> [1, 2, 3]
|
||||
a[2:] #=> [2, 3, 4, 5]
|
||||
|
||||
# Remove arbitrary elements from a list with splice!
|
||||
arr = [3,4,5]
|
||||
splice!(arr,2) #=> 4 ; arr is now [3,5]
|
||||
|
||||
# Concatenate lists with append!
|
||||
b = [1,2,3]
|
||||
append!(a,b) # Now a is [1, 3, 4, 5, 1, 2, 3]
|
||||
|
||||
# Check for existence in a list with contains
|
||||
contains(a,1) #=> true
|
||||
|
||||
# Examine the length with length
|
||||
length(a) #=> 7
|
||||
|
||||
# Tuples are immutable.
|
||||
tup = (1, 2, 3) #=>(1,2,3) # an (Int64,Int64,Int64) tuple.
|
||||
tup[1] #=> 1
|
||||
try:
|
||||
tup[0] = 3 #=> ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64)
|
||||
catch e
|
||||
println(e)
|
||||
end
|
||||
|
||||
# Many list functions also work on tuples
|
||||
length(tup) #=> 3
|
||||
tup[1:2] #=> (1,2)
|
||||
contains(tup,2) #=> true
|
||||
|
||||
# You can unpack tuples into variables
|
||||
a, b, c = (1, 2, 3) #=> (1,2,3) # a is now 1, b is now 2 and c is now 3
|
||||
|
||||
# Tuples are created by default if you leave out the parentheses
|
||||
d, e, f = 4, 5, 6 #=> (4,5,6)
|
||||
|
||||
# Now look how easy it is to swap two values
|
||||
e, d = d, e #=> (5,4) # d is now 5 and e is now 4
|
||||
|
||||
|
||||
# Dictionaries store mappings
|
||||
empty_dict = Dict() #=> Dict{Any,Any}()
|
||||
|
||||
# Here is a prefilled dictionary
|
||||
filled_dict = ["one"=> 1, "two"=> 2, "three"=> 3]
|
||||
# => Dict{ASCIIString,Int64}
|
||||
|
||||
# Look up values with []
|
||||
filled_dict["one"] #=> 1
|
||||
|
||||
# Get all keys
|
||||
keys(filled_dict)
|
||||
#=> KeyIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
|
||||
# Note - dictionary keys are not sorted or in the order you inserted them.
|
||||
|
||||
# Get all values
|
||||
values(filled_dict)
|
||||
#=> ValueIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
|
||||
# Note - Same as above regarding key ordering.
|
||||
|
||||
# Check for existence of keys in a dictionary with contains, haskey
|
||||
contains(filled_dict, ("one", 1)) #=> true
|
||||
contains(filled_dict, ("two", 3)) #=> false
|
||||
haskey(filled_dict, "one") #=> true
|
||||
haskey(filled_dict, 1) #=> false
|
||||
|
||||
# Trying to look up a non-existing key will raise an error
|
||||
try
|
||||
filled_dict["four"] #=> ERROR: key not found: four in getindex at dict.jl:489
|
||||
catch e
|
||||
println(e)
|
||||
end
|
||||
|
||||
# Use get method to avoid the error
|
||||
# get(dictionary,key,default_value)
|
||||
get(filled_dict,"one",4) #=> 1
|
||||
get(filled_dict,"four",4) #=> 4
|
||||
|
||||
# Sets store sets
|
||||
empty_set = Set() #=> Set{Any}()
|
||||
# Initialize a set with a bunch of values
|
||||
filled_set = Set(1,2,2,3,4) #=> Set{Int64}(1,2,3,4)
|
||||
|
||||
# Add more items to a set
|
||||
add!(filled_set,5) #=> Set{Int64}(5,4,2,3,1)
|
||||
|
||||
# There are functions for set intersection, union, and difference.
|
||||
other_set = Set(3, 4, 5, 6) #=> Set{Int64}(6,4,5,3)
|
||||
intersect(filled_set, other_set) #=> Set{Int64}(3,4,5)
|
||||
union(filled_set, other_set) #=> Set{Int64}(1,2,3,4,5,6)
|
||||
setdiff(Set(1,2,3,4),Set(2,3,5)) #=> Set{Int64}(1,4)
|
||||
|
||||
# Check for existence in a set with contains
|
||||
contains(filled_set,2) #=> true
|
||||
contains(filled_set,10) #=> false
|
||||
|
||||
|
||||
####################################################
|
||||
## 3. Control Flow
|
||||
####################################################
|
||||
|
||||
# Let's make a variable
|
||||
some_var = 5
|
||||
|
||||
# Here is an if statement. Indentation is NOT meaningful in Julia.
|
||||
# prints "some var is smaller than 10"
|
||||
if some_var > 10
|
||||
println("some_var is totally bigger than 10.")
|
||||
elseif some_var < 10 # This elseif clause is optional.
|
||||
println("some_var is smaller than 10.")
|
||||
else # The else clause is optional too.
|
||||
println("some_var is indeed 10.")
|
||||
end
|
||||
|
||||
|
||||
# For loops iterate over iterables, such as ranges, lists, sets, dicts, strings.
|
||||
|
||||
for animal=["dog", "cat", "mouse"]
|
||||
# You can use $ to interpolate into strings
|
||||
println("$animal is a mammal")
|
||||
end
|
||||
# prints:
|
||||
# dog is a mammal
|
||||
# cat is a mammal
|
||||
# mouse is a mammal
|
||||
|
||||
# You can use in instead of =, if you want.
|
||||
for animal in ["dog", "cat", "mouse"]
|
||||
println("$animal is a mammal")
|
||||
end
|
||||
|
||||
for a in ["dog"=>"mammal","cat"=>"mammal","mouse"=>"mammal"]
|
||||
println("$(a[1]) is $(a[2])")
|
||||
end
|
||||
|
||||
for (k,v) in ["dog"=>"mammal","cat"=>"mammal","mouse"=>"mammal"]
|
||||
println("$k is $v")
|
||||
end
|
||||
|
||||
|
||||
# While loops go until a condition is no longer met.
|
||||
# prints:
|
||||
# 0
|
||||
# 1
|
||||
# 2
|
||||
# 3
|
||||
x = 0
|
||||
while x < 4
|
||||
println(x)
|
||||
x += 1 # Shorthand for x = x + 1
|
||||
end
|
||||
|
||||
# Handle exceptions with a try/except block
|
||||
try
|
||||
error("help")
|
||||
catch e
|
||||
println("caught it $e")
|
||||
end
|
||||
#=> caught it ErrorException("help")
|
||||
|
||||
|
||||
####################################################
|
||||
## 4. Functions
|
||||
####################################################
|
||||
|
||||
# Use the keyword function to create new functions
|
||||
function add(x, y)
|
||||
println("x is $x and y is $y")
|
||||
|
||||
# Functions implicitly return the value of their last statement
|
||||
x + y
|
||||
end
|
||||
|
||||
add(5, 6) #=> 11 after printing out "x is 5 and y is 6"
|
||||
|
||||
# You can define functions that take a variable number of
|
||||
# positional arguments
|
||||
function varargs(args...)
