Major overhaul of C++ documentation

- Cleaned up and rephrased comments
- Removed old and erroneous information
- Normalized indentation to four spaces
- Normalized style to "Stroustrup style"
  (http://www.stroustrup.com/bs_faq2.html#layout-style)
- Added a section on references

In the near future I plan on additional sections covering idiomatic
use, such as RAII and C++11 paradigms.
This commit is contained in:
Matt Kline 2014-10-09 23:06:05 -07:00
parent b39a6827e9
commit e1ed5393fc

View File

@ -7,323 +7,381 @@ contributors:
lang: en
---
I am writing this to highlight the differences and
additions that C++ has with respect to C. My
suggestion would be to follow the C tutorial first
then look here for the additions and differences.
C++ was designed as a systems programming language that
- is a "better C"
- supports data abstraction
- supports object-oriented programming
- supports generic programming
Though its syntax can be more difficult or complex than newer languages,
it is widely used because it compiles to native instructions that can be
directly run by the processor and offers tight control over hardware (like C)
while offering high-level features such as generics, exceptions, and classes.
This combination of speed and functionality makes C++
one of the most widely-used programming languages.
```c++
///////////////////////////////////////
// C++ differences
///////////////////////////////////////
//////////////////
// Comparison to C
//////////////////
// C++ is _almost_ a superset of C and shares its basic syntax for
// variable declarations, primitive types, and functions.
// However, C++ varies in some of the following ways:
//In C++
//cannot use void main()
int main() { //or int main(int argc, char **argv)
//cannot end with return;
return 0;
//Can also end without return statement
// A main() function in C++ should return an int,
// though void main() is accepted by most compilers (gcc, clang, etc.)
int main() // or int main(int argc, char** argv)
{
return 0; // Can also end without return statement
}
//In C++
/*
//This could lead to compiler errors and is discouraged
//#if 0 #endif pairs are encouraged instead
*/
//In C++
sizeof(10) //Typically 4
// In C++, character literals are one byte.
sizeof('c') == 1
//In C
sizeof('c') == sizeof(10) //true chars are passed as ints
// In C, character literals are the same size as ints.
sizeof('c') == sizeof(10)
//In C++ strict prototyping
void func(); //function which accepts no arguments
// C++ has strict prototyping
void func(); // function which accepts no arguments
//In C
void func(); //function which may accept arguments
// In C
void func(); // function which may accept any number of arguments
// Use nullptr instead of NULL in C++
int* ip = nullptr;
//In C++
for(int i = 0; i < 10; i++) {;}
//In C must int i must be declared before
// C standard headers are available in C++,
// but are prefixed with "c" and have no .h suffix.
#include <cstdio>
//C++ Supports Function overloading
//Provided each function takes different
//parameters
void printing(char const *myString)
{printf("String %s\n",myString);} //Hello
void printing(int myInt)
{printf("My int is %d",myInt);} //15
int main ()
int main()
{
printing("Hello");
printing(15);
printf("Hello, world!\n");
return 0;
}
///////////////////////
// Function overloading
///////////////////////
// C++ supports function overloading
// provided each function takes different parameters.
void print(char const* myString)
{
printf("String %s\n", myString);
}
void print(int myInt)
{
printf("My int is %d", myInt);
}
int main()
{
printing("Hello"); // Resolves to void print(const char*)
printing(15); // Resolves to void print(int)
}
/////////////////////////////
// Default function arguments
/////////////////////////////
//C++ Default Function Arguments
void two_ints(int a = 1, int b = 4);
int main()
{
two_ints(); // arguments: 1, 4
two_ints(20); // arguments: 20, 4
two_ints(20, 5); // arguments: 20, 5
two_ints(); // a = 1, b = 4
two_ints(20); // a = 20, b = 4
two_ints(20, 5); // a = 20, b = 5
}
//C++ added the nullptr which is different from 0
int *ip = nullptr; // OK
int value = nullptr; // error: value is no pointer
///////////////////////////////////////
// C++ Additions ontop of C
///////////////////////////////////////
///////////////////////////////////////
// C++ Namespace
///////////////////////////////////////
//Namespaces allow you to define your own
//functions and variables for use
// Use '::' to change variable (or function) scope
// Putting '::' before a function or variable will
// reference a global scope
// This allows you to make normal c library calls
// std is for standard library
using namespace std;
#include <stdio.h>
int counter = 50; // global variable
int main()
{
for (int counter = 1; // this refers to the
counter < 2; // local variable
counter++)
{
printf("Global var %d local var %d\n",
::counter, // global variable
counter); // local variable
// => Global var 50 local var 1
}
}
/////////////
// Namespaces
/////////////
// Namespaces provide separate scopes for variable, function,
// and other declarations.
