mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-12-23 09:41:36 +00:00
pep8 fixes (spaces and multiline statements)
in Python readability and code style matters
This commit is contained in:
parent
b2113480a4
commit
bde8645cc7
@ -9,6 +9,8 @@ This is a tutorial on how to do some typical statistical programming tasks using
|
||||
|
||||
```python
|
||||
|
||||
|
||||
|
||||
# 0. Getting set up ====
|
||||
|
||||
""" Get set up with IPython and pip install the following: numpy, scipy, pandas,
|
||||
@ -25,17 +27,17 @@ This is a tutorial on how to do some typical statistical programming tasks using
|
||||
already using Python, there's a benefit to sticking with one language.
|
||||
"""
|
||||
|
||||
import requests # for HTTP requests (web scraping, APIs)
|
||||
import requests # for HTTP requests (web scraping, APIs)
|
||||
import os
|
||||
|
||||
# web scraping
|
||||
r = requests.get("https://github.com/adambard/learnxinyminutes-docs")
|
||||
r.status_code # if 200, request was successful
|
||||
r.text # raw page source
|
||||
print(r.text) # prettily formatted
|
||||
r.status_code # if 200, request was successful
|
||||
r.text # raw page source
|
||||
print(r.text) # prettily formatted
|
||||
# save the page source in a file:
|
||||
os.getcwd() # check what's the working directory
|
||||
f = open("learnxinyminutes.html","wb")
|
||||
os.getcwd() # check what's the working directory
|
||||
f = open("learnxinyminutes.html", "wb")
|
||||
f.write(r.text.encode("UTF-8"))
|
||||
f.close()
|
||||
|
||||
@ -44,7 +46,7 @@ fp = "https://raw.githubusercontent.com/adambard/learnxinyminutes-docs/master/"
|
||||
fn = "pets.csv"
|
||||
r = requests.get(fp + fn)
|
||||
print(r.text)
|
||||
f = open(fn,"wb")
|
||||
f = open(fn, "wb")
|
||||
f.write(r.text.encode("UTF-8"))
|
||||
f.close()
|
||||
|
||||
@ -58,7 +60,9 @@ f.close()
|
||||
you've used R, you will be familiar with the idea of the "data.frame" already.
|
||||
"""
|
||||
|
||||
import pandas as pd, numpy as np, scipy as sp
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import scipy as sp
|
||||
pets = pd.read_csv(fn)
|
||||
pets
|
||||
# name age weight species
|
||||
@ -74,20 +78,20 @@ pets
|
||||
pets.age
|
||||
pets["age"]
|
||||
|
||||
pets.head(2) # prints first 2 rows
|
||||
pets.tail(1) # prints last row
|
||||
pets.head(2) # prints first 2 rows
|
||||
pets.tail(1) # prints last row
|
||||
|
||||
pets.name[1] # 'vesuvius'
|
||||
pets.species[0] # 'cat'
|
||||
pets["weight"][2] # 34
|
||||
pets.name[1] # 'vesuvius'
|
||||
pets.species[0] # 'cat'
|
||||
pets["weight"][2] # 34
|
||||
|
||||
# in R, you would expect to get 3 rows doing this, but here you get 2:
|
||||
pets.age[0:2]
|
||||
# 0 3
|
||||
# 1 6
|
||||
|
||||
sum(pets.age)*2 # 28
|
||||
max(pets.weight) - min(pets.weight) # 20
|
||||
sum(pets.age) * 2 # 28
|
||||
max(pets.weight) - min(pets.weight) # 20
|
||||
|
||||
""" If you are doing some serious linear algebra and number-crunching, you may
|
||||
just want arrays, not DataFrames. DataFrames are ideal for combining columns
|
||||
@ -96,7 +100,8 @@ max(pets.weight) - min(pets.weight) # 20
|
||||
|
||||
# 3. Charts ====
|
||||
|
||||
import matplotlib as mpl, matplotlib.pyplot as plt
|
||||
import matplotlib as mpl
|
||||
import matplotlib.pyplot as plt
|
||||
%matplotlib inline
|
||||
|
||||
# To do data vizualization in Python, use matplotlib
|
||||
@ -105,13 +110,17 @@ plt.hist(pets.age);
