mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-12-23 09:41:36 +00:00
more comment spacing
This commit is contained in:
parent
10f50ca229
commit
c8ad0d0809
@ -33,27 +33,27 @@ This is based on Julia 1.0.0
|
||||
2 // 3 # => 2//3 (Rational{Int64})
|
||||
|
||||
# All of the normal infix operators are available.
|
||||
1 + 1 # => 2
|
||||
8 - 1 # => 7
|
||||
10 * 2 # => 20
|
||||
35 / 5 # => 7.0
|
||||
5 / 2 # => 2.5 # dividing an Int by an Int always results in a Float
|
||||
div(5, 2) # => 2 # for a truncated result, use div
|
||||
5 \ 35 # => 7.0
|
||||
2^2 # => 4 # power, not bitwise xor
|
||||
12 % 10 # => 2
|
||||
1 + 1 # => 2
|
||||
8 - 1 # => 7
|
||||
10 * 2 # => 20
|
||||
35 / 5 # => 7.0
|
||||
5 / 2 # => 2.5 # dividing integers always results in a Float64
|
||||
div(5, 2) # => 2 # for a truncated result, use div
|
||||
5 \ 35 # => 7.0
|
||||
2^2 # => 4 # power, not bitwise xor
|
||||
12 % 10 # => 2
|
||||
|
||||
# Enforce precedence with parentheses
|
||||
(1 + 3) * 2 # => 8
|
||||
|
||||
# Bitwise Operators
|
||||
~2 # => -3 # bitwise not
|
||||
3 & 5 # => 1 # bitwise and
|
||||
2 | 4 # => 6 # bitwise or
|
||||
xor(2, 4) # => 6 # bitwise xor
|
||||
2 >>> 1 # => 1 # logical shift right
|
||||
2 >> 1 # => 1 # arithmetic shift right
|
||||
2 << 1 # => 4 # logical/arithmetic shift left
|
||||
~2 # => -3 # bitwise not
|
||||
3 & 5 # => 1 # bitwise and
|
||||
2 | 4 # => 6 # bitwise or
|
||||
xor(2, 4) # => 6 # bitwise xor
|
||||
2 >>> 1 # => 1 # logical shift right
|
||||
2 >> 1 # => 1 # arithmetic shift right
|
||||
2 << 1 # => 4 # logical/arithmetic shift left
|
||||
|
||||
# You can use the bitstring function to see the binary representation of a number.
|
||||
bitstring(12345)
|
||||
@ -66,7 +66,7 @@ true
|
||||
false
|
||||
|
||||
# Boolean operators
|
||||
!true # => false
|
||||
!true # => false
|
||||
!false # => true
|
||||
1 == 1 # => true
|
||||
2 == 1 # => false
|
||||
@ -172,17 +172,17 @@ matrix = [1 2; 3 4] # => 2x2 Int64 Array: [1 2; 3 4]
|
||||
b = Int8[4, 5, 6] # => 3-element Int8 Array: [4, 5, 6]
|
||||
|
||||
# Add stuff to the end of a list with push! and append!
|
||||
push!(a, 1) # => [1]
|
||||
push!(a, 2) # => [1,2]
|
||||
push!(a, 4) # => [1,2,4]
|
||||
push!(a, 3) # => [1,2,4,3]
|
||||
append!(a, b) # => [1,2,4,3,4,5,6]
|
||||
push!(a, 1) # => [1]
|
||||
push!(a, 2) # => [1,2]
|
||||
push!(a, 4) # => [1,2,4]
|
||||
push!(a, 3) # => [1,2,4,3]
|
||||
append!(a, b) # => [1,2,4,3,4,5,6]
|
||||
|
||||
# Remove from the end with pop
|
||||
pop!(b) # => 6 and b is now [4,5]
|
||||
pop!(b) # => 6 and b is now [4,5]
|
||||
|
||||
# Let's put it back
|
||||
push!(b, 6) # b is now [4,5,6] again.
|
||||
push!(b, 6) # b is now [4,5,6] again.
|
||||
|
||||
a[1] # => 1 # remember that Julia indexes from 1, not 0!