|
||||
return args
|
||||
end
|
||||
|
||||
varargs(1,2,3) #=> (1,2,3)
|
||||
|
||||
# The ... is called a splat.
|
||||
# It can also be used in a fuction call
|
||||
# to splat a list or tuple out to be the arguments
|
||||
Set([1,2,3]) #=> Set{Array{Int64,1}}([1,2,3]) # produces a Set of Arrays
|
||||
Set([1,2,3]...) #=> Set{Int64}(1,2,3) # this is equivalent to Set(1,2,3)
|
||||
|
||||
x = (1,2,3) #=> (1,2,3)
|
||||
Set(x) #=> Set{(Int64,Int64,Int64)}((1,2,3)) # a Set of Tuples
|
||||
Set(x...) #=> Set{Int64}(2,3,1)
|
||||
|
||||
|
||||
# You can define functions with optional positional arguments
|
||||
function defaults(a,b,x=5,y=6)
|
||||
return "$a $b and $x $y"
|
||||
end
|
||||
|
||||
defaults('h','g') #=> "h g and 5 6"
|
||||
defaults('h','g','j') #=> "h g and j 6"
|
||||
defaults('h','g','j','k') #=> "h g and j k"
|
||||
try
|
||||
defaults('h') #=> ERROR: no method defaults(Char,)
|
||||
defaults() #=> ERROR: no methods defaults()
|
||||
catch e
|
||||
println(e)
|
||||
end
|
||||
|
||||
# You can define functions that take keyword arguments
|
||||
function keyword_args(;k1=4,name2="hello") # note the ;
|
||||
return ["k1"=>k1,"name2"=>name2]
|
||||
end
|
||||
|
||||
keyword_args(name2="ness") #=> ["name2"=>"ness","k1"=>4]
|
||||
keyword_args(k1="mine") #=> ["k1"=>"mine","name2"=>"hello"]
|
||||
keyword_args() #=> ["name2"=>"hello","k2"=>4]
|
||||
|
||||
# You can also do both at once
|
||||
function all_the_args(normal_arg, optional_positional_arg=2; keyword_arg="foo")
|
||||
println("normal arg: $normal_arg")
|
||||
println("optional arg: $optional_positional_arg")
|
||||
println("keyword arg: $keyword_arg")
|
||||
end
|
||||
|
||||
all_the_args(1, 3, keyword_arg=4)
|
||||
# prints:
|
||||
# normal arg: 1
|
||||
# optional arg: 3
|
||||
# keyword arg: 4
|
||||
|
||||
# Julia has first class functions
|
||||
function create_adder(x)
|
||||
adder = function (y)
|
||||
return x + y
|
||||
end
|
||||
return adder
|
||||
end
|
||||
|
||||
# or equivalently
|
||||
function create_adder(x)
|
||||
y -> x + y
|
||||
end
|
||||
|
||||
# you can also name the internal function, if you want
|
||||
function create_adder(x)
|
||||
function adder(y)
|
||||
x + y
|
||||
end
|
||||
adder
|
||||
end
|
||||
|
||||
add_10 = create_adder(10)
|
||||
add_10(3) #=> 13
|
||||
|
||||
# The first two inner functions above are anonymous functions
|
||||
(x -> x > 2)(3) #=> true
|
||||
|
||||
# There are built-in higher order functions
|
||||
map(add_10, [1,2,3]) #=> [11, 12, 13]
|
||||
filter(x -> x > 5, [3, 4, 5, 6, 7]) #=> [6, 7]
|
||||
|
||||
# We can use list comprehensions for nice maps and filters
|
||||
[add_10(i) for i=[1, 2, 3]] #=> [11, 12, 13]
|
||||
[add_10(i) for i in [1, 2, 3]] #=> [11, 12, 13]
|
||||
|
||||
####################################################
|
||||
## 5. Types and Multiple-Dispatch
|
||||
####################################################
|
||||
|
||||
# Type definition
|
||||
type Tiger
|
||||
taillength::Float64
|
||||
coatcolor # no type annotation is implicitly Any
|
||||
end
|
||||
# default constructor is the properties in order
|
||||
# so, Tiger(taillength,coatcolor)
|
||||
|
||||
# Type instantiation
|
||||
tigger = Tiger(3.5,"orange") # the type doubles as the constructor function
|
||||
|
||||
# Abtract Types
|
||||
abstract Cat # just a name and point in the type hierarchy
|
||||
|
||||
# * types defined with the type keyword are concrete types; they can be
|
||||
# instantiated
|
||||
#
|
||||
# * types defined with the abstract keyword are abstract types; they can
|
||||
# have subtypes.
|
||||
#
|
||||
# * each type has one supertype; a supertype can have zero or more subtypes.
|
||||
|
||||
type Lion <: Cat # Lion is a subtype of Cat
|
||||
mane_color
|
||||
roar::String
|
||||
end
|
||||
|
||||
type Panther <: Cat # Panther is also a subtype of Cat
|
||||
eye_color
|
||||
Panther() = new("green")
|
||||
# Panthers will only have this constructor, and no default constructor.
|
||||
end
|
||||
|
||||
# Multiple Dispatch
|
||||
|
||||
# In Julia, all named functions are generic functions
|
||||
# This means that they are built up from many small methods
|
||||
# For example, let's make a function meow:
|
||||
function meow(cat::Lion)
|
||||
cat.roar # access properties using dot notation
|
||||
end
|
||||
|
||||
function meow(cat::Panther)
|
||||
"grrr"
|
||||
end
|
||||
|
||||
function meow(cat::Tiger)
|
||||
"rawwwr"
|
||||
end
|
||||
|
||||
meow(tigger) #=> "rawwr"
|
||||
meow(Lion("brown","ROAAR")) #=> "ROAAR"
|
||||
meow(Panther()) #=> "grrr"
|
||||
|
||||
function pet_cat(cat::Cat)
|
||||
println("The cat says $(meow(cat))")
|
||||
end
|
||||
|
||||
try
|
||||
pet_cat(tigger) #=> ERROR: no method pet_cat(Tiger,)
|
||||
catch e
|
||||
println(e)
|
||||
end
|
||||
|
||||
pet_cat(Lion(Panther(),"42")) #=> prints "The cat says 42"
|
||||
|
||||
```
|
||||
|
||||
## Further Reading
|
||||
|
||||
You can get a lot more detail from [The Julia Manual](http://docs.julialang.org/en/latest/manual/)
|
||||
|
@ -1,7 +1,8 @@
|
||||
---
|
||||
language: lua
|
||||
author: Tyler Neylon
|
||||
author_url: http://tylerneylon.com/
|
||||
contributors:
|
||||
- ["Tyler Neylon", "http://tylerneylon.com/"]
|
||||
filename: learnlua.lua
|
||||
---
|
||||
|
||||
```lua
|
||||
|
@ -1,7 +1,8 @@
|
||||
---
|
||||
language: php
|
||||
author: Malcolm Fell
|
||||
author_url: http://emarref.net/
|
||||
contributors:
|
||||
- ["Malcolm Fell", "http://emarref.net/"]
|
||||
filename: learnphp.php
|
||||
---
|
||||
|
||||
This document describes PHP 5+.
|
||||
@ -9,6 +10,9 @@ This document describes PHP 5+.
|
||||
```php
|
||||
<?php // PHP code must be enclosed with <?php ? > tags
|
||||
|
||||
// If your php file only contains PHP code, it is best practise
|
||||
// to omit the php closing tag.
|
||||
|
||||
// Two forward slashes start a one-line comment.
|
||||
|
||||
# So will a hash (aka pound symbol) but // is more common
|
||||
@ -22,7 +26,7 @@ This document describes PHP 5+.
|
||||
print('Hello '); // Prints "Hello " with no line break
|
||||
|
||||
// () are optional for print and echo
|
||||
echo 'World\n'; // Prints "World" with a line break
|
||||
echo "World\n"; // Prints "World" with a line break
|
||||
// (all statements must end with a semicolon)
|
||||
|
||||
// Anything outside <?php tags is echoed automatically
|
||||
@ -39,13 +43,13 @@ echo 'World\n'; // Prints "World" with a line break
|
||||
// followed by any number of letters, numbers, or underscores.
