mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2025-04-27 15:43:58 +00:00
Translated "Comparision to C", "Function overloading", "Default arguments" and "Namespaces" sections
This commit is contained in:
parent
7272f68060
commit
83f3d7dc3b
@ -6,7 +6,6 @@ contributors:
|
||||
- ["Matt Kline", "https://github.com/mrkline"]
|
||||
- ["Geoff Liu", "http://geoffliu.me"]
|
||||
- ["Connor Waters", "http://github.com/connorwaters"]
|
||||
- ["Bohdan Shtepan", "http://modern-dev.com"]
|
||||
translators:
|
||||
- ["Bohdan Shtepan", "http://modern-dev.com"]
|
||||
lang: ru-ru
|
||||
@ -25,4 +24,874 @@ C++ - компилируемый, статически типизированн
|
||||
он широко применяется т.к. код написанный на C++ компилируется в набор инструкций, которые могут быть выполнены напрямую
|
||||
процессором. C++ широко используется для разработки программного обеспечения, являясь одним из самых популярных языков
|
||||
программирования. Область его применения включает создание операционных систем, разнообразных прикладных программ, драйверов
|
||||
устройств, приложений для встраиваемых систем, высокопроизводительных серверов, а также развлекательных приложений (игр).
|
||||
устройств, приложений для встраиваемых систем, высокопроизводительных серверов, а также развлекательных приложений (игр).
|
||||
|
||||
```c++
|
||||
//////////////////
|
||||
// Сравнение с C
|
||||
//////////////////
|
||||
|
||||
// C++ практически представляет собой надмножество C и имеет схожий синтаксис
|
||||
// для объявления переменных, примитивов и функций.
|
||||
|
||||
// Также как и в С, точкой входа в программу является функция с именем main,
|
||||
// которая возвращает целочисленное значение.
|
||||
// Это значение является кодом ответа программы.
|
||||
// Смотрите https://goo.gl/JYGKyv для более подробной информации.
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
// Аргументы командной строки переданные в программу хранятся в переменных
|
||||
// argc и argv, также как и в C.
|
||||
// argc указывает на количество аргументов,
|
||||
// а argv является масивом C-подобных строк (char*), который непосредсвенно
|
||||
// содержит аргументы.
|
||||
// Первым аргументом всегда передается имя программы.
|
||||
// argc и argv могут быть опущены если вы не планируете работать с аругментамы
|
||||
// коммандной строки.
|
||||
// Тогда сигнатура функции будет иметь следующий вид int main()
|
||||
|
||||
// Возвращаемое значение 0 указывает на успешное завершение программы.
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Тем не менее, C++ имеет свои отличия:
|
||||
|
||||
// В C++, символьные литералы являются символами.
|
||||
sizeof('c') == sizeof(char) == 1
|
||||
|
||||
// В С, символьные литералы - целые числа.
|
||||
sizeof('c') == sizeof(int)
|
||||
|
||||
|
||||
// C++ имеет строго прототипирование.
|
||||
void func(); // функция, которая не принимает аргументов.
|
||||
|
||||
// In C
|
||||
void func(); // функция, которая может принять сколько угодно аргументов.
|
||||
|
||||
// Использование nullptr вместо NULL в C++.
|
||||
int* ip = nullptr;
|
||||
|
||||
// Стандартные заголовочные файлы С доступны в С++,
|
||||
// но с префиксом "с" и не имеют суффикса .h.
|
||||
#include <cstdio>
|
||||
|
||||
int main()
|
||||
{
|
||||
printf("Hello, world!\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
///////////////////////
|
||||
// Перегрузка функций
|
||||
///////////////////////
|
||||
|
||||
// С++ поддерживает перегрузку функций, при условии,
|
||||
// что каждая функция принимает различные параметры.
|
||||
|
||||
void print(char const* myString)
|
||||
{
|
||||
printf("String %s\n", myString);
|
||||
}
|
||||
|
||||
void print(int myInt)
|
||||
{
|
||||
printf("My int is %d", myInt);
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
print("Hello"); // Использование void print(const char*)
|
||||
print(15); // Использование void print(int)
|
||||
}
|
||||
|
||||
/////////////////////////////
|
||||
// Аргументы функций по умолчанию
|
||||
/////////////////////////////
|
||||
|
||||
// Вы можете предоставить аргументы по умолчанию для функции,
|
||||
// если они не предоставлены при вызове функции.
|
||||
|
||||
void doSomethingWithInts(int a = 1, int b = 4)
|
||||
{
|
||||
// Здесь что-то делаем с числами
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
doSomethingWithInts(); // a = 1, b = 4
|
||||
doSomethingWithInts(20); // a = 20, b = 4
|
||||
doSomethingWithInts(20, 5); // a = 20, b = 5
|
||||
}
|
||||
|
||||
// Аргументы по умолчанию должен быть в конце списка аргументов.
|
||||
|
||||
void invalidDeclaration(int a = 1, int b) // Ошибка!