|
||||
|
||||
@ -191,14 +191,14 @@ a[1] # => 1 # remember that Julia indexes from 1, not 0!
|
||||
a[end] # => 6
|
||||
|
||||
# we also have popfirst! and pushfirst!
|
||||
popfirst!(a) # => 1 and a is now [2,4,3,4,5,6]
|
||||
pushfirst!(a, 7) # => [7,2,4,3,4,5,6]
|
||||
popfirst!(a) # => 1 and a is now [2,4,3,4,5,6]
|
||||
pushfirst!(a, 7) # => [7,2,4,3,4,5,6]
|
||||
|
||||
# Function names that end in exclamations points indicate that they modify
|
||||
# their argument.
|
||||
arr = [5,4,6] # => 3-element Int64 Array: [5,4,6]
|
||||
sort(arr) # => [4,5,6]; arr is still [5,4,6]
|
||||
sort!(arr) # => [4,5,6]; arr is now [4,5,6]
|
||||
sort(arr) # => [4,5,6]; arr is still [5,4,6]
|
||||
sort!(arr) # => [4,5,6]; arr is now [4,5,6]
|
||||
|
||||
# Looking out of bounds is a BoundsError
|
||||
try
|
||||
@ -221,20 +221,20 @@ a[2:end] # => [2, 3, 4, 5]
|
||||
|
||||
# Remove elements from an array by index with splice!
|
||||
arr = [3,4,5]
|
||||
splice!(arr, 2) # => 4 ; arr is now [3,5]
|
||||
splice!(arr, 2) # => 4 ; arr is now [3,5]
|
||||
|
||||
# Concatenate lists with append!
|
||||
b = [1,2,3]
|
||||
append!(a, b) # Now a is [1, 2, 3, 4, 5, 1, 2, 3]
|
||||
append!(a, b) # Now a is [1, 2, 3, 4, 5, 1, 2, 3]
|
||||
|
||||
# Check for existence in a list with in
|
||||
in(1, a) # => true
|
||||
in(1, a) # => true
|
||||
|
||||
# Examine the length with length
|
||||
length(a) # => 8
|
||||
length(a) # => 8
|
||||
|
||||
# Tuples are immutable.
|
||||
tup = (1, 2, 3) # => (1,2,3) # an (Int64,Int64,Int64) tuple.
|
||||
tup = (1, 2, 3) # => (1,2,3) # an (Int64,Int64,Int64) tuple.
|
||||
tup[1] # => 1
|
||||
try
|
||||
tup[1] = 3 # => ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64)
|
||||
@ -243,12 +243,12 @@ catch e
|
||||
end
|
||||
|
||||
# Many list functions also work on tuples
|
||||
length(tup) # => 3
|
||||
length(tup) # => 3
|
||||
tup[1:2] # => (1,2)
|
||||
in(2, tup) # => true
|
||||
in(2, tup) # => true
|
||||
|
||||
# You can unpack tuples into variables
|
||||
a, b, c = (1, 2, 3) # => (1,2,3) # a is now 1, b is now 2 and c is now 3
|
||||
a, b, c = (1, 2, 3) # => (1,2,3) # a is now 1, b is now 2 and c is now 3
|
||||
|
||||
# Tuples are created even if you leave out the parentheses
|
||||
d, e, f = 4, 5, 6 # => (4,5,6)
|
||||
@ -258,11 +258,11 @@ d, e, f = 4, 5, 6 # => (4,5,6)
|
||||
(1) == 1 # => true
|
||||
|
||||
# Look how easy it is to swap two values
|
||||
e, d = d, e # => (5,4) # d is now 5 and e is now 4
|
||||
e, d = d, e # => (5,4) # d is now 5 and e is now 4
|
||||
|
||||
|
||||
# Dictionaries store mappings
|
||||
empty_dict = Dict() # => Dict{Any,Any}()
|
||||
empty_dict = Dict() # => Dict{Any,Any}()
|
||||
|
||||
# You can create a dictionary using a literal
|
||||
filled_dict = Dict("one" => 1, "two" => 2, "three" => 3)
|
||||
@ -282,10 +282,10 @@ values(filled_dict)