|
||||
|
||||
// Boolean values are case-insensitive
|
||||
$boolean = true; // or TRUE or True
|
||||
$boolean = true; // or TRUE or True
|
||||
$boolean = false; // or FALSE or False
|
||||
|
||||
// Integers
|
||||
$int1 = 19; // => 19
|
||||
$int2 = -19; // => -19
|
||||
$int3 = 019; // => 15 (a leading 0 denotes an octal number)
|
||||
$int1 = 19; // => 19
|
||||
$int2 = -19; // => -19
|
||||
$int3 = 019; // => 15 (a leading 0 denotes an octal number)
|
||||
$int4 = 0x0F; // => 15 (a leading 0x denotes a hex literal)
|
||||
|
||||
// Floats (aka doubles)
|
||||
@ -54,26 +58,26 @@ $float = 1.2e3;
|
||||
$float = 7E-10;
|
||||
|
||||
// Arithmetic
|
||||
$sum = 1 + 1; // 2
|
||||
$sum = 1 + 1; // 2
|
||||
$difference = 2 - 1; // 1
|
||||
$product = 2 * 2; // 4
|
||||
$quotient = 2 / 1; // 2
|
||||
$product = 2 * 2; // 4
|
||||
$quotient = 2 / 1; // 2
|
||||
|
||||
// Shorthand arithmetic
|
||||
$number = 0;
|
||||
$number += 1; // Add 1 to $number
|
||||
echo $number++; // Prints 1 (increments after evaluation)
|
||||
echo ++$number; // Prints 3 (increments before evalutation)
|
||||
$number += 1; // Increment $number by 1
|
||||
echo $number++; // Prints 1 (increments after evaluation)
|
||||
echo ++$number; // Prints 3 (increments before evalutation)
|
||||
$number /= $float; // Divide and assign the quotient to $number
|
||||
|
||||
// Strings should be enclosed in single quotes;
|
||||
$sgl_quotes = '$String'; // => '$String'
|
||||
|
||||
// Avoid using double quotes except to embed other variables
|
||||
$dbl_quotes = "This is a $sgl_quotes."; // => 'This is a $String'
|
||||
$dbl_quotes = "This is a $sgl_quotes."; // => 'This is a $String.'
|
||||
|
||||
// Special characters are only escaped in double quotes
|
||||
$escaped = "This contains a \t tab character.";
|
||||
$escaped = "This contains a \t tab character.";
|
||||
$unescaped = 'This just contains a slash and a t: \t';
|
||||
|
||||
// Enclose a variable in curly braces if needed
|
||||
@ -109,7 +113,7 @@ $associative = array('One' => 1, 'Two' => 2, 'Three' => 3);
|
||||
// PHP 5.4 introduced a new syntax
|
||||
$associative = ['One' => 1, 'Two' => 2, 'Three' => 3];
|
||||
|
||||
echo $associative['One']; // prints "1"
|
||||
echo $associative['One']; // prints 1
|
||||
|
||||
// List literals implicitly assign integer keys
|
||||
$array = ['One', 'Two', 'Three'];
|
||||
@ -132,8 +136,8 @@ print 'Hello World!'; // So is print
|
||||
|
||||
$paragraph = 'paragraph';
|
||||
|
||||
echo 100;
|
||||
echo $paragraph;
|
||||
echo 100; // Echo scalar variables directly
|
||||
echo $paragraph; // or variables
|
||||
|
||||
// If short open tags are configured, or your PHP version is
|
||||
// 5.4.0 or greater, you can use the short echo syntax
|
||||
@ -143,10 +147,11 @@ echo $paragraph;
|
||||
|
||||
$x = 1;
|
||||
$y = 2;
|
||||
$x = $y; // A now contains the same value sa $y
|
||||
$x = $y; // $x now contains the same value as $y
|
||||
$z = &$y;
|
||||
// $x now contains a reference to $y. Changing the value of
|
||||
// $x will change the value of $y also, and vice-versa.
|
||||
// $z now contains a reference to $y. Changing the value of
|
||||
// $z will change the value of $y also, and vice-versa.
|
||||
// $x will remain unchanged as the original value of $y
|
||||
|
||||
echo $x; // => 2
|
||||
echo $z; // => 2
|
||||
@ -167,8 +172,8 @@ $d = '1';
|
||||
|
||||
// These comparisons will always be true, even if the types aren't the same.
|
||||
assert($a == $b); // equality
|
||||
assert($b != $a); // inequality
|
||||
assert($a <> $b); // alternative inequality
|
||||
assert($c != $a); // inequality
|
||||
assert($c <> $a); // alternative inequality
|
||||
assert($a < $c);
|
||||
assert($c > $b);
|
||||
assert($a <= $b);
|
||||
@ -215,7 +220,7 @@ if (true) {
|
||||
}
|
||||
|
||||
if (false) {
|
||||
print "I don't";
|
||||
print 'I don\'t';
|
||||
} else {
|
||||
print 'I get printed';
|
||||
}
|
||||
@ -226,6 +231,9 @@ if (false) {
|
||||
print 'Does';
|
||||
}
|
||||
|
||||
// ternary operator
|
||||
print (false ? 'Does not get printed' : 'Does');
|
||||
|
||||
$x = 0;
|
||||
if ($x === '0') {
|
||||
print 'Does not print';
|
||||
@ -235,6 +243,8 @@ if ($x === '0') {
|
||||
print 'Does print';
|
||||
}
|
||||
|
||||
|
||||
|
||||
// This alternative syntax is useful for templates:
|
||||
?>
|
||||
|
||||
@ -251,6 +261,7 @@ switch ($x) {
|
||||
case '0':
|
||||
print 'Switch does type coercion';
|
||||
break; // You must include a break, or you will fall through
|
||||
// to cases 'two' and 'three'
|
||||
case 'two':
|
||||
case 'three':
|
||||
// Do something if $variable is either 'two' or 'three'
|
||||
@ -275,16 +286,16 @@ do {
|
||||
echo "\n";
|
||||
|
||||
for ($x = 0; $x < 10; $x++) {
|
||||
echo $x; // Will echo 0 - 9
|
||||
}// Prints "0123456789"
|
||||
echo $x;
|
||||
} // Prints "0123456789"
|
||||
|
||||
echo "\n";
|
||||
|
||||
$wheels = ['bicycle' => 2, 'car' => 4];
|
||||
|
||||
// Foreach loops can iterate over arrays
|
||||
foreach ($wheels as $wheel_count){
|
||||
echo "$wheel_count";
|
||||
foreach ($wheels as $wheel_count) {
|
||||
echo $wheel_count;
|
||||
} // Prints "24"
|
||||
|
||||
echo "\n";
|
||||
@ -302,9 +313,9 @@ while ($i < 5) {
|
||||
break; // Exit out of the while loop
|
||||
}
|
||||
echo $i++;
|
||||
}// Prints "012"
|
||||
} // Prints "012"
|
||||
|
||||
for($i = 0; $i < 5; $i++){
|
||||
for ($i = 0; $i < 5; $i++) {
|
||||
if ($i === 3) {
|
||||
continue; // Skip this iteration of the loop
|
||||
}
|
||||
@ -317,7 +328,7 @@ for($i = 0; $i < 5; $i++){
|
||||
*/
|
||||
|
||||
// Define a function with "function":
|
||||
function my_function() {
|
||||
function my_function () {
|
||||
return 'Hello';
|
||||
}
|
||||
|
||||
@ -326,7 +337,7 @@ echo my_function(); // => "Hello"
|
||||
// A valid function name starts with a letter or underscore, followed by any
|
||||
// number of letters, numbers, or underscores.