// Namespaces can be nested
namespace myFirstNameSpace
{
namespace myInnerSoul
{
cos(int x)
namespace First {
namespace Nested {
void foo()
{
printf("My inner soul was made to program.");
printf("This is First::Nested::foo\n");
}
} // end namespace Nested
} // end namespace First
namespace Second {
void foo()
{
printf("This is Second::foo\n")
}
}
namespace anotherNameSpace
void foo()
{
cos(int x) {;} //does nothing
printf("This is global foo\n");
}
int main()
{
//Specify the full path because main is outside of both namespaces.
//Will print out My inner soul was made to program.
myFirstNameSpace::myInnerSoul::cos(60);
// Assume everything is from the namespace "Second"
// unless otherwise specified.
using namespace Second;
foo(); // prints "This is Second::foo"
First::Nested::foo(); // prints "This is First::Nested::foo"
::foo(); // prints "This is global foo"
}
///////////////
// Input/Output
///////////////
///////////////////////////////////////
// C++ Strings
///////////////////////////////////////
// C++ input and output uses streams
// cin, cout, and cerr represent stdin, stdout, and stderr.
// << is the insertion operator and >> is the extraction operator.
//Strings in C++ are Objects and have many functions
myString = "Hello";
myOtherString = " World";
myString + myOtherString; // => "Hello World"
myString + ' You'; // => "Hello You"
myString != myOtherString; //True
//An example of a string method
myString.append(" Dog"); // => "Hello Dog"
///////////////////////////////////////
// C++ Input Output
///////////////////////////////////////
//C++ input and output streams
//cin, cout, cerr, << is insertion and >> is extraction operator
#include <iostream>
#include <iostream> // Include for I/O streams
using namespace std;
int main()
{
int myInt;
//Prints to stdout (or terminal/screen)
// Prints to stdout (or terminal/screen)
cout << "Enter your fav number:\n";
//Takes in input
// Takes in input
cin >> myInt;
//cout can also be formatted
// cout can also be formatted
cout << "Your fav number is " << myInt << "\n";
//Your fav number is ##
// Your fav number is ##
cerr << "Used for error messages";
cerr << "Used for error messages";
}
//////////
// Strings
//////////
///////////////////////////////////////
// C++ Classes
///////////////////////////////////////
// Strings in C++ are objects and have many member functions
#include <string>
using namespace std; // Strings are in the namespace std (standard library)
string myString = "Hello";
string myOtherString = " World";
// + is used for concatenation.
cout << myString + myOtherString; // "Hello World"
cout << myString + " You"; // "Hello You"
// C++ strings are mutable and have value semantics.
myString.append(" Dog");
cout << myString; // "Hello Dog"
//First example of classes
/////////////
// References
/////////////
// In addition to pointers like the ones in C,
// C++ has _references_.
// These are pointer types that cannot be reassigned once set
// and cannot be null.
// They also have the same syntax as the variable itself:
// No * is needed for dereferencing and
// & (address of) is not used for assignment.
using namespace std;
string foo = "I am foo";
string bar = "I am bar";
string& fooRef = foo; // This creates a reference to foo.
fooRef += ". Hi!"; // Modifies foo through the reference
cout << foo; // Prints "I am foo. Hi!"
fooRef = bar; // Error: references cannot be reassigned.
const string& barRef = bar; // Create a const reference to bar.