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
/////////////
|
||||
// Пространства имен
|
||||
/////////////
|
||||
|
||||
// Пространства имен предоставляют отдельные области для переменной,
|
||||
// функции и других объявлений.
|
||||
// Пространства имен могут быть вложенными.
|
||||
|
||||
namespace First {
|
||||
namespace Nested {
|
||||
void foo()
|
||||
{
|
||||
printf("This is First::Nested::foo\n");
|
||||
}
|
||||
} // конец пространства имен Nested
|
||||
} // конец пространства имен First
|
||||
|
||||
namespace Second {
|
||||
void foo()
|
||||
{
|
||||
printf("This is Second::foo\n")
|
||||
}
|
||||
}
|
||||
|
||||
void foo()
|
||||
{
|
||||
printf("This is global foo\n");
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
// Включает все функци с пространства имен Second в текущую область видиомти.
|
||||
// Обратите внимание, что простой вызов foo() больше не работает,
|
||||
// так как теперь не ясно вызываем ли мы foo с пространства имен Second или
|
||||
// из глобальной области видимости.
|
||||
using namespace Second;
|
||||
|
||||
Second::foo(); // напечатает "This is Second::foo"
|
||||
First::Nested::foo(); // напечатает "This is First::Nested::foo"
|
||||
::foo(); // напечатает "This is global foo"
|
||||
}
|
||||
|
||||
///////////////
|
||||
// Ввод/Вывод
|
||||
///////////////
|
||||
|
||||
// C++ input and output uses streams
|
||||
// cin, cout, and cerr represent stdin, stdout, and stderr.
|
||||
// << is the insertion operator and >> is the extraction operator.
|
||||
|
||||
#include <iostream> // Include for I/O streams
|
||||
|
||||
using namespace std; // Streams are in the std namespace (standard library)
|
||||
|
||||
int main()
|
||||
{
|
||||
int myInt;
|
||||
|
||||
// Prints to stdout (or terminal/screen)
|
||||
cout << "Enter your favorite number:\n";
|
||||
// Takes in input
|
||||
cin >> myInt;
|
||||
|
||||
// cout can also be formatted
|
||||
cout << "Your favorite number is " << myInt << "\n";
|
||||
// prints "Your favorite number is <myInt>"
|
||||
|
||||
cerr << "Used for error messages";
|
||||
}
|
||||
|
||||
//////////
|
||||
// Строки
|
||||
//////////
|
||||
|
||||
// Strings in C++ are objects and have many member functions
|
||||
#include <string>
|
||||
|
||||
using namespace std; // Strings are also in the namespace std (standard library)
|
||||
|
||||
string myString = "Hello";
|
||||
string myOtherString = " World";
|
||||
|
||||
// + is used for concatenation.
|
||||
cout << myString + myOtherString; // "Hello World"
|
||||
|
||||
cout << myString + " You"; // "Hello You"
|
||||
|
||||
// C++ strings are mutable and have value semantics.
|
||||
myString.append(" Dog");
|
||||
cout << myString; // "Hello Dog"
|
||||
|
||||
|
||||
/////////////
|
||||
// References
|
||||
/////////////
|
||||
|
||||
// In addition to pointers like the ones in C,
|
||||
// C++ has _references_.
|
||||
// These are pointer types that cannot be reassigned once set
|
||||
// and cannot be null.
|
||||
// They also have the same syntax as the variable itself:
|
||||
// No * is needed for dereferencing and
|
||||
// & (address of) is not used for assignment.
|
||||
|
||||
using namespace std;
|
||||
|
||||
string foo = "I am foo";
|
||||
string bar = "I am bar";
|
||||
|
||||
|
||||
string& fooRef = foo; // This creates a reference to foo.
|
||||
fooRef += ". Hi!"; // Modifies foo through the reference
|
||||
cout << fooRef; // Prints "I am foo. Hi!"