|
||||
|
||||
function add($x, $y = 1) { // $y is optional, and defaults to 2
|
||||
function add ($x, $y = 1) { // $y is optional and defaults to 1
|
||||
$result = $x + $y;
|
||||
return $result;
|
||||
}
|
||||
@ -338,7 +349,7 @@ echo add(4, 2); // => 6
|
||||
// print $result; // Gives a warning.
|
||||
|
||||
// Since PHP 5.3 you can declare anonymous functions;
|
||||
$inc = function($x){
|
||||
$inc = function ($x) {
|
||||
return $x + 1;
|
||||
};
|
||||
|
||||
@ -357,78 +368,133 @@ function bar ($x, $y) {
|
||||
}
|
||||
|
||||
$bar = bar('A', 'B');
|
||||
$bar('C');
|
||||
$bar('C'); // Prints "A - B - C"
|
||||
|
||||
// You can call named functions using strings
|
||||
$function_name = 'add';
|
||||
echo $function_name(1, 2); // => 3
|
||||
// But, you should probably use anonymous functions instead.
|
||||
// Useful for programatically determining which function to run.
|
||||
// Or, use call_user_func(callable $callback [, $parameter [, ... ]]);
|
||||
|
||||
/********************************
|
||||
* Includes
|
||||
*/
|
||||
|
||||
/*
|
||||
```
|
||||
```php
|
||||
<?php
|
||||
// PHP within included files must also begin with a PHP open tag.
|
||||
|
||||
include 'my-file.php';
|
||||
// The code in my-file.php is now available in the current scope.
|
||||
// If the file cannot be included (e.g. file not found), a warning is emitted.
|
||||
|
||||
include_once 'my-file.php';
|
||||
// If the code in my-file.php has been included elsewhere, it will
|
||||
// not be included again. This prevents multiple class declaration errors
|
||||
|
||||
require 'my-file.php';
|
||||
require_once 'my-file.php';
|
||||
// Same as include(), except require() will cause a fatal error if the
|
||||
// file cannot be included.
|
||||
|
||||
// Contents of my-include.php:
|
||||
<?php
|
||||
|
||||
return 'Anything you like.';
|
||||
// End file
|
||||
|
||||
// Includes and requires may also return a value.
|
||||
$value = include 'my-include.php';
|
||||
|
||||
// Files are included based on the file path given or, if none is given,
|
||||
// the include_path configuration directive. If the file isn't found in
|
||||
// the include_path, include will finally check in the calling script's
|
||||
// own directory and the current working directory before failing.
|
||||
/* */
|
||||
|
||||
/********************************
|
||||
* Classes
|
||||
*/
|
||||
|
||||
//Classes are defined with the class keyword
|
||||
// Classes are defined with the class keyword
|
||||
|
||||
class MyClass {
|
||||
const MY_CONST = 'value'; // A constant
|
||||
static $staticVar = 'static';
|
||||
public $property = 'public'; // Properties must declare their visibility
|
||||
private $privprop = 'private'; // Accessible within the class only
|
||||
protected $protprop = 'protected'; // Accessible within the class and subclasses
|
||||
class MyClass
|
||||
{
|
||||
const MY_CONST = 'value'; // A constant
|
||||
|
||||
static $staticVar = 'static';
|
||||
|
||||
// Properties must declare their visibility
|
||||
public $property = 'public';
|
||||
public $instanceProp;
|
||||
protected $prot = 'protected'; // Accessible from the class and subclasses
|
||||
private $priv = 'private'; // Accessible within the class only
|
||||
|
||||
// Create a constructor with __construct
|
||||
public function __construct($instanceProp){
|
||||
public function __construct($instanceProp) {
|
||||
// Access instance variables with $this
|
||||
$this->instanceProp = $instanceProp;
|
||||
}
|
||||
|
||||
// Methods are declared as functions inside a class
|
||||
public function myMethod() {
|
||||
print "MyClass";
|
||||
public function myMethod()
|
||||
{
|
||||
print 'MyClass';
|
||||
}
|
||||
|
||||
final function youCannotOverrideMe() {
|
||||
final function youCannotOverrideMe()
|
||||
{
|
||||
}
|
||||
|
||||
public static function myStaticMethod() {
|
||||
print "I am static";
|
||||
public static function myStaticMethod()
|
||||
{
|
||||
print 'I am static';
|
||||
}
|
||||
}
|
||||
|
||||
echo MyClass::MY_CONST; // Outputs "value";
|
||||
echo MyClass::$staticVar; // Outputs 'static';
|
||||
MyClass::myStaticMethod(); // Outputs "I am static";
|
||||
echo MyClass::MY_CONST; // Outputs 'value';
|
||||
echo MyClass::$staticVar; // Outputs 'static';
|
||||
MyClass::myStaticMethod(); // Outputs 'I am static';
|
||||
|
||||
// Access class members using ->.
|
||||
$my_class = new MyClass("An instance property"); // The parentheses are optional.
|
||||
echo $my_class->property; // => "public"
|
||||
// Instantiate classes using new
|
||||
$my_class = new MyClass('An instance property');
|
||||
// The parentheses are optional if not passing in an argument.
|
||||
|
||||
// Access class members using ->
|
||||
echo $my_class->property; // => "public"
|
||||
echo $my_class->instanceProp; // => "An instance property"
|
||||
$my_class->myMethod(); // => "MyClass"
|
||||
$my_class->myMethod(); // => "MyClass"
|
||||
|
||||
|
||||
// Extend classes using "extends"
|
||||
class MyOtherClass extends MyClass{
|
||||
function printProtectedProperty(){
|
||||
echo $this->protprop;
|
||||
class MyOtherClass extends MyClass
|
||||
{
|
||||
function printProtectedProperty()
|
||||
{
|
||||
echo $this->prot;
|
||||
}
|
||||
|
||||
// Override a method
|
||||
function myMethod() {
|
||||
function myMethod()
|
||||
{
|
||||
parent::myMethod();
|
||||
print " > MyOtherClass";
|
||||
print ' > MyOtherClass';
|
||||
}
|
||||
}
|
||||
|
||||
$my_other_class = new MyOtherClass("Instance prop");
|
||||
$my_other_class = new MyOtherClass('Instance prop');
|
||||
$my_other_class->printProtectedProperty(); // => Prints "protected"
|
||||
$my_other_class->myMethod(); // Prints "MyClass > MyOtherClass"
|
||||
$my_other_class->myMethod(); // Prints "MyClass > MyOtherClass"
|
||||
|
||||
final class YouCannotExtendMe {
|
||||
final class YouCannotExtendMe
|
||||
{
|
||||
}
|
||||
|
||||
// You can use "magic methods" to create getters and setters
|
||||
class MyMapClass {
|
||||
class MyMapClass
|
||||
{
|
||||
private $property;
|
||||
|
||||
public function __get($key)
|
||||
@ -462,16 +528,19 @@ interface InterfaceTwo
|
||||
|
||||
abstract class MyAbstractClass implements InterfaceOne
|
||||
{
|
||||
public $x = "doSomething";
|
||||
public $x = 'doSomething';
|
||||
}
|
||||
|
||||
class MyConcreteClass extends MyAbstractClass implements InterfaceTwo
|
||||
{
|
||||
public function doSomething(){
|
||||
public function doSomething()
|
||||
{
|
||||
echo $x;
|
||||
}
|
||||
public function doSomethingElse(){
|
||||
echo "doSomethingElse";
|
||||
|
||||
public function doSomethingElse()
|
||||
{
|
||||
echo 'doSomethingElse';
|
||||
}
|
||||
}
|
||||
|
||||
@ -479,11 +548,14 @@ class MyConcreteClass extends MyAbstractClass implements InterfaceTwo
|
||||
// Classes can implement more than one interface
|
||||
class SomeOtherClass implements InterfaceOne, InterfaceTwo
|
||||
{
|
||||
public function doSomething(){
|
||||
echo "doSomething";
|
||||
public function doSomething()
|
||||
{
|
||||
echo 'doSomething';
|
||||
}
|
||||
public function doSomethingElse(){
|
||||
echo "doSomethingElse";
|
||||
|
||||
public function doSomethingElse()
|
||||
{
|
||||
echo 'doSomethingElse';
|
||||
}
|
||||
}
|
||||
|
||||
@ -492,12 +564,13 @@ class SomeOtherClass implements InterfaceOne, InterfaceTwo
|
||||
* Traits
|
||||
*/
|
||||
|
||||
//Traits are available since PHP 5.4.0 and are declared using the trait keyword.