|
||||
# Note - Same as above regarding key ordering.
|
||||
|
||||
# Check for existence of keys in a dictionary with in, haskey
|
||||
in(("one" => 1), filled_dict) # => true
|
||||
in(("two" => 3), filled_dict) # => false
|
||||
haskey(filled_dict, "one") # => true
|
||||
haskey(filled_dict, 1) # => false
|
||||
in(("one" => 1), filled_dict) # => true
|
||||
in(("two" => 3), filled_dict) # => false
|
||||
haskey(filled_dict, "one") # => true
|
||||
haskey(filled_dict, 1) # => false
|
||||
|
||||
# Trying to look up a non-existent key will raise an error
|
||||
try
|
||||
@ -296,26 +296,26 @@ end
|
||||
|
||||
# Use the get method to avoid that error by providing a default value
|
||||
# get(dictionary,key,default_value)
|
||||
get(filled_dict, "one", 4) # => 1
|
||||
get(filled_dict, "four", 4) # => 4
|
||||
get(filled_dict, "one", 4) # => 1
|
||||
get(filled_dict, "four", 4) # => 4
|
||||
|
||||
# Use Sets to represent collections of unordered, unique values
|
||||
empty_set = Set() # => Set{Any}()
|
||||
empty_set = Set() # => Set{Any}()
|
||||
# Initialize a set with values
|
||||
filled_set = Set([1,2,2,3,4]) # => Set{Int64}(1,2,3,4)
|
||||
filled_set = Set([1,2,2,3,4]) # => Set{Int64}(1,2,3,4)
|
||||
|
||||
# Add more values to a set
|
||||
push!(filled_set, 5) # => Set{Int64}(5,4,2,3,1)
|
||||
push!(filled_set, 5) # => Set{Int64}(5,4,2,3,1)
|
||||
|
||||
# Check if the values are in the set
|
||||
in(2, filled_set) # => true
|
||||
in(10, filled_set) # => false
|
||||
in(2, filled_set) # => true
|
||||
in(10, filled_set) # => false
|
||||
|
||||
# There are functions for set intersection, union, and difference.
|
||||
other_set = Set([3, 4, 5, 6]) # => Set{Int64}(6,4,5,3)
|
||||
intersect(filled_set, other_set) # => Set{Int64}(3,4,5)
|
||||
union(filled_set, other_set) # => Set{Int64}(1,2,3,4,5,6)
|
||||
setdiff(Set([1,2,3,4]), Set([2,3,5])) # => Set{Int64}(1,4)
|
||||
other_set = Set([3, 4, 5, 6]) # => Set{Int64}(6,4,5,3)
|
||||
intersect(filled_set, other_set) # => Set{Int64}(3,4,5)
|
||||
union(filled_set, other_set) # => Set{Int64}(1,2,3,4,5,6)
|
||||
setdiff(Set([1,2,3,4]), Set([2,3,5])) # => Set{Int64}(1,4)
|
||||
|
||||
|
||||
####################################################
|
||||
@ -409,15 +409,15 @@ function add(x, y)
|
||||
x + y
|
||||
end
|
||||
|
||||
add(5, 6) # => 11 after printing out "x is 5 and y is 6"
|
||||
add(5, 6) # => 11 after printing out "x is 5 and y is 6"
|
||||
|
||||
# Compact assignment of functions
|
||||
f_add(x, y) = x + y # => "f (generic function with 1 method)"
|
||||
f_add(3, 4) # => 7
|
||||
f_add(3, 4) # => 7
|
||||
|
||||
# Function can also return multiple values as tuple
|
||||
fn(x, y) = x + y, x - y
|
||||
fn(3, 4) # => (7, -1)
|
||||
fn(3, 4) # => (7, -1)
|
||||
|
||||
# You can define functions that take a variable number of
|
||||
# positional arguments
|
||||
@ -427,16 +427,16 @@ function varargs(args...)