|
||||
|
||||
// Doesn't reassign "fooRef". This is the same as "foo = bar", and
|
||||
// foo == "I am bar"
|
||||
// after this line.
|
||||
cout << &fooRef << endl; //Prints the address of foo
|
||||
fooRef = bar;
|
||||
cout << &fooRef << endl; //Still prints the address of foo
|
||||
cout << fooRef; // Prints "I am bar"
|
||||
|
||||
//The address of fooRef remains the same, i.e. it is still referring to foo.
|
||||
|
||||
|
||||
const string& barRef = bar; // Create a const reference to bar.
|
||||
// Like C, const values (and pointers and references) cannot be modified.
|
||||
barRef += ". Hi!"; // Error, const references cannot be modified.
|
||||
|
||||
// Sidetrack: Before we talk more about references, we must introduce a concept
|
||||
// called a temporary object. Suppose we have the following code:
|
||||
string tempObjectFun() { ... }
|
||||
string retVal = tempObjectFun();
|
||||
|
||||
// What happens in the second line is actually:
|
||||
// - a string object is returned from tempObjectFun
|
||||
// - a new string is constructed with the returned object as argument to the
|
||||
// constructor
|
||||
// - the returned object is destroyed
|
||||
// The returned object is called a temporary object. Temporary objects are
|
||||
// created whenever a function returns an object, and they are destroyed at the
|
||||
// end of the evaluation of the enclosing expression (Well, this is what the
|
||||
// standard says, but compilers are allowed to change this behavior. Look up
|
||||
// "return value optimization" if you're into this kind of details). So in this
|
||||
// code:
|
||||
foo(bar(tempObjectFun()))
|
||||
|
||||
// assuming foo and bar exist, the object returned from tempObjectFun is
|
||||
// passed to bar, and it is destroyed before foo is called.
|
||||
|
||||
// Now back to references. The exception to the "at the end of the enclosing
|
||||
// expression" rule is if a temporary object is bound to a const reference, in
|
||||
// which case its life gets extended to the current scope:
|
||||
|
||||
void constReferenceTempObjectFun() {
|
||||
// constRef gets the temporary object, and it is valid until the end of this
|
||||
// function.
|
||||
const string& constRef = tempObjectFun();
|
||||
...
|
||||
}
|
||||
|
||||
// Another kind of reference introduced in C++11 is specifically for temporary
|
||||
// objects. You cannot have a variable of its type, but it takes precedence in
|
||||
// overload resolution:
|
||||
|
||||
void someFun(string& s) { ... } // Regular reference
|
||||
void someFun(string&& s) { ... } // Reference to temporary object
|
||||
|
||||
string foo;
|
||||
someFun(foo); // Calls the version with regular reference
|
||||
someFun(tempObjectFun()); // Calls the version with temporary reference
|
||||
|
||||
// For example, you will see these two versions of constructors for
|
||||
// std::basic_string:
|
||||
basic_string(const basic_string& other);
|
||||
basic_string(basic_string&& other);
|
||||
|
||||
// Idea being if we are constructing a new string from a temporary object (which
|
||||
// is going to be destroyed soon anyway), we can have a more efficient
|
||||
// constructor that "salvages" parts of that temporary string. You will see this
|
||||
// concept referred to as "move semantics".