|
||||
// Traits are available from PHP 5.4.0 and are declared using "trait"
|
||||
|
||||
trait MyTrait {
|
||||
trait MyTrait
|
||||
{
|
||||
public function myTraitMethod()
|
||||
{
|
||||
print "I have MyTrait";
|
||||
print 'I have MyTrait';
|
||||
}
|
||||
}
|
||||
|
||||
@ -565,3 +638,5 @@ Visit the [official PHP documentation](http://www.php.net/manual/) for reference
|
||||
If you're interested in up-to-date best practices, visit [PHP The Right Way](http://www.phptherightway.com/).
|
||||
|
||||
If you're coming from a language with good package management, check out [Composer](http://getcomposer.org/).
|
||||
|
||||
For common standards, visit the PHP Framework Interoperability Group's [PSR standards](https://github.com/php-fig/fig-standards).
|
||||
|
@ -1,11 +1,12 @@
|
||||
---
|
||||
language: python
|
||||
author: Louie Dinh
|
||||
author_url: http://ldinh.ca
|
||||
contributors:
|
||||
- ["Louie Dinh", "http://ldinh.ca"]
|
||||
filename: learnpython.py
|
||||
---
|
||||
|
||||
Python was created by Guido Van Rossum in the early 90's. It is now one of the most popular
|
||||
languages in existence. I fell in love with Python for it's syntactic clarity. It's basically
|
||||
languages in existence. I fell in love with Python for its syntactic clarity. Its basically
|
||||
executable pseudocode.
|
||||
|
||||
Feedback would be highly appreciated! You can reach me at [@louiedinh](http://twitter.com/louiedinh) or louiedinh [at] [google's email service]
|
||||
@ -86,10 +87,26 @@ not False #=> True
|
||||
# A newer way to format strings is the format method.
|
||||
# This method is the preferred way
|
||||
"{0} can be {1}".format("strings", "formatted")
|
||||
# You can use keywords if you don't want to count.
|
||||
"{name} wants to eat {food}".format(name="Bob", food="lasagna")
|
||||
|
||||
# None is an object
|
||||
None #=> None
|
||||
|
||||
# Don't use the equality `==` symbol to compare objects to None
|
||||
# Use `is` instead
|
||||
"etc" is None #=> False
|
||||
None is None #=> True
|
||||
|
||||
# The 'is' operator tests for object identity. This isn't
|
||||
# very useful when dealing with primitive values, but is
|
||||
# very useful when dealing with objects.
|
||||
|
||||
# None, 0, and empty strings/lists all evaluate to False.
|
||||
# All other values are True
|
||||
0 == False #=> True
|
||||
"" == False #=> True
|
||||
|
||||
|
||||
####################################################
|
||||
## 2. Variables and Collections
|
||||
@ -103,16 +120,12 @@ print "I'm Python. Nice to meet you!"
|
||||
some_var = 5 # Convention is to use lower_case_with_underscores
|
||||
some_var #=> 5
|
||||
|
||||
# Accessing a previously unassigned variable is an exception
|
||||
try:
|
||||
some_other_var
|
||||
except NameError:
|
||||
print "Raises a name error"
|
||||
# Accessing a previously unassigned variable is an exception.
|
||||
# See Control Flow to learn more about exception handling.
|
||||
some_other_var # Raises a name error
|
||||
|
||||
# if can be used as an expression
|
||||
some_var = a if a > b else b
|
||||
# If a is greater than b, then a is assigned to some_var.
|
||||
# Otherwise b is assigned to some_var.
|
||||
"yahoo!" if 3 > 2 else 2 #=> "yahoo!"
|
||||
|
||||
# Lists store sequences
|
||||
li = []
|
||||
@ -135,10 +148,7 @@ li[0] #=> 1
|
||||
li[-1] #=> 3
|
||||
|
||||
# Looking out of bounds is an IndexError
|
||||
try:
|
||||
li[4] # Raises an IndexError
|
||||
except IndexError:
|
||||
print "Raises an IndexError"
|
||||
li[4] # Raises an IndexError
|
||||
|
||||
# You can look at ranges with slice syntax.
|
||||
# (It's a closed/open range for you mathy types.)
|
||||
@ -163,13 +173,11 @@ li.extend(other_li) # Now li is [1, 2, 3, 4, 5, 6]
|
||||
# Examine the length with len
|
||||
len(li) #=> 6
|
||||
|
||||
|
||||
# Tuples are like lists but are immutable.
|
||||
tup = (1, 2, 3)
|
||||
tup[0] #=> 1
|
||||
try:
|
||||
tup[0] = 3 # Raises a TypeError
|
||||
except TypeError:
|
||||
print "Tuples cannot be mutated."
|
||||
tup[0] = 3 # Raises a TypeError
|
||||
|
||||
# You can do all those list thingies on tuples too
|
||||
len(tup) #=> 3
|
||||
@ -177,7 +185,7 @@ tup + (4, 5, 6) #=> (1, 2, 3, 4, 5, 6)
|
||||
tup[:2] #=> (1, 2)
|
||||
2 in tup #=> True
|
||||
|
||||
# You can unpack tuples into variables
|
||||
# You can unpack tuples (or lists) into variables
|
||||
a, b, c = (1, 2, 3) # a is now 1, b is now 2 and c is now 3
|
||||
# Tuples are created by default if you leave out the parentheses
|
||||
d, e, f = 4, 5, 6
|
||||
@ -206,13 +214,12 @@ filled_dict.values() #=> [3, 2, 1]
|
||||
"one" in filled_dict #=> True
|
||||
1 in filled_dict #=> False
|
||||
|
||||
# Trying to look up a non-existing key will raise a KeyError
|
||||
filled_dict["four"] #=> KeyError
|
||||
# Looking up a non-existing key is a KeyError
|
||||
filled_dict["four"] # KeyError
|
||||
|
||||
# Use get method to avoid the KeyError
|
||||
filled_dict.get("one") #=> 1
|
||||
filled_dict.get("four") #=> None
|
||||
|
||||
# The get method supports a default argument when the value is missing
|
||||
filled_dict.get("one", 4) #=> 1
|
||||
filled_dict.get("four", 4) #=> 4
|
||||
@ -234,7 +241,7 @@ filled_set = {1, 2, 2, 3, 4} # => {1 2 3 4}
|
||||
filled_set.add(5) # filled_set is now {1, 2, 3, 4, 5}
|
||||
|
||||
# Do set intersection with &
|
||||
other_set = set{3, 4, 5, 6}
|
||||
other_set = {3, 4, 5, 6}
|
||||
filled_set & other_set #=> {3, 4, 5}
|
||||
|
||||
# Do set union with |
|
||||
@ -255,7 +262,7 @@ filled_set | other_set #=> {1, 2, 3, 4, 5, 6}
|
||||
# Let's just make a variable
|
||||
some_var = 5
|
||||
|
||||
# Here is an if statement. INDENTATION IS SIGNIFICANT IN PYTHON!
|
||||
# Here is an if statement. Indentation is significant in python!
|
||||
# prints "some var is smaller than 10"
|
||||
if some_var > 10:
|
||||
print "some_var is totally bigger than 10."