|
||||
end
|
||||
# => varargs (generic function with 1 method)
|
||||
|
||||
varargs(1, 2, 3) # => (1,2,3)
|
||||
varargs(1, 2, 3) # => (1,2,3)
|
||||
|
||||
# The ... is called a splat.
|
||||
# We just used it in a function definition.
|
||||
# It can also be used in a function call,
|
||||
# where it will splat an Array or Tuple's contents into the argument list.
|
||||
add([5,6]...) # this is equivalent to add(5,6)
|
||||
add([5,6]...) # this is equivalent to add(5,6)
|
||||
|
||||
x = (5, 6) # => (5,6)
|
||||
add(x...) # this is equivalent to add(5,6)
|
||||
x = (5, 6) # => (5,6)
|
||||
add(x...) # this is equivalent to add(5,6)
|
||||
|
||||
|
||||
# You can define functions with optional positional arguments
|
||||
@ -444,24 +444,24 @@ function defaults(a, b, x=5, y=6)
|
||||
return "$a $b and $x $y"
|
||||
end
|
||||
|
||||
defaults('h', 'g') # => "h g and 5 6"
|
||||
defaults('h', 'g', 'j') # => "h g and j 6"
|
||||
defaults('h', 'g', 'j', 'k') # => "h g and j k"
|
||||
defaults('h', 'g') # => "h g and 5 6"
|
||||
defaults('h', 'g', 'j') # => "h g and j 6"
|
||||
defaults('h', 'g', 'j', 'k') # => "h g and j k"
|
||||
try
|
||||
defaults('h') # => ERROR: no method defaults(Char,)
|
||||
defaults() # => ERROR: no methods defaults()
|
||||
defaults('h') # => ERROR: no method defaults(Char,)
|
||||
defaults() # => ERROR: no methods defaults()
|
||||
catch e
|
||||
println(e)
|
||||
end
|
||||
|
||||
# You can define functions that take keyword arguments
|
||||
function keyword_args(;k1=4, name2="hello") # note the ;
|
||||
function keyword_args(;k1=4, name2="hello") # note the ;
|
||||
return Dict("k1" => k1, "name2" => name2)
|
||||
end
|
||||
|
||||
keyword_args(name2="ness") # => ["name2"=>"ness","k1"=>4]
|
||||
keyword_args(k1="mine") # => ["k1"=>"mine","name2"=>"hello"]
|
||||
keyword_args() # => ["name2"=>"hello","k1"=>4]
|
||||
keyword_args(name2="ness") # => ["name2"=>"ness","k1"=>4]
|
||||
keyword_args(k1="mine") # => ["k1"=>"mine","name2"=>"hello"]
|
||||
keyword_args() # => ["name2"=>"hello","k1"=>4]
|
||||
|
||||
# You can combine all kinds of arguments in the same function
|
||||
function all_the_args(normal_arg, optional_positional_arg=2; keyword_arg="foo")
|
||||
@ -485,7 +485,7 @@ function create_adder(x)
|
||||
end
|
||||
|
||||
# This is "stabby lambda syntax" for creating anonymous functions
|
||||
(x -> x > 2)(3) # => true
|
||||
(x -> x > 2)(3) # => true
|
||||
|
||||
# This function is identical to create_adder implementation above.
|
||||
function create_adder(x)
|
||||
@ -501,12 +501,12 @@ function create_adder(x)
|
||||
end
|
||||
|
||||
add_10 = create_adder(10)
|
||||
add_10(3) # => 13
|
||||
add_10(3) # => 13
|
||||
|
||||
|
||||
# There are built-in higher order functions
|
||||
map(add_10, [1,2,3]) # => [11, 12, 13]
|
||||
filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
|
||||
map(add_10, [1,2,3]) # => [11, 12, 13]
|
||||
filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
|
||||
|
||||
# We can use list comprehensions for nicer maps
|
||||
[add_10(i) for i = [1, 2, 3]] # => [11, 12, 13]