|
||||
|
||||
/////////////////////
|
||||
// Enums
|
||||
/////////////////////
|
||||
|
||||
// Enums are a way to assign a value to a constant most commonly used for
|
||||
// easier visualization and reading of code
|
||||
enum ECarTypes
|
||||
{
|
||||
Sedan,
|
||||
Hatchback,
|
||||
SUV,
|
||||
Wagon
|
||||
};
|
||||
|
||||
ECarTypes GetPreferredCarType()
|
||||
{
|
||||
return ECarTypes::Hatchback;
|
||||
}
|
||||
|
||||
// As of C++11 there is an easy way to assign a type to the enum which can be
|
||||
// useful in serialization of data and converting enums back-and-forth between
|
||||
// the desired type and their respective constants
|
||||
enum ECarTypes : uint8_t
|
||||
{
|
||||
Sedan, // 0
|
||||
Hatchback, // 1
|
||||
SUV = 254, // 254
|
||||
Hybrid // 255
|
||||
};
|
||||
|
||||
void WriteByteToFile(uint8_t InputValue)
|
||||
{
|
||||
// Serialize the InputValue to a file
|
||||
}
|
||||
|
||||
void WritePreferredCarTypeToFile(ECarTypes InputCarType)
|
||||
{
|
||||
// The enum is implicitly converted to a uint8_t due to its declared enum type
|
||||
WriteByteToFile(InputCarType);
|
||||
}
|
||||
|
||||
// On the other hand you may not want enums to be accidentally cast to an integer
|
||||
// type or to other enums so it is instead possible to create an enum class which
|
||||
// won't be implicitly converted
|
||||
enum class ECarTypes : uint8_t
|
||||
{
|
||||
Sedan, // 0
|
||||
Hatchback, // 1
|
||||
SUV = 254, // 254
|
||||
Hybrid // 255
|
||||
};
|
||||
|
||||
void WriteByteToFile(uint8_t InputValue)
|
||||
{
|
||||
// Serialize the InputValue to a file
|
||||
}
|
||||
|
||||
void WritePreferredCarTypeToFile(ECarTypes InputCarType)
|
||||
{
|
||||
// Won't compile even though ECarTypes is a uint8_t due to the enum
|
||||
// being declared as an "enum class"!
|
||||
WriteByteToFile(InputCarType);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Classes and object-oriented programming
|
||||
//////////////////////////////////////////
|
||||
|
||||
// First example of classes
|
||||
#include <iostream>
|
||||
|
||||
// Declare a class.
|
||||
// Classes are usually declared in header (.h or .hpp) files.
|
||||
class Dog {
|
||||
// Member variables and functions are private by default.
|
||||
std::string name;
|
||||
int weight;
|
||||
|
||||
// All members following this are public
|
||||
// until "private:" or "protected:" is found.
|
||||
public:
|
||||
|
||||
// Default constructor
|
||||
Dog();
|
||||
|
||||
// Member function declarations (implementations to follow)
|
||||
// Note that we use std::string here instead of placing
|
||||
// using namespace std;
|
||||
// above.
|
||||
// Never put a "using namespace" statement in a header.
|
||||
void setName(const std::string& dogsName);
|
||||
|
||||
void setWeight(int dogsWeight);
|
||||
|
||||
// Functions that do not modify the state of the object
|
||||
// should be marked as const.
|
||||
// This allows you to call them if given a const reference to the object.
|
||||
// Also note the functions must be explicitly declared as _virtual_
|
||||
// in order to be overridden in derived classes.
|
||||
// Functions are not virtual by default for performance reasons.
|
||||
virtual void print() const;
|
||||
|
||||
// Functions can also be defined inside the class body.
|
||||
// Functions defined as such are automatically inlined.
|
||||
void bark() const { std::cout << name << " barks!\n"; }
|
||||
|
||||
// Along with constructors, C++ provides destructors.
|
||||
// These are called when an object is deleted or falls out of scope.
|
||||
// This enables powerful paradigms such as RAII
|
||||
// (see below)
|
||||
// The destructor should be virtual if a class is to be derived from;
|
||||
// if it is not virtual, then the derived class' destructor will
|
||||
// not be called if the object is destroyed through a base-class reference
|
||||
// or pointer.
|
||||
virtual ~Dog();
|
||||
|
||||
}; // A semicolon must follow the class definition.
|
||||
|
||||
// Class member functions are usually implemented in .cpp files.
|
||||
Dog::Dog()
|
||||
{
|
||||
std::cout << "A dog has been constructed\n";
|
||||
}
|
||||
|
||||
// Objects (such as strings) should be passed by reference
|
||||
// if you are modifying them or const reference if you are not.
|
||||
void Dog::setName(const std::string& dogsName)
|
||||
{
|
||||
name = dogsName;
|
||||
}
|
||||
|
||||
void Dog::setWeight(int dogsWeight)
|
||||
{
|
||||
weight = dogsWeight;
|
||||
}
|
||||
|
||||
// Notice that "virtual" is only needed in the declaration, not the definition.