|
||||
@ -275,6 +282,18 @@ prints:
|
||||
for animal in ["dog", "cat", "mouse"]:
|
||||
# You can use % to interpolate formatted strings
|
||||
print "%s is a mammal" % animal
|
||||
|
||||
"""
|
||||
`range(number)` returns a list of numbers
|
||||
from zero to the given number
|
||||
prints:
|
||||
0
|
||||
1
|
||||
2
|
||||
3
|
||||
"""
|
||||
for i in range(4):
|
||||
print i
|
||||
|
||||
"""
|
||||
While loops go until a condition is no longer met.
|
||||
@ -298,12 +317,6 @@ try:
|
||||
except IndexError as e:
|
||||
pass # Pass is just a no-op. Usually you would do recovery here.
|
||||
|
||||
# Works for Python 2.7 and down:
|
||||
try:
|
||||
raise IndexError("This is an index error")
|
||||
except IndexError, e: # No "as", comma instead
|
||||
pass
|
||||
|
||||
|
||||
####################################################
|
||||
## 4. Functions
|
||||
@ -315,7 +328,8 @@ def add(x, y):
|
||||
return x + y # Return values with a return statement
|
||||
|
||||
# Calling functions with parameters
|
||||
add(5, 6) #=> 11 and prints out "x is 5 and y is 6"
|
||||
add(5, 6) #=> prints out "x is 5 and y is 6" and returns 11
|
||||
|
||||
# Another way to call functions is with keyword arguments
|
||||
add(y=6, x=5) # Keyword arguments can arrive in any order.
|
||||
|
||||
@ -341,16 +355,17 @@ def all_the_args(*args, **kwargs):
|
||||
print kwargs
|
||||
"""
|
||||
all_the_args(1, 2, a=3, b=4) prints:
|
||||
[1, 2]
|
||||
(1, 2)
|
||||
{"a": 3, "b": 4}
|
||||
"""
|
||||
|
||||
# You can also use * and ** when calling a function
|
||||
# When calling functions, you can do the opposite of varargs/kwargs!
|
||||
# Use * to expand tuples and use ** to expand kwargs.
|
||||
args = (1, 2, 3, 4)
|
||||
kwargs = {"a": 3, "b": 4}
|
||||
foo(*args) # equivalent to foo(1, 2, 3, 4)
|
||||
foo(**kwargs) # equivalent to foo(a=3, b=4)
|
||||
foo(*args, **kwargs) # equivalent to foo(1, 2, 3, 4, a=3, b=4)
|
||||
all_the_args(*args) # equivalent to foo(1, 2, 3, 4)
|
||||
all_the_args(**kwargs) # equivalent to foo(a=3, b=4)
|
||||
all_the_args(*args, **kwargs) # equivalent to foo(1, 2, 3, 4, a=3, b=4)
|
||||
|
||||
# Python has first class functions
|
||||
def create_adder(x):
|
||||
@ -420,9 +435,47 @@ j.get_species() #=> "H. neanderthalensis"
|
||||
|
||||
# Call the static method
|
||||
Human.grunt() #=> "*grunt*"
|
||||
|
||||
|
||||
####################################################
|
||||
## 6. Modules
|
||||
####################################################
|
||||
|
||||
# You can import modules
|
||||
import math
|
||||
print math.sqrt(16) #=> 4
|
||||
|
||||
# You can get specific functions from a module
|
||||
from math import ceil, floor
|
||||
print ceil(3.7) #=> 4.0
|
||||
print floor(3.7) #=> 3.0
|
||||
|
||||
# You can import all functions from a module.
|
||||
# Warning: this is not recommended
|
||||
from math import *
|
||||
|
||||
# You can shorten module names
|
||||
import math as m
|
||||
math.sqrt(16) == m.sqrt(16) #=> True
|
||||
|
||||
# Python modules are just ordinary python files. You
|
||||
# can write your own, and import them. The name of the
|
||||
# module is the same as the name of the file.
|
||||
|
||||
# You can find out which functions and attributes
|
||||
# defines a module.
|
||||
import math
|
||||
dir(math)
|
||||
|
||||
|
||||
```
|
||||
|
||||
## Further Reading
|
||||
|
||||
Still up for more? Try [Learn Python The Hard Way](http://learnpythonthehardway.org/book/)
|
||||
Still up for more? Try:
|
||||
|
||||
* [Learn Python The Hard Way](http://learnpythonthehardway.org/book/)
|
||||
* [Dive Into Python](http://www.diveintopython.net/)
|
||||
* [The Official Docs](http://docs.python.org/2.6/)
|
||||
* [Hitchhiker's Guide to Python](http://docs.python-guide.org/en/latest/)
|
||||
* [Python Module of the Week](http://pymotw.com/2/)
|
||||
|
@ -1,11 +1,11 @@
|
||||
---
|
||||
language: R
|
||||
author: e99n09
|
||||
author_url: http://github.com/e99n09
|
||||
|
||||
contributors:
|
||||
- ["e99n09", "http://github.com/e99n09"]
|
||||
filename: learnr.r
|
||||
---
|
||||
|
||||
R is a statistical computing language.
|
||||
R is a statistical computing language. It has lots of good built-in functions for uploading and cleaning data sets, running common statistical tests, and making graphs. You can also easily compile it within a LaTeX document.
|
||||
|
||||
```python
|
||||
|
||||
@ -14,36 +14,30 @@ R is a statistical computing language.
|
||||
# You can't make a multi-line comment per se,
|
||||
# but you can stack multiple comments like so.
|
||||
|
||||
# Protip: hit COMMAND-ENTER to execute a line
|
||||
# Hit COMMAND-ENTER to execute a line
|
||||
|
||||
#########################
|
||||
# The absolute basics
|
||||
#########################
|
||||
|
||||
# NUMERICS
|
||||
# NUMBERS
|
||||
|
||||
# We've got numbers! Behold the "numeric" class
|
||||
# We've got doubles! Behold the "numeric" class
|
||||
5 # => [1] 5
|
||||
class(5) # => [1] "numeric"
|
||||
# We've also got integers! They look suspiciously similar,
|
||||
# but indeed are different
|
||||
5L # => [1] 5
|
||||
class(5L) # => [1] "integer"
|
||||
# Try ?class for more information on the class() function
|
||||
# In fact, you can look up the documentation on just about anything with ?
|
||||
|
||||
# Numerics are like doubles. There's no such thing as integers
|
||||
5 == 5.0 # => [1] TRUE
|
||||
# Because R doesn't distinguish between integers and doubles,
|
||||
# R shows the "integer" form instead of the equivalent "double" form
|
||||
# whenever it's convenient:
|
||||
5.0 # => [1] 5
|
||||
|
||||
# All the normal operations!
|
||||
10 + 66 # => [1] 76
|
||||
53.2 - 4 # => [1] 49.2
|
||||
3.37 * 5.4 # => [1] 18.198
|
||||
2 * 2.0 # => [1] 4
|
||||
3 / 4 # => [1] 0.75
|
||||
2.0 / 2 # => [1] 1
|
||||
3L / 4 # => [1] 0.75
|
||||
3 %% 2 # => [1] 1
|
||||
4 %% 2 # => [1] 0
|
||||
|
||||
# Finally, we've got not-a-numbers! They're numerics too
|
||||
class(NaN) # => [1] "numeric"
|
||||
@ -107,6 +101,17 @@ while (a > 4) {
|
||||
# Operations on entire vectors (i.e. a whole row, a whole column)
|
||||
# or apply()-type functions (we'll discuss later) are preferred
|
||||
|
||||
# IF/ELSE
|
||||
|
||||
# Again, pretty standard
|
||||
if (4 > 3) {
|
||||
print("Huzzah! It worked!")