|
||||
|
||||
plt.boxplot(pets.weight);
|
||||
|
||||
plt.scatter(pets.age, pets.weight); plt.xlabel("age"); plt.ylabel("weight");
|
||||
plt.scatter(pets.age, pets.weight)
|
||||
plt.xlabel("age")
|
||||
plt.ylabel("weight");
|
||||
|
||||
# seaborn sits atop matplotlib and makes plots prettier
|
||||
|
||||
import seaborn as sns
|
||||
|
||||
plt.scatter(pets.age, pets.weight); plt.xlabel("age"); plt.ylabel("weight");
|
||||
plt.scatter(pets.age, pets.weight)
|
||||
plt.xlabel("age")
|
||||
plt.ylabel("weight");
|
||||
|
||||
# there are also some seaborn-specific plotting functions
|
||||
# notice how seaborn automatically labels the x-axis on this barplot
|
||||
@ -141,7 +150,7 @@ ggplot(aes(x="age",y="weight"), data=pets) + geom_point() + labs(title="pets")
|
||||
url = "https://raw.githubusercontent.com/e99n09/R-notes/master/data/hre.csv"
|
||||
r = requests.get(url)
|
||||
fp = "hre.csv"
|
||||
f = open(fp,"wb")
|
||||
f = open(fp, "wb")
|
||||
f.write(r.text.encode("UTF-8"))
|
||||
f.close()
|
||||
|
||||
@ -173,9 +182,9 @@ hre.head()
|
||||
|
||||
# clean the Birth and Death columns
|
||||
|
||||
import re # module for regular expressions
|
||||
import re # module for regular expressions
|
||||
|
||||
rx = re.compile(r'\d+$') # match trailing digits
|
||||
rx = re.compile(r'\d+$') # match trailing digits
|
||||
|
||||
""" This function applies the regular expression to an input column (here Birth,
|
||||
Death), flattens the resulting list, converts it to a Series object, and
|
||||
@ -185,8 +194,9 @@ rx = re.compile(r'\d+$') # match trailing digits
|
||||
- http://stackoverflow.com/questions/11860476/how-to-unlist-a-python-list
|
||||
- http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html
|
||||
"""
|
||||
|
||||
def extractYear(v):
|
||||
return(pd.Series(reduce(lambda x,y: x+y,map(rx.findall,v),[])).astype(int))
|
||||
return(pd.Series(reduce(lambda x, y: x + y, map(rx.findall, v), [])).astype(int))
|
||||
|
||||
hre["BirthY"] = extractYear(hre.Birth)
|
||||
hre["DeathY"] = extractYear(hre.Death)
|
||||
@ -199,17 +209,17 @@ sns.lmplot("BirthY", "EstAge", data=hre, hue="Dynasty", fit_reg=False);
|
||||
|
||||
# use scipy to run a linear regression
|
||||
from scipy import stats
|
||||
(slope,intercept,rval,pval,stderr)=stats.linregress(hre.BirthY,hre.EstAge)
|
||||
(slope, intercept, rval, pval, stderr) = stats.linregress(hre.BirthY, hre.EstAge)
|
||||
# code source: http://wiki.scipy.org/Cookbook/LinearRegression
|
||||
|
||||
# check the slope
|
||||
slope # 0.0057672618839073328
|
||||
slope # 0.0057672618839073328
|
||||
|
||||
# check the R^2 value:
|
||||
rval**2 # 0.020363950027333586
|
||||
rval**2 # 0.020363950027333586
|
||||
|
||||
# check the p-value
|
||||
pval # 0.34971812581498452
|
||||
pval # 0.34971812581498452
|
||||
|
||||
# use seaborn to make a scatterplot and plot the linear regression trend line
|
||||
sns.lmplot("BirthY", "EstAge", data=hre);
|
||||
@ -223,6 +233,7 @@ sns.lmplot("BirthY", "EstAge", data=hre);
|
||||
To see a version of the Holy Roman Emperors analysis using R, see
|
||||
- http://github.com/e99n09/R-notes/blob/master/holy_roman_emperors_dates.R
|
||||
"""
|
||||
|
||||
```
|
||||
|
||||
If you want to learn more, get _Python for Data Analysis_ by Wes McKinney. It's a superb resource and I used it as a reference when writing this tutorial.
|
||||
|
Loading…
Reference in New Issue
Block a user