|
||||
void Dog::print() const
|
||||
{
|
||||
std::cout << "Dog is " << name << " and weighs " << weight << "kg\n";
|
||||
}
|
||||
|
||||
Dog::~Dog()
|
||||
{
|
||||
cout << "Goodbye " << name << "\n";
|
||||
}
|
||||
|
||||
int main() {
|
||||
Dog myDog; // prints "A dog has been constructed"
|
||||
myDog.setName("Barkley");
|
||||
myDog.setWeight(10);
|
||||
myDog.print(); // prints "Dog is Barkley and weighs 10 kg"
|
||||
return 0;
|
||||
} // prints "Goodbye Barkley"
|
||||
|
||||
// Inheritance:
|
||||
|
||||
// This class inherits everything public and protected from the Dog class
|
||||
// as well as private but may not directly access private members/methods
|
||||
// without a public or protected method for doing so
|
||||
class OwnedDog : public Dog {
|
||||
|
||||
void setOwner(const std::string& dogsOwner);
|
||||
|
||||
// Override the behavior of the print function for all OwnedDogs. See
|
||||
// http://en.wikipedia.org/wiki/Polymorphism_(computer_science)#Subtyping
|
||||
// for a more general introduction if you are unfamiliar with
|
||||
// subtype polymorphism.
|
||||
// The override keyword is optional but makes sure you are actually
|
||||
// overriding the method in a base class.
|
||||
void print() const override;
|
||||
|
||||
private:
|
||||
std::string owner;
|
||||
};
|
||||
|
||||
// Meanwhile, in the corresponding .cpp file:
|
||||
|
||||
void OwnedDog::setOwner(const std::string& dogsOwner)
|
||||
{
|
||||
owner = dogsOwner;
|
||||
}
|
||||
|
||||
void OwnedDog::print() const
|
||||
{
|
||||
Dog::print(); // Call the print function in the base Dog class
|
||||
std::cout << "Dog is owned by " << owner << "\n";
|
||||
// Prints "Dog is <name> and weights <weight>"
|
||||
// "Dog is owned by <owner>"
|
||||
}
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Initialization and Operator Overloading
|
||||
//////////////////////////////////////////
|
||||
|
||||
// In C++ you can overload the behavior of operators such as +, -, *, /, etc.
|
||||
// This is done by defining a function which is called
|
||||
// whenever the operator is used.
|
||||
|
||||
#include <iostream>
|
||||
using namespace std;
|
||||
|
||||
class Point {
|
||||
public:
|
||||
// Member variables can be given default values in this manner.
|
||||
double x = 0;
|
||||
double y = 0;
|
||||
|
||||
// Define a default constructor which does nothing
|
||||
// but initialize the Point to the default value (0, 0)
|
||||
Point() { };
|
||||
|
||||
// The following syntax is known as an initialization list
|
||||
// and is the proper way to initialize class member values
|
||||
Point (double a, double b) :
|
||||
x(a),
|
||||
y(b)
|
||||
{ /* Do nothing except initialize the values */ }
|
||||
|
||||
// Overload the + operator.
|
||||
Point operator+(const Point& rhs) const;
|
||||
|
||||
// Overload the += operator
|
||||
Point& operator+=(const Point& rhs);
|
||||
|
||||
// It would also make sense to add the - and -= operators,
|
||||
// but we will skip those for brevity.
|
||||
};
|
||||
|
||||
Point Point::operator+(const Point& rhs) const
|
||||
{
|
||||
// Create a new point that is the sum of this one and rhs.
|
||||
return Point(x + rhs.x, y + rhs.y);
|
||||
}
|
||||
|
||||
Point& Point::operator+=(const Point& rhs)
|
||||
{
|
||||
x += rhs.x;
|
||||
y += rhs.y;
|
||||
return *this;
|
||||
}
|
||||
|
||||
int main () {
|
||||
Point up (0,1);
|
||||
Point right (1,0);
|
||||
// This calls the Point + operator
|
||||
// Point up calls the + (function) with right as its parameter
|
||||
Point result = up + right;
|
||||
// Prints "Result is upright (1,1)"
|
||||
cout << "Result is upright (" << result.x << ',' << result.y << ")\n";
|
||||
return 0;
|
||||
}
|
||||
|
||||
/////////////////////
|
||||
// Templates
|
||||
/////////////////////
|
||||
|
||||
// Templates in C++ are mostly used for generic programming, though they are
|
||||
// much more powerful than generic constructs in other languages. They also
|
||||
// support explicit and partial specialization and functional-style type
|
||||
// classes; in fact, they are a Turing-complete functional language embedded
|
||||
// in C++!
|
||||
|
||||
// We start with the kind of generic programming you might be familiar with. To
|
||||
// define a class or function that takes a type parameter:
|
||||
template<class T>
|
||||
class Box {
|
||||
public:
|
||||
// In this class, T can be used as any other type.