|
||||
} else {
|
||||
print("Noooo! This is blatantly illogical!")
|
||||
}
|
||||
# =>
|
||||
# [1] "Huzzah! It worked!"
|
||||
|
||||
# FUNCTIONS
|
||||
|
||||
# Defined like so:
|
||||
@ -126,24 +131,36 @@ myFunc(5) # => [1] 19
|
||||
# ONE-DIMENSIONAL
|
||||
|
||||
# You can vectorize anything, so long as all components have the same type
|
||||
vec <- c(4, 5, 6, 7)
|
||||
vec # => [1] 4 5 6 7
|
||||
vec <- c(8, 9, 10, 11)
|
||||
vec # => [1] 8 9 10 11
|
||||
# The class of a vector is the class of its components
|
||||
class(vec) # => [1] "numeric"
|
||||
# If you vectorize items of different classes, weird coersions happen
|
||||
# If you vectorize items of different classes, weird coercions happen
|
||||
c(TRUE, 4) # => [1] 1 4
|
||||
c("dog", TRUE, 4) # => [1] "dog" "TRUE" "4"
|
||||
|
||||
# We ask for specific components like so (R starts counting from 1)
|
||||
vec[1] # => [1] 4
|
||||
# We can also search for the indices of specific components
|
||||
which(vec %% 2 == 0)
|
||||
vec[1] # => [1] 8
|
||||
# We can also search for the indices of specific components,
|
||||
which(vec %% 2 == 0) # => [1] 1 3
|
||||
# or grab just the first or last entry in the vector
|
||||
head(vec, 1) # => [1] 8
|
||||
tail(vec, 1) # => [1] 11
|
||||
# If an index "goes over" you'll get NA:
|
||||
vec[6] # => [1] NA
|
||||
# You can find the length of your vector with length()
|
||||
length(vec) # => [1] 4
|
||||
|
||||
# You can perform operations on entire vectors or subsets of vectors
|
||||
vec * 4 # => [1] 16 20 24 28
|
||||
vec[2:3] * 5 # => [1] 25 30
|
||||
# and there are many built-in functions to summarize vectors
|
||||
mean(vec) # => [1] 9.5
|
||||
var(vec) # => [1] 1.666667
|
||||
sd(vec) # => [1] 1.290994
|
||||
max(vec) # => [1] 11
|
||||
min(vec) # => [1] 8
|
||||
sum(vec) # => [1] 38
|
||||
|
||||
# TWO-DIMENSIONAL (ALL ONE CLASS)
|
||||
|
||||
@ -192,7 +209,7 @@ mat3
|
||||
# [,1] [,2] [,3] [,4]
|
||||
# [1,] 1 2 4 5
|
||||
# [2,] 6 7 0 4
|
||||
# Aah, everything of the same class. No coersions. Much better.
|
||||
# Aah, everything of the same class. No coercions. Much better.
|
||||
|
||||
# TWO-DIMENSIONAL (DIFFERENT CLASSES)
|
||||
|
||||
@ -243,7 +260,8 @@ array(c(c(c(2,300,4),c(8,9,0)),c(c(5,60,0),c(66,7,847))), dim=c(3,2,2))
|
||||
# LISTS (MULTI-DIMENSIONAL, POSSIBLY RAGGED, OF DIFFERENT TYPES)
|
||||
|
||||
# Finally, R has lists (of vectors)
|
||||
list1 <- list(time = 1:40, price = c(rnorm(40,.5*list1$time,4))) # random
|
||||
list1 <- list(time = 1:40)
|
||||
list1$price = c(rnorm(40,.5*list1$time,4)) # random
|
||||
list1
|
||||
|
||||
# You can get items in the list like so
|
||||
@ -273,7 +291,8 @@ apply(mat, MAR = 2, myFunc)
|
||||
# [2,] 7 19
|
||||
# [3,] 11 23
|
||||
# Other functions: ?lapply, ?sapply
|
||||
# Don't feel too intimiated; everyone agrees they are rather confusing
|
||||
|
||||
# Don't feel too intimidated; everyone agrees they are rather confusing
|
||||
|
||||
# The plyr package aims to replace (and improve upon!) the *apply() family.
|
||||
|
||||
@ -303,13 +322,13 @@ write.csv(pets, "pets2.csv") # to make a new .csv file
|
||||
|
||||
# Scatterplots!
|
||||
plot(list1$time, list1$price, main = "fake data")
|
||||
# Fit a linear model
|
||||
myLm <- lm(price ~ time, data = list1)
|
||||
myLm # outputs result of regression
|
||||
# Regressions!
|
||||
linearModel <- lm(price ~ time, data = list1)
|
||||
linearModel # outputs result of regression
|
||||
# Plot regression line on existing plot
|
||||
abline(myLm, col = "red")
|
||||
abline(linearModel, col = "red")
|
||||
# Get a variety of nice diagnostics
|
||||
plot(myLm)
|
||||
plot(linearModel)
|
||||
|
||||
# Histograms!
|
||||
hist(rpois(n = 10000, lambda = 5), col = "thistle")
|
||||
@ -325,4 +344,7 @@ require(ggplot2)
|
||||
|
||||
```
|
||||
|
||||
## How do I get R?
|
||||
|
||||
* Get R and the R GUI from [http://www.r-project.org/](http://www.r-project.org/)
|
||||
* [RStudio](http://www.rstudio.com/ide/) is another GUI
|
||||
|
309
ruby.html.markdown
Normal file
309
ruby.html.markdown
Normal file
@ -0,0 +1,309 @@
|
||||
---
|
||||
language: ruby
|
||||
filename: learnruby.rb
|
||||
contributors:
|
||||
- ["David Underwood", "http://theflyingdeveloper.com"]
|
||||
- ["Joel Walden", "http://joelwalden.net"]
|
||||
---
|
||||
|
||||
```ruby
|
||||
# This is a comment
|
||||
|
||||
=begin
|
||||
This is a multiline comment
|
||||
No-one uses them
|
||||
You shouldn't either
|
||||
=end
|
||||
|
||||
# First and foremost: Everything is an object.
|
||||
|
||||
# Numbers are objects
|
||||
|
||||
3.class #=> Fixnum
|
||||
|
||||
3.to_s #=> "3"
|
||||
|
||||
|
||||
# Some basic arithmetic
|
||||
1 + 1 #=> 2
|
||||
8 - 1 #=> 7
|
||||
10 * 2 #=> 20
|
||||
35 / 5 #=> 7
|
||||
|
||||
# Special values are objects
|
||||
nil # Nothing to see here
|
||||
true # truth
|
||||
false # falsehood
|
||||
|
||||
nil.class #=> NilClass
|
||||
true.class #=> TrueClass
|
||||
false.class #=> FalseClass
|
||||
|
||||
# Equality
|
||||
1 == 1 #=> true
|
||||
2 == 1 #=> false
|
||||
|
||||
# apart from false itself, nil is the only other 'falsey' value
|
||||
|
||||
nil == false #=> true
|
||||
0 == false #=> false
|
||||
|
||||
# Inequality
|
||||
1 != 1 #=> false
|
||||
2 != 1 #=> true
|
||||
!true #=> false
|
||||
!false #=> true
|
||||
|
||||
# More comparisons
|
||||
1 < 10 #=> true
|
||||
1 > 10 #=> false
|
||||
2 <= 2 #=> true
|
||||
2 >= 2 #=> true
|
||||
|
||||
# Strings are objects
|
||||
|
||||
'I am a string'.class #=> String
|
||||
"I am a string too".class #=> String
|
||||
|
||||
placeholder = "use string interpolation"
|
||||
"I can #{placeholder} when using double quoted strings"
|
||||
#=> "I can use string interpolation when using double quoted strings"
|
||||
|
||||
|
||||
# print to the output
|
||||
puts "I'm printing!"
