mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-12-23 17:41:41 +00:00
Changing those comments back until a Q# formatter is available
Looks like using C# formatter, it can't accept the Q# multi-lines. Makes sense
This commit is contained in:
parent
ceefb4adf5
commit
983a48226a
@ -14,10 +14,12 @@ This is the new outline
|
|||||||
```C#
|
```C#
|
||||||
// Single-line comments start with //
|
// Single-line comments start with //
|
||||||
|
|
||||||
/
|
*//
|
||||||
Multi-line comments
|
Multi-line comments
|
||||||
like so
|
like so
|
||||||
\
|
\*/
|
||||||
|
|
||||||
|
// Note: Using C# multi-line around Q# because there doesn't appear to be a markdown formatter yet.
|
||||||
|
|
||||||
/////////////////////////////////////
|
/////////////////////////////////////
|
||||||
// 1. Quantum data types and operators
|
// 1. Quantum data types and operators
|
||||||
@ -42,19 +44,19 @@ using (qs = Qubit[2]) {
|
|||||||
// You can apply multi-qubit gates to several qubits.
|
// You can apply multi-qubit gates to several qubits.
|
||||||
CNOT(qs[0], qs[1]);
|
CNOT(qs[0], qs[1]);
|
||||||
|
|
||||||
/ You can also apply a controlled version of a gate:
|
// You can also apply a controlled version of a gate:
|
||||||
a gate that is applied if all control qubits are in |1⟩ state.
|
// a gate that is applied if all control qubits are in |1⟩ state.
|
||||||
\ The first argument is an array of control qubits, the second argument is the target qubit.
|
// The first argument is an array of control qubits, the second argument is the target qubit.
|
||||||
Controlled Y([qs[0]], qs[1]);
|
Controlled Y([qs[0]], qs[1]);
|
||||||
|
|
||||||
/ If you want to apply an anti-controlled gate
|
// If you want to apply an anti-controlled gate
|
||||||
(a gate that is applied if all control qubits are in |0⟩ state),
|
// (a gate that is applied if all control qubits are in |0⟩ state),
|
||||||
\ you can use a library function.
|
// you can use a library function.
|
||||||
ApplyControlledOnInt(0, X, [qs[0]], qs[1]);
|
ApplyControlledOnInt(0, X, [qs[0]], qs[1]);
|
||||||
|
|
||||||
/ To read the information from the quantum system, you use measurements.
|
// To read the information from the quantum system, you use measurements.
|
||||||
Measurements return a value of Result data type: Zero or One.
|
// Measurements return a value of Result data type: Zero or One.
|
||||||
\ You can print measurement results as a classical value.
|
// You can print measurement results as a classical value.
|
||||||
Message($"Measured {M(qs[0])}, {M(qs[1])}");
|
Message($"Measured {M(qs[0])}, {M(qs[1])}");
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -91,9 +93,9 @@ let x = 10 == 15; // is false
|
|||||||
// Range is a sequence of integers and can be defined like: start..step..stop
|
// Range is a sequence of integers and can be defined like: start..step..stop
|
||||||
let xi = 1..2..7; // Gives the sequence 1,3,5,7
|
let xi = 1..2..7; // Gives the sequence 1,3,5,7
|
||||||
|
|
||||||
/ Assigning new value to a variable:
|
// Assigning new value to a variable:
|
||||||
by default all Q# variables are immutable;
|
// by default all Q# variables are immutable;
|
||||||
\ if the variable was defined using let, you cannot reassign its value.
|
// if the variable was defined using let, you cannot reassign its value.
|
||||||
|
|
||||||
// When you want to make a variable mutable, you have to declare it as such,
|
// When you want to make a variable mutable, you have to declare it as such,
|
||||||
// and use the set word to update value
|
// and use the set word to update value
|
||||||
@ -139,10 +141,10 @@ while (index < 10) {
|
|||||||
set index += 1;
|
set index += 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
/ Quantum equivalent of a while loop is a repeat-until-success loop.
|
// Quantum equivalent of a while loop is a repeat-until-success loop.
|
||||||
Because of the probabilistic nature of quantum computing sometimes
|
// Because of the probabilistic nature of quantum computing sometimes
|
||||||
you want to repeat a certain sequence of operations
|
// you want to repeat a certain sequence of operations
|
||||||
\ until a specific condition is achieved; you can use this loop to express this.
|
// until a specific condition is achieved; you can use this loop to express this.
|
||||||
repeat {
|
repeat {
|
||||||
// Your operation here
|
// Your operation here
|
||||||
}
|
}
|
||||||
@ -160,10 +162,10 @@ operation ApplyXGate(source : Qubit) : Unit {
|
|||||||
X(source);
|
X(source);
|
||||||
}
|
}
|
||||||
|
|
||||||
/ If the operation implements a unitary transformation, you can define
|
// If the operation implements a unitary transformation, you can define
|
||||||
adjoint and controlled variants of it.
|
// adjoint and controlled variants of it.
|
||||||
The easiest way to do that is to add "is Adj + Ctl" after Unit.
|
// The easiest way to do that is to add "is Adj + Ctl" after Unit.
|
||||||
\ This will tell the compiler to generate the variants automatically.
|
// This will tell the compiler to generate the variants automatically.
|
||||||
operation ApplyXGateCA (source : Qubit) : Unit is Adj + Ctl {
|
operation ApplyXGateCA (source : Qubit) : Unit is Adj + Ctl {
|
||||||
X(source);
|
X(source);
|
||||||
}
|
}
|
||||||
@ -183,16 +185,16 @@ operation XGateDemo() : Unit {
|
|||||||
// We will generate a classical array of random bits using quantum code.
|
// We will generate a classical array of random bits using quantum code.
|
||||||
@EntryPoint()
|
@EntryPoint()
|
||||||
operation QRNGDemo() : Unit {
|
operation QRNGDemo() : Unit {
|
||||||
mutable bits = new Int[5]; / Array we'll use to store bits
|
mutable bits = new Int[5]; // Array we'll use to store bits
|
||||||
using (q = Qubit()) { / Allocate a qubit
|
using (q = Qubit()) { // Allocate a qubit
|
||||||
for (i in 0 .. 4) { / Generate each bit independently
|
for (i in 0 .. 4) { // Generate each bit independently
|
||||||
H(q); / Apply Hadamard gate prepares equal superposition
|
H(q); // Apply Hadamard gate prepares equal superposition
|
||||||
let result = M(q); / Measure the qubit to get 0 or 1 with 50/50 prob
|
let result = M(q); // Measure the qubit to get 0 or 1 with 50/50 prob
|
||||||
let bit = result == Zero ? 0 | 1; / Convert measurement result to an integer
|
let bit = result == Zero ? 0 | 1; // Convert measurement result to an integer
|
||||||
set bits w/= i <- bit; / Write generated bit to an array
|
set bits w/= i <- bit; // Write generated bit to an array
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
Message($"{bits}"); / Print the result
|
Message($"{bits}"); // Print the result
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user