// Like C, const values (and pointers and references) cannot be modified.
barRef += ". Hi!"; // Error, const references cannot be modified.
//////////////////////////////////////////
// Classes and object-oriented programming
//////////////////////////////////////////
// First example of classes
#include <iostream>
//define a class
class Doggie
{
// Declare a class.
// Classes are usually declared in header (.h or .hpp) files.
class Dog {
// Member variables and functions are private by default.
std::string name;
int weight;
int weight;
// These are only the declarations
//Can also have private and protected
public:
//The public methods (can also include variables)
// All members following this are public
// until "private:" or "protected:" is found.
public:
// Default constructor
Doggie();
// Default constructor
Dog();
void setName(std::string dogsName);
void setWeight(int dogsWeight);
void printDog();
// Member function declarations (implementations to follow)
// Note that we use std::string here instead of placing
// using namespace std;
// above.
// Never put a "using namespace" statement in a header.
void setName(const std::string& dogsName);
//Can define functions within class declaration too
void dogBark() {std::cout << "Bark Bark\n"}
void setWeight(int dogsWeight);
//Destructors are methods that free the allocated space
~doggieDestructor();
//if no destructor compiler defines the trivial destructor
// Functions that do not modify the state of the object
// should be marked as const.
// This allows you to call them if given a const reference to the object.
// Also note the functions must be explicitly declared as _virtual_
// in order to be overridden in derived classes.
// Functions are not virtual by default for performance reasons.
virtual void print() const;
//Classes are similar to structs and must close the } with ;
};
// Functions can also be defined inside the class body.
// Functions defined as such are automatically inlined.
void bark() const { std::cout << name << " barks!\n" }
// This is the implementation of the class methods
// Also called the definition
void Doggie::Doggie () {
std::cout << "A doggie is born. Woof!\n";
// Along with constructors, C++ provides destructors.
// These are called when an object is deleted or falls out of scope.
// This enables powerful paradigms such as RAII
// (http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization)
// Destructors must be virtual to allow classes to be derived from this one.
virtual ~Dog();
}; // A semicolon must follow the class definition.
// Class member functions are usually implemented in .cpp files.
void Dog::Dog()
{
std::cout << "A dog has been constructed\n";
}
void Doggie::setName (std::string doggie_name) {
// Objects (such as strings) should be passed by reference
// if you are modifying them or const reference if you are not.
void Dog::setName(const std::string& dogsName)
{
name = doggie_name;
}
void Doggie::setWeight (int doggie_weight) {
weight = doggie_weight;
}
void Doggie::printDog () {
std::cout << "Dog is " << name << " weighs" << weight << "\n";
}
void Doggie::~doggieDestructor () {
delete[] name;
delete weight;
}
int main () {
Doggie deedee; // prints out a doggie is born. Woof!
deedee.setName ("Barkley");
deedee.setWeight(1000000);
deedee.printDog;
//prints => Dog is Barkley weighs 1000000
return 0;
}
//C++ Class inheritance
class German_Sheperd : public Doggie
void Dog::setWeight(int dogsWeight)
{
//This class now inherits everything public and protected from Doggie class
weight = dogsWeight;
}
//Good practice to put d_ in front of datatypes in classes
std::string d_type;
// Notice that "virtual" is only needed in the declaration, not the definition.
void Dog::print() const
{
std::cout << "Dog is " << name << " and weighs " << weight << "kg\n";
}
public:
void dogType() {d_type = "German Sheperd";}
void Dog::~Dog()
{
cout << "Goodbye " << name << "\n";
}
int main() {
Dog myDog; // prints "A dog has been constructed"
myDog.setName("Barkley");
myDog.setWeight(10);
myDog.printDog(); // prints "Dog is Barkley and weighs 10 kg"
return 0;
} // prints "Goodbye Barkley"
// Inheritance:
// This class inherits everything public and protected from the Dog class
class OwnedDog : public Dog {
void setOwner(const std::string& dogsOwner)
// Override the behavior of the print function for all OwnedDogs. See
// http://en.wikipedia.org/wiki/Polymorphism_(computer_science)#Subtyping
// for a more general introduction if you are unfamiliar with
// subtype polymorphism.