|
||||
@ -519,11 +519,11 @@ filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
|
||||
# Julia has a type system.
|
||||
# Every value has a type; variables do not have types themselves.
|
||||
# You can use the `typeof` function to get the type of a value.
|
||||
typeof(5) # => Int64
|
||||
typeof(5) # => Int64
|
||||
|
||||
# Types are first-class values
|
||||
typeof(Int64) # => DataType
|
||||
typeof(DataType) # => DataType
|
||||
typeof(Int64) # => DataType
|
||||
typeof(DataType) # => DataType
|
||||
# DataType is the type that represents types, including itself.
|
||||
|
||||
# Types are used for documentation, optimizations, and dispatch.
|
||||
@ -544,10 +544,10 @@ end
|
||||
|
||||
# The default constructor's arguments are the properties
|
||||
# of the type, in the order they are listed in the definition
|
||||
tigger = Tiger(3.5, "orange") # => Tiger(3.5,"orange")
|
||||
tigger = Tiger(3.5, "orange") # => Tiger(3.5,"orange")
|
||||
|
||||
# The type doubles as the constructor function for values of that type
|
||||
sherekhan = typeof(tigger)(5.6, "fire") # => Tiger(5.6,"fire")
|
||||
sherekhan = typeof(tigger)(5.6, "fire") # => Tiger(5.6,"fire")
|
||||
|
||||
# These struct-style types are called concrete types
|
||||
# They can be instantiated, but cannot have subtypes.
|
||||
@ -559,32 +559,32 @@ abstract type Cat end # just a name and point in the type hierarchy
|
||||
# Abstract types cannot be instantiated, but can have subtypes.
|
||||
using InteractiveUtils # defines the subtype and supertype function
|
||||
# For example, Number is an abstract type
|
||||
subtypes(Number) # => 2-element Array{Any,1}:
|
||||
subtypes(Number) # => 2-element Array{Any,1}:
|
||||
# Complex{T<:Real}
|
||||
# Real
|
||||
subtypes(Cat) # => 0-element Array{Any,1}
|
||||
subtypes(Cat) # => 0-element Array{Any,1}
|
||||
|
||||
# AbstractString, as the name implies, is also an abstract type
|
||||
subtypes(AbstractString) # 4-element Array{Any,1}:
|
||||
subtypes(AbstractString) # 4-element Array{Any,1}:
|
||||
# String
|
||||
# SubString
|
||||
# SubstitutionString
|
||||
# Test.GenericString
|
||||
|
||||
# Every type has a super type; use the `supertype` function to get it.
|
||||
typeof(5) # => Int64
|
||||
supertype(Int64) # => Signed
|
||||
supertype(Signed) # => Integer
|
||||
supertype(Integer) # => Real
|
||||
supertype(Real) # => Number
|
||||
supertype(Number) # => Any
|
||||
supertype(supertype(Signed)) # => Real
|
||||
supertype(Any) # => Any
|
||||
typeof(5) # => Int64
|
||||
supertype(Int64) # => Signed
|
||||
supertype(Signed) # => Integer
|
||||
supertype(Integer) # => Real
|
||||
supertype(Real) # => Number
|
||||
supertype(Number) # => Any
|
||||
supertype(supertype(Signed)) # => Real
|
||||
supertype(Any) # => Any
|
||||
# All of these type, except for Int64, are abstract.
|
||||
typeof("fire") # => String
|
||||
supertype(String) # => AbstractString
|
||||
typeof("fire") # => String
|
||||
supertype(String) # => AbstractString
|
||||
# Likewise here with String
|
||||
supertype(SubString) # => AbstractString
|
||||
supertype(SubString) # => AbstractString
|
||||
|
||||
# <: is the subtyping operator
|
||||
struct Lion <: Cat # Lion is a subtype of Cat
|
||||
@ -631,9 +631,9 @@ function meow(animal::Tiger)
|
||||
end
|
||||
|
||||
# Testing the meow function
|
||||
meow(tigger) # => "rawwr"
|
||||
meow(Lion("brown", "ROAAR")) # => "ROAAR"
|
||||
meow(Panther()) # => "grrr"
|
||||
meow(tigger) # => "rawwr"
|
||||
meow(Lion("brown", "ROAAR")) # => "ROAAR"
|
||||
meow(Panther()) # => "grrr"
|
||||
|
||||
# Review the local type hierarchy
|
||||
Tiger <: Cat # => false
|
||||
@ -645,9 +645,9 @@ function pet_cat(cat::Cat)
|
||||
println("The cat says $(meow(cat))")
|
||||
end
|
||||
|
||||
pet_cat(Lion("42")) # => prints "The cat says 42"
|
||||
pet_cat(Lion("42")) # => prints "The cat says 42"
|
||||
try
|
||||
pet_cat(tigger) # => ERROR: no method pet_cat(Tiger,)
|
||||
pet_cat(tigger) # => ERROR: no method pet_cat(Tiger,)
|
||||
catch e
|
||||
println(e)
|
||||
end
|
||||
@ -662,21 +662,21 @@ function fight(t::Tiger, c::Cat)
|
||||
end
|
||||
# => fight (generic function with 1 method)
|
||||
|
||||
fight(tigger, Panther()) # => prints The orange tiger wins!