|
||||
|
||||
# Variables
|
||||
x = 25 #=> 25
|
||||
x #=> 25
|
||||
|
||||
# Note that assignment returns the value assigned
|
||||
# This means you can do multiple assignment:
|
||||
|
||||
x = y = 10 #=> 10
|
||||
x #=> 10
|
||||
y #=> 10
|
||||
|
||||
# By convention, use snake_case for variable names
|
||||
snake_case = true
|
||||
|
||||
# Use descriptive variable names
|
||||
path_to_project_root = '/good/name/'
|
||||
path = '/bad/name/'
|
||||
|
||||
# Symbols (are objects)
|
||||
# Symbols are immutable, reusable constants represented internally by an
|
||||
# integer value. They're often used instead of strings to efficiently convey
|
||||
# specific, meaningful values
|
||||
|
||||
:pending.class #=> Symbol
|
||||
|
||||
status = :pending
|
||||
|
||||
status == :pending #=> true
|
||||
|
||||
status == 'pending' #=> false
|
||||
|
||||
status == :approved #=> false
|
||||
|
||||
# Arrays
|
||||
|
||||
# This is an array
|
||||
[1, 2, 3, 4, 5] #=> [1, 2, 3, 4, 5]
|
||||
|
||||
# Arrays can contain different types of items
|
||||
|
||||
array = [1, "hello", false] #=> => [1, "hello", false]
|
||||
|
||||
# Arrays can be indexed
|
||||
# From the front
|
||||
array[0] #=> 1
|
||||
array[12] #=> nil
|
||||
|
||||
# From the end
|
||||
array[-1] #=> 5
|
||||
|
||||
# With a start and end index
|
||||
array[2, 4] #=> [3, 4, 5]
|
||||
|
||||
# Or with a range
|
||||
array[1..3] #=> [2, 3, 4]
|
||||
|
||||
# Add to an array like this
|
||||
array << 6 #=> [1, 2, 3, 4, 5, 6]
|
||||
|
||||
# Hashes are Ruby's primary dictionary with keys/value pairs.
|
||||
# Hashes are denoted with curly braces:
|
||||
hash = {'color' => 'green', 'number' => 5}
|
||||
|
||||
hash.keys #=> ['color', 'number']
|
||||
|
||||
# Hashes can be quickly looked up by key:
|
||||
hash['color'] #=> 'green'
|
||||
hash['number'] #=> 5
|
||||
|
||||
# Asking a hash for a key that doesn't exist returns nil:
|
||||
hash['nothing here'] #=> nil
|
||||
|
||||
# Iterate over hashes with the #each method:
|
||||
hash.each do |k, v|
|
||||
puts "#{k} is #{v}"
|
||||
end
|
||||
|
||||
# Since Ruby 1.9, there's a special syntax when using symbols as keys:
|
||||
|
||||
new_hash = { defcon: 3, action: true}
|
||||
|
||||
new_hash.keys #=> [:defcon, :action]
|
||||
|
||||
# Tip: Both Arrays and Hashes are Enumerable
|
||||
# They share a lot of useful methods such as each, map, count, and more
|
||||
|
||||
# Control structures
|
||||
|
||||
if true
|
||||
"if statement"
|
||||
elsif false
|
||||
"else if, optional"
|
||||
else
|
||||
"else, also optional"
|
||||
end
|
||||
|
||||
for counter in 1..5
|
||||
puts "iteration #{counter}"
|
||||
end
|
||||
#=> iteration 1
|
||||
#=> iteration 2
|
||||
#=> iteration 3
|
||||
#=> iteration 4
|
||||
#=> iteration 5
|
||||
|
||||
# HOWEVER
|
||||
# No-one uses for loops
|
||||
# Use `each` instead, like this:
|
||||
|
||||
(1..5).each do |counter|
|
||||
puts "iteration #{counter}"
|
||||
end
|
||||
#=> iteration 1
|
||||
#=> iteration 2
|
||||
#=> iteration 3
|
||||
#=> iteration 4
|
||||
#=> iteration 5
|
||||
|
||||
counter = 1
|
||||
while counter <= 5 do
|
||||
puts "iteration #{counter}"
|
||||
end
|
||||
#=> iteration 1
|
||||
#=> iteration 2
|
||||
#=> iteration 3
|
||||
#=> iteration 4
|
||||
#=> iteration 5
|
||||
|
||||
grade = 'B'
|
||||
|
||||
case grade
|
||||
when 'A'
|
||||
puts "Way to go kiddo"
|
||||
when 'B'
|
||||
puts "Better luck next time"
|
||||
when 'C'
|
||||
puts "You can do better"
|
||||
when 'D'
|
||||
puts "Scraping through"
|
||||
when 'F'
|
||||
puts "You failed!"
|
||||
|
||||
|
||||
# Functions
|
||||
|
||||
def double(x)
|
||||
x * 2
|
||||
end
|
||||
|
||||
# Functions (and all blocks) implcitly return the value of the last statement
|
||||
double(2) #=> 4
|
||||
|
||||
# Parentheses are optional where the result is unambiguous
|
||||
double 3 #=> 6
|
||||
|
||||
double double 3 #=> 12
|
||||
|
||||
def sum(x,y)
|
||||
x + y
|
||||
end
|
||||
|
||||
# Method arguments are separated by a comma
|
||||
sum 3, 4 #=> 7
|
||||
|
||||
sum sum(3,4), 5 #=> 12
|
||||
|
||||
# yield
|
||||
# All methods have an implicit, optional block parameter
|
||||
# it can be called with the 'yield' keyword
|
||||
|
||||
def surround
|
||||
puts "{"
|
||||
yield
|
||||
puts "}"
|
||||
end
|
||||
|
||||
surround { puts 'hello world' }
|
||||
|
||||
# {
|
||||
# hello world
|
||||
# }
|
||||
|
||||
|
||||
# Define a class with the class keyword
|
||||
class Human
|
||||
|
||||
# A class variable. It is shared by all instances of this class.
|
||||
@@species = "H. sapiens"
|
||||
|
||||
# Basic initializer
|
||||
def initialize(name, age=0):
|
||||
# Assign the argument to the "name" instance variable for the instance
|
||||
@name = name
|
||||
# If no age given, we will fall back to the default in the arguments list.
|
||||
@age = age
|
||||
end
|
||||
|
||||
# Basic setter method
|
||||
def name=(name)
|
||||
@name = name
|
||||
end
|
||||
|
||||
# Basic getter method
|
||||
def name
|
||||
@name
|
||||
end
|
||||
|
||||
# A class method uses self to distinguish from instance methods.
|
||||
$ It can only be called on the class, not an instance.
|
||||
def self.say(msg)
|
||||
puts "#{msg}"
|
||||
end
|
||||
|
||||
def species
|
||||
@@species
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
|
||||
# Instantiate a class
|
||||
jim = Human.new("Jim Halpert")
|
||||
|
||||
dwight = Human.new("Dwight K. Schrute")
|
||||
|
||||
# Let's call a couple of methods
|
||||
jim.species #=> "H. sapiens"
|
||||
jim.name #=> "Jim Halpert"
|
||||
dwight.species #=> "H. sapiens"
|
||||
dwight.name #=> "Dwight K. Schrute"
|
||||
|
||||
# Call the class method
|
||||
Human.say("Hi") #=> "Hi"
|
||||
```
|
Loading…
Reference in New Issue
Block a user