mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-12-23 17:41:41 +00:00
Merge pull request #1 from scronge/scronge-patch-1
[spark/en] Spark Tutorial
This commit is contained in:
commit
b471f2179a
106
spark.html.markdown
Normal file
106
spark.html.markdown
Normal file
@ -0,0 +1,106 @@
|
||||
---
|
||||
language: Spark
|
||||
category: tool
|
||||
tool: Spark
|
||||
filename: learnspark-en.spark
|
||||
contributors:
|
||||
- ["Scronge", "https://github.com/Scronge"]
|
||||
---
|
||||
|
||||
[Spark](https://spark.apache.org/) is an open-source distributed data processing framework that enables large-scale data processing across clusters. This guide covers the basics of **Apache Spark** using PySpark, the Python API.
|
||||
|
||||
```python
|
||||
# Setting Up Spark
|
||||
from pyspark.sql import SparkSession
|
||||
|
||||
spark = SparkSession.builder \
|
||||
.appName("RealWorldExampleApp") \
|
||||
.getOrCreate()
|
||||
|
||||
# Working with Larger DataFrames
|
||||
# Sample data for a retail dataset with multiple columns for complex queries
|
||||
data = [
|
||||
("Alice", "Electronics", 30, 200),
|
||||
("Bob", "Clothing", 40, 150),
|
||||
("Carol", "Electronics", 25, 300),
|
||||
("Dave", "Home Goods", 35, 100),
|
||||
("Eve", "Clothing", 28, 80),
|
||||
("Frank", "Home Goods", 40, 120)
|
||||
]
|
||||
columns = ["Name", "Category", "Age", "PurchaseAmount"]
|
||||
|
||||
df = spark.createDataFrame(data, columns)
|
||||
df.show()
|
||||
# +-----+-----------+---+--------------+
|
||||
# | Name| Category|Age|PurchaseAmount|
|
||||
# +-----+-----------+---+--------------+
|
||||
# |Alice|Electronics| 30| 200|
|
||||
# | Bob| Clothing| 40| 150|
|
||||
# |Carol|Electronics| 25| 300|
|
||||
# | Dave| Home Goods| 35| 100|
|
||||
# | Eve| Clothing| 28| 80|
|
||||
# |Frank| Home Goods| 40| 120|
|
||||
# +-----+-----------+---+--------------+
|
||||
|
||||
# Transformations and Actions
|
||||
|
||||
# Filtering data to select customers over 30 with purchases above $100
|
||||
filtered_df = df.filter((df.Age > 30) & (df.PurchaseAmount > 100))
|
||||
filtered_df.show()
|
||||
# +-----+-----------+---+--------------+
|
||||
# | Name| Category|Age|PurchaseAmount|
|
||||
# +-----+-----------+---+--------------+
|
||||
# | Bob| Clothing| 40| 150|
|
||||
# |Frank| Home Goods| 40| 120|
|
||||
# +-----+-----------+---+--------------+
|
||||
|
||||
# Grouping and Aggregations
|
||||
# Calculate total purchases by category
|
||||
category_totals = df.groupBy("Category").sum("PurchaseAmount")
|
||||
category_totals.show()
|
||||
# +-----------+------------------+
|
||||
# | Category|sum(PurchaseAmount)|
|
||||
# +-----------+------------------+
|
||||
# |Electronics| 500|
|
||||
# | Clothing| 230|
|
||||
# | Home Goods| 220|
|
||||
# +-----------+------------------+
|
||||
|
||||
# SQL Queries
|
||||
|
||||
# Registering DataFrame as a SQL temporary view
|
||||
df.createOrReplaceTempView("customers")
|
||||
high_spenders = spark.sql("SELECT Name, Category, PurchaseAmount FROM customers WHERE PurchaseAmount > 100")
|
||||
high_spenders.show()
|
||||
# +-----+-----------+--------------+
|
||||
# | Name| Category|PurchaseAmount|
|
||||
# +-----+-----------+--------------+
|
||||
# |Alice|Electronics| 200|
|
||||
# | Bob| Clothing| 150|
|
||||
# |Carol|Electronics| 300|
|
||||
# |Frank| Home Goods| 120|
|
||||
# +-----+-----------+--------------+
|
||||
|
||||
# Reading and Writing Files
|
||||
|
||||
# Reading from CSV with additional options
|
||||
csv_df = spark.read.csv("path/to/large_retail_data.csv", header=True, inferSchema=True, sep=",")
|
||||
csv_df.show(5) # Display only first 5 rows for preview
|
||||
|
||||
# Writing DataFrame to Parquet format for optimized storage and access
|
||||
df.write.parquet("output/retail_data")
|
||||
|
||||
# RDD Basics
|
||||
|
||||
# Creating an RDD and performing complex transformations
|
||||
sales_data = [(1, 100), (2, 150), (3, 200), (4, 250)]
|
||||
rdd = spark.sparkContext.parallelize(sales_data)
|
||||
|
||||
# Transformations to calculate discounts for each sale
|
||||
discounted_sales_rdd = rdd.map(lambda x: (x[0], x[1] * 0.9))
|
||||
print(discounted_sales_rdd.collect())
|
||||
# Output: [(1, 90.0), (2, 135.0), (3, 180.0), (4, 225.0)]
|
||||
|
||||
# Ending the Spark Session
|
||||
|
||||
spark.stop()
|
Loading…
Reference in New Issue
Block a user