// The override keyword is optional but makes sure you are actually
// overriding the method in a base class.
void print() const override;
private:
std::string owner;
};
// Meanwhile, in the corresponding .cpp file:
///////////////////////////////////////
// C++ Exception Handling
///////////////////////////////////////
try {
throw 12.25; // throws a double no handler declared
} catch (int errorNum)
void OwnedDog::setOwner(const std::string& dogsOwner)
{
std::cout << "I caught an int " << errorNum << "\n";
//default catcher
} catch (...)
{
std::cout << "I got an error. Not sure what but I can pass it up.";
throw;
owner = dogsOwner;
}
void OwnedDog::print() const
{
Dog::print(); // Call the print function in the base Dog class
std::cout << "Dog is owned by " << owner << "\n";
// Prints "Dog is <name> and weights <weight>"
// "Dog is owned by <owner>"
}
///////////////////////////////////////
// C++ Operator Overloading
///////////////////////////////////////
//////////////////////////////////////////
// Initialization and Operator Overloading
//////////////////////////////////////////
// In C++ you can overload operators such as +, -, new, etc.
// In C++ you can overload the behavior of operators such as +, -, *, /, etc.
// This is done by defining a function which is called
// whenever the operator is used.
#include <iostream>
using namespace std;
class Vector {
public:
double x,y;
Vector () {};
Vector (double a, double b) : x(a), y(b) {}
Vector operator + (const CVector&);
Vector operator += (const CVector&);
class Point {
public:
// Member variables can be given default values in this manner.
double x = 0;
double y = 0;
// Define a default constructor which does nothing
// but initialize the Point to the default value (0, 0)
Point() { };
// The following syntax is known as an initialization list
// and is the proper way to initialize class member values
Point (double a, double b) :
x(a),
y(b)
{ /* Do nothing except initialize the values */ }
// Overload the + operator.
Point operator+(const Point& rhs) const;
// Overload the += operator
Point& operator+=(const Point& rhs);
};
Vector Vector::operator+ (const Vector& rhs)
Point Point::operator+(const Point& rhs) const
{
Vector temp;
temp.x = x + rhs.x;
temp.y = y + rhs.y;
return temp;
// Create a new point that is the sum of this one and rhs.
return Point(x + rhs.x, y + rhs.y);
}
Vector Vector::operator+= (const Vector& rhs)
Point& Point::operator+=(const Point& rhs)
{
x += rhs.x;
y += rhs.y;
@ -331,20 +389,45 @@ Vector Vector::operator+= (const Vector& rhs)
}
int main () {
Vector up (0,1);
Vector right (1,0);
Vector result;
// This calls the Vector + operator
// Vector up calls the + (function) with right as its paramater
result = up + right;
// prints out => Result is upright (1,1)
Point up (0,1);
Point right (1,0);
// This calls the Point + operator
// Point up calls the + (function) with right as its paramater
Point result = up + right;
// Prints "Result is upright (1,1)"
cout << "Result is upright (" << result.x << ',' << result.y << ")\n";
return 0;
}
/////////////////////
// Exception Handling
/////////////////////
// The standard library provides a few exception types
// (see http://en.cppreference.com/w/cpp/error/exception)
// but any type can be thrown an as exception
#include <exception>
// All exceptions thrown inside the _try_ block can be caught by subsequent
// _catch_ handlers.
try {
// Do not allocate exceptions on the heap using _new_.
throw std::exception("A problem occurred");
}
// Catch exceptions by const reference if they are objects
catch (const std::exception& ex)
{
std::cout << ex.what();
// Catches any exception not caught by previous _catch_ blocks
} catch (...)
{
std::cout << "Unknown exception caught";
throw; // Re-throws the exception
}
```
Futher Reading
Futher Reading:
for more resources see: http://www.icce.rug.nl/documents/cplusplus/
An up-to-date language reference can be found at
<http://cppreference.com/w/cpp>
for other reference material: http://www.cplusplus.com/doc/tutorial/
Additional resources may be found at <http://cplusplus.com>