|
||||
void insert(const T&) { ... }
|
||||
};
|
||||
|
||||
// During compilation, the compiler actually generates copies of each template
|
||||
// with parameters substituted, so the full definition of the class must be
|
||||
// present at each invocation. This is why you will see template classes defined
|
||||
// entirely in header files.
|
||||
|
||||
// To instantiate a template class on the stack:
|
||||
Box<int> intBox;
|
||||
|
||||
// and you can use it as you would expect:
|
||||
intBox.insert(123);
|
||||
|
||||
// You can, of course, nest templates:
|
||||
Box<Box<int> > boxOfBox;
|
||||
boxOfBox.insert(intBox);
|
||||
|
||||
// Until C++11, you had to place a space between the two '>'s, otherwise '>>'
|
||||
// would be parsed as the right shift operator.
|
||||
|
||||
// You will sometimes see
|
||||
// template<typename T>
|
||||
// instead. The 'class' keyword and 'typename' keywords are _mostly_
|
||||
// interchangeable in this case. For the full explanation, see
|
||||
// http://en.wikipedia.org/wiki/Typename
|
||||
// (yes, that keyword has its own Wikipedia page).
|
||||
|
||||
// Similarly, a template function:
|
||||
template<class T>
|
||||
void barkThreeTimes(const T& input)
|
||||
{
|
||||
input.bark();
|
||||
input.bark();
|
||||
input.bark();
|
||||
}
|
||||
|
||||
// Notice that nothing is specified about the type parameters here. The compiler
|
||||
// will generate and then type-check every invocation of the template, so the
|
||||
// above function works with any type 'T' that has a const 'bark' method!
|
||||
|
||||
Dog fluffy;
|
||||
fluffy.setName("Fluffy")
|
||||
barkThreeTimes(fluffy); // Prints "Fluffy barks" three times.
|
||||
|
||||
// Template parameters don't have to be classes:
|
||||
template<int Y>
|
||||
void printMessage() {
|
||||
cout << "Learn C++ in " << Y << " minutes!" << endl;
|
||||
}
|
||||
|
||||
// And you can explicitly specialize templates for more efficient code. Of
|
||||
// course, most real-world uses of specialization are not as trivial as this.
|
||||
// Note that you still need to declare the function (or class) as a template
|
||||
// even if you explicitly specified all parameters.
|
||||
template<>
|
||||
void printMessage<10>() {
|
||||
cout << "Learn C++ faster in only 10 minutes!" << endl;
|
||||
}
|
||||
|
||||
printMessage<20>(); // Prints "Learn C++ in 20 minutes!"
|
||||
printMessage<10>(); // Prints "Learn C++ faster in only 10 minutes!"
|
||||
|
||||
|
||||
/////////////////////
|
||||
// Exception Handling
|
||||
/////////////////////
|
||||
|
||||
// The standard library provides a few exception types
|
||||
// (see http://en.cppreference.com/w/cpp/error/exception)
|
||||
// but any type can be thrown an as exception
|
||||
#include <exception>
|
||||
#include <stdexcept>
|
||||
|
||||
// All exceptions thrown inside the _try_ block can be caught by subsequent
|
||||
// _catch_ handlers.
|
||||
try {
|
||||
// Do not allocate exceptions on the heap using _new_.
|
||||
throw std::runtime_error("A problem occurred");
|
||||
}
|
||||
|
||||
// Catch exceptions by const reference if they are objects
|
||||
catch (const std::exception& ex)
|
||||
{
|
||||
std::cout << ex.what();
|
||||
}
|
||||
|
||||
// Catches any exception not caught by previous _catch_ blocks
|
||||
catch (...)
|
||||
{
|
||||
std::cout << "Unknown exception caught";
|
||||
throw; // Re-throws the exception
|
||||
}
|
||||
|
||||
///////
|
||||
// RAII
|
||||
///////
|
||||
|
||||
// RAII stands for "Resource Acquisition Is Initialization".
|
||||
// It is often considered the most powerful paradigm in C++
|
||||
// and is the simple concept that a constructor for an object
|
||||
// acquires that object's resources and the destructor releases them.
|
||||
|
||||
// To understand how this is useful,
|
||||
// consider a function that uses a C file handle:
|
||||
void doSomethingWithAFile(const char* filename)
|
||||
{
|
||||
// To begin with, assume nothing can fail.