|
||||
fight(tigger, Lion("ROAR")) # => prints The orange tiger wins!
|
||||
fight(tigger, Panther()) # => prints The orange tiger wins!
|
||||
fight(tigger, Lion("ROAR")) # => prints The orange tiger wins!
|
||||
|
||||
# Let's change the behavior when the Cat is specifically a Lion
|
||||
fight(t::Tiger, l::Lion) = println("The $(l.mane_color)-maned lion wins!")
|
||||
# => fight (generic function with 2 methods)
|
||||
|
||||
fight(tigger, Panther()) # => prints The orange tiger wins!
|
||||
fight(tigger, Lion("ROAR")) # => prints The green-maned lion wins!
|
||||
fight(tigger, Panther()) # => prints The orange tiger wins!
|
||||
fight(tigger, Lion("ROAR")) # => prints The green-maned lion wins!
|
||||
|
||||
# We don't need a Tiger in order to fight
|
||||
fight(l::Lion, c::Cat) = println("The victorious cat says $(meow(c))")
|
||||
# => fight (generic function with 3 methods)
|
||||
|
||||
fight(Lion("balooga!"), Panther()) # => prints The victorious cat says grrr
|
||||
fight(Lion("balooga!"), Panther()) # => prints The victorious cat says grrr
|
||||
try
|
||||
fight(Panther(), Lion("RAWR"))
|
||||
catch e
|
||||
@ -689,7 +689,7 @@ fight(c::Cat, l::Lion) = println("The cat beats the Lion")
|
||||
|
||||
# This warning is because it's unclear which fight will be called in:
|
||||
try
|
||||
fight(Lion("RAR"), Lion("brown", "rarrr")) # => prints The victorious cat says rarrr
|
||||
fight(Lion("RAR"), Lion("brown", "rarrr")) # => prints The victorious cat says rarrr
|
||||
catch e
|
||||
println(e)
|
||||
# => MethodError(fight, (Lion("green", "RAR"), Lion("brown", "rarrr")), 0x000000000000557c)
|
||||
@ -697,7 +697,7 @@ end
|
||||
# The result may be different in other versions of Julia
|
||||
|
||||
fight(l::Lion, l2::Lion) = println("The lions come to a tie")
|
||||
fight(Lion("RAR"), Lion("brown", "rarrr")) # => prints The lions come to a tie
|
||||
fight(Lion("RAR"), Lion("brown", "rarrr")) # => prints The lions come to a tie
|
||||
|
||||
|
||||
# Under the hood
|
||||
@ -705,7 +705,7 @@ fight(Lion("RAR"), Lion("brown", "rarrr")) # => prints The lions come to a tie
|
||||
|
||||
square_area(l) = l * l # square_area (generic function with 1 method)
|
||||
|
||||
square_area(5) #25
|
||||
square_area(5) #25
|
||||
|
||||
# What happens when we feed square_area an integer?
|
||||
code_native(square_area, (Int32,))
|
||||
@ -746,7 +746,7 @@ code_native(square_area, (Float64,))
|
||||
# arguments are floats.
|
||||
# Let's calculate the area of a circle
|
||||
circle_area(r) = pi * r * r # circle_area (generic function with 1 method)
|
||||
circle_area(5) # 78.53981633974483
|
||||
circle_area(5) # 78.53981633974483
|
||||
|
||||
code_native(circle_area, (Int32,))
|
||||
# .section __TEXT,__text,regular,pure_instructions
|
||||
|
Loading…
Reference in New Issue
Block a user