|
||||
|
||||
FILE* fh = fopen(filename, "r"); // Open the file in read mode.
|
||||
|
||||
doSomethingWithTheFile(fh);
|
||||
doSomethingElseWithIt(fh);
|
||||
|
||||
fclose(fh); // Close the file handle.
|
||||
}
|
||||
|
||||
// Unfortunately, things are quickly complicated by error handling.
|
||||
// Suppose fopen can fail, and that doSomethingWithTheFile and
|
||||
// doSomethingElseWithIt return error codes if they fail.
|
||||
// (Exceptions are the preferred way of handling failure,
|
||||
// but some programmers, especially those with a C background,
|
||||
// disagree on the utility of exceptions).
|
||||
// We now have to check each call for failure and close the file handle
|
||||
// if a problem occurred.
|
||||
bool doSomethingWithAFile(const char* filename)
|
||||
{
|
||||
FILE* fh = fopen(filename, "r"); // Open the file in read mode
|
||||
if (fh == nullptr) // The returned pointer is null on failure.
|
||||
return false; // Report that failure to the caller.
|
||||
|
||||
// Assume each function returns false if it failed
|
||||
if (!doSomethingWithTheFile(fh)) {
|
||||
fclose(fh); // Close the file handle so it doesn't leak.
|
||||
return false; // Propagate the error.
|
||||
}
|
||||
if (!doSomethingElseWithIt(fh)) {
|
||||
fclose(fh); // Close the file handle so it doesn't leak.
|
||||
return false; // Propagate the error.
|
||||
}
|
||||
|
||||
fclose(fh); // Close the file handle so it doesn't leak.
|
||||
return true; // Indicate success
|
||||
}
|
||||
|
||||
// C programmers often clean this up a little bit using goto:
|
||||
bool doSomethingWithAFile(const char* filename)
|
||||
{
|
||||
FILE* fh = fopen(filename, "r");
|
||||
if (fh == nullptr)
|
||||
return false;
|
||||
|
||||
if (!doSomethingWithTheFile(fh))
|
||||
goto failure;
|
||||
|
||||
if (!doSomethingElseWithIt(fh))
|
||||
goto failure;
|
||||
|
||||
fclose(fh); // Close the file
|
||||
return true; // Indicate success
|
||||
|
||||
failure:
|
||||
fclose(fh);
|
||||
return false; // Propagate the error
|
||||
}
|
||||
|
||||
// If the functions indicate errors using exceptions,
|
||||
// things are a little cleaner, but still sub-optimal.
|
||||
void doSomethingWithAFile(const char* filename)
|
||||
{
|
||||
FILE* fh = fopen(filename, "r"); // Open the file in read mode
|
||||
if (fh == nullptr)
|
||||
throw std::runtime_error("Could not open the file.");
|
||||
|
||||
try {
|
||||
doSomethingWithTheFile(fh);
|
||||
doSomethingElseWithIt(fh);
|
||||
}
|
||||
catch (...) {
|
||||
fclose(fh); // Be sure to close the file if an error occurs.
|
||||
throw; // Then re-throw the exception.
|
||||
}
|
||||
|
||||
fclose(fh); // Close the file
|
||||
// Everything succeeded
|
||||
}
|
||||
|
||||
// Compare this to the use of C++'s file stream class (fstream)
|
||||
// fstream uses its destructor to close the file.
|
||||
// Recall from above that destructors are automatically called
|
||||
// whenever an object falls out of scope.
|
||||
void doSomethingWithAFile(const std::string& filename)
|
||||
{
|
||||
// ifstream is short for input file stream
|
||||
std::ifstream fh(filename); // Open the file
|
||||
|
||||
// Do things with the file
|
||||
doSomethingWithTheFile(fh);
|
||||
doSomethingElseWithIt(fh);
|
||||
|
||||
} // The file is automatically closed here by the destructor
|
||||
|
||||
// This has _massive_ advantages:
|
||||
// 1. No matter what happens,
|
||||
// the resource (in this case the file handle) will be cleaned up.
|
||||
// Once you write the destructor correctly,
|
||||
// It is _impossible_ to forget to close the handle and leak the resource.
|
||||
// 2. Note that the code is much cleaner.
|
||||
// The destructor handles closing the file behind the scenes
|
||||
// without you having to worry about it.
|
||||
// 3. The code is exception safe.
|
||||
// An exception can be thrown anywhere in the function and cleanup
|
||||
// will still occur.
|
||||
|
||||
// All idiomatic C++ code uses RAII extensively for all resources.
|
||||
// Additional examples include
|
||||
// - Memory using unique_ptr and shared_ptr
|
||||
// - Containers - the standard library linked list,
|
||||
// vector (i.e. self-resizing array), hash maps, and so on
|
||||
// all automatically destroy their contents when they fall out of scope.
|
||||
// - Mutexes using lock_guard and unique_lock
|
||||
|
||||
// containers with object keys of non-primitive values (custom classes) require
|
||||
// compare function in the object itself or as a function pointer. Primitives
|
||||
// have default comparators, but you can override it.
|
||||
class Foo {
|
||||
public:
|
||||
int j;
|
||||
Foo(int a) : j(a) {}
|
||||
};
|
||||
struct compareFunction {
|
||||
bool operator()(const Foo& a, const Foo& b) const {
|
||||
return a.j < b.j;
|
||||
}
|
||||
};
|
||||
//this isn't allowed (although it can vary depending on compiler)
|
||||
//std::map<Foo, int> fooMap;
|
||||
std::map<Foo, int, compareFunction> fooMap;
|
||||
fooMap[Foo(1)] = 1;
|
||||
fooMap.find(Foo(1)); //true
|
||||
|
||||
/////////////////////
|
||||
// Fun stuff
|
||||
/////////////////////
|
||||
|
||||
// Aspects of C++ that may be surprising to newcomers (and even some veterans).
|
||||
// This section is, unfortunately, wildly incomplete; C++ is one of the easiest
|
||||
// languages with which to shoot yourself in the foot.
|
||||
|
||||
// You can override private methods!
|
||||
class Foo {
|
||||
virtual void bar();
|
||||
};
|
||||
class FooSub : public Foo {
|
||||
virtual void bar(); // Overrides Foo::bar!
|
||||
};
|
||||
|
||||
|
||||
// 0 == false == NULL (most of the time)!
|
||||
bool* pt = new bool;
|
||||
*pt = 0; // Sets the value points by 'pt' to false.
|
||||
pt = 0; // Sets 'pt' to the null pointer. Both lines compile without warnings.
|
||||
|
||||
// nullptr is supposed to fix some of that issue:
|
||||
int* pt2 = new int;
|
||||
*pt2 = nullptr; // Doesn't compile
|
||||
pt2 = nullptr; // Sets pt2 to null.
|
||||
|
||||
// There is an exception made for bools.
|
||||
// This is to allow you to test for null pointers with if(!ptr),
|
||||
// but as a consequence you can assign nullptr to a bool directly!
|
||||
*pt = nullptr; // This still compiles, even though '*pt' is a bool!
|
||||
|
||||
|
||||
// '=' != '=' != '='!
|
||||
// Calls Foo::Foo(const Foo&) or some variant (see move semantics) copy
|
||||
// constructor.
|
||||
Foo f2;
|
||||
Foo f1 = f2;
|
||||
|
||||
// Calls Foo::Foo(const Foo&) or variant, but only copies the 'Foo' part of
|
||||
// 'fooSub'. Any extra members of 'fooSub' are discarded. This sometimes
|
||||
// horrifying behavior is called "object slicing."
|
||||
FooSub fooSub;
|
||||
Foo f1 = fooSub;
|
||||
|
||||
// Calls Foo::operator=(Foo&) or variant.
|
||||
Foo f1;
|
||||
f1 = f2;
|
||||
|
||||
|
||||
// How to truly clear a container:
|
||||
class Foo { ... };
|
||||
vector<Foo> v;
|
||||
for (int i = 0; i < 10; ++i)
|
||||
v.push_back(Foo());
|
||||
|
||||
// Following line sets size of v to 0, but destructors don't get called
|
||||
// and resources aren't released!
|
||||
v.empty();
|
||||
v.push_back(Foo()); // New value is copied into the first Foo we inserted
|
||||
|
||||
// Truly destroys all values in v. See section about temporary objects for
|
||||
// explanation of why this works.
|
||||
v.swap(vector<Foo>());
|
||||
|
||||
```
|
||||
Further Reading:
|
||||
|
||||
An up-to-date language reference can be found at
|
||||
<http://cppreference.com/w/cpp>
|
||||
|
||||
Additional resources may be found at <http://cplusplus.com>
|
||||
|
Loading…
Reference in New Issue
Block a user