[julia/en] fix for #1483

This commit is contained in:
Keith Miyake 2018-10-04 12:34:19 -07:00
parent e867dfd7b6
commit f894add86a

View File

@ -114,12 +114,12 @@ println("I'm Julia. Nice to meet you!") # => I'm Julia. Nice to meet you!
####################################################
# You don't declare variables before assigning to them.
some_var = 5 # => 5
some_var # => 5
someVar = 5 # => 5
someVar # => 5
# Accessing a previously unassigned variable is an error
try
some_other_var # => ERROR: UndefVarError: some_other_var not defined
someOtherVar # => ERROR: UndefVarError: someOtherVar not defined
catch e
println(e)
end
@ -286,62 +286,62 @@ d # => 5
e # => 4
# Dictionaries store mappings
empty_dict = Dict() # => Dict{Any,Any} with 0 entries
emptyDict = Dict() # => Dict{Any,Any} with 0 entries
# You can create a dictionary using a literal
filled_dict = Dict("one" => 1, "two" => 2, "three" => 3)
filledDict = Dict("one" => 1, "two" => 2, "three" => 3)
# => Dict{String,Int64} with 3 entries:
# => "two" => 2, "one" => 1, "three" => 3
# Look up values with []
filled_dict["one"] # => 1
filledDict["one"] # => 1
# Get all keys
keys(filled_dict)
keys(filledDict)
# => Base.KeySet for a Dict{String,Int64} with 3 entries. Keys:
# => "two", "one", "three"
# Note - dictionary keys are not sorted or in the order you inserted them.
# Get all values
values(filled_dict)
values(filledDict)
# => Base.ValueIterator for a Dict{String,Int64} with 3 entries. Values:
# => 2, 1, 3
# Note - Same as above regarding key ordering.
# Check for existence of keys in a dictionary with in, haskey
in(("one" => 1), filled_dict) # => true
in(("two" => 3), filled_dict) # => false
haskey(filled_dict, "one") # => true
haskey(filled_dict, 1) # => false
in(("one" => 1), filledDict) # => true
in(("two" => 3), filledDict) # => false
haskey(filledDict, "one") # => true
haskey(filledDict, 1) # => false
# Trying to look up a non-existent key will raise an error
try
filled_dict["four"] # => ERROR: KeyError: key "four" not found
filledDict["four"] # => ERROR: KeyError: key "four" not found
catch e
println(e)
end
# Use the get method to avoid that error by providing a default value
# get(dictionary, key, default_value)
get(filled_dict, "one", 4) # => 1
get(filled_dict, "four", 4) # => 4
# get(dictionary, key, defaultValue)
get(filledDict, "one", 4) # => 1
get(filledDict, "four", 4) # => 4
# Use Sets to represent collections of unordered, unique values
empty_set = Set() # => Set(Any[])
emptySet = Set() # => Set(Any[])
# Initialize a set with values
filled_set = Set([1, 2, 2, 3, 4]) # => Set([4, 2, 3, 1])
filledSet = Set([1, 2, 2, 3, 4]) # => Set([4, 2, 3, 1])
# Add more values to a set
push!(filled_set, 5) # => Set([4, 2, 3, 5, 1])
push!(filledSet, 5) # => Set([4, 2, 3, 5, 1])
# Check if the values are in the set
in(2, filled_set) # => true
in(10, filled_set) # => false
in(2, filledSet) # => true
in(10, filledSet) # => false
# There are functions for set intersection, union, and difference.
other_set = Set([3, 4, 5, 6]) # => Set([4, 3, 5, 6])
intersect(filled_set, other_set) # => Set([4, 3, 5])
union(filled_set, other_set) # => Set([4, 2, 3, 5, 6, 1])
otherSet = Set([3, 4, 5, 6]) # => Set([4, 3, 5, 6])
intersect(filledSet, otherSet) # => Set([4, 3, 5])
union(filledSet, otherSet) # => Set([4, 2, 3, 5, 6, 1])
setdiff(Set([1,2,3,4]), Set([2,3,5])) # => Set([4, 1])
####################################################
@ -349,15 +349,15 @@ setdiff(Set([1,2,3,4]), Set([2,3,5])) # => Set([4, 1])
####################################################
# Let's make a variable
some_var = 5
someVar = 5
# Here is an if statement. Indentation is not meaningful in Julia.
if some_var > 10
println("some_var is totally bigger than 10.")
elseif some_var < 10 # This elseif clause is optional.
println("some_var is smaller than 10.")
if someVar > 10
println("someVar is totally bigger than 10.")
elseif someVar < 10 # This elseif clause is optional.
println("someVar is smaller than 10.")
else # The else clause is optional too.
println("some_var is indeed 10.")
println("someVar is indeed 10.")
end
# => prints "some var is smaller than 10"
@ -434,8 +434,8 @@ add(5, 6)
# => 11
# Compact assignment of functions
f_add(x, y) = x + y # => f_add (generic function with 1 method)
f_add(3, 4) # => 7
fAdd(x, y) = x + y # => fAdd (generic function with 1 method)
fAdd(3, 4) # => 7
# Function can also return multiple values as tuple
fn(x, y) = x + y, x - y # => fn (generic function with 1 method)
@ -478,67 +478,67 @@ catch e
end
# You can define functions that take keyword arguments
function keyword_args(;k1=4, name2="hello") # note the ;
function keywordArgs(;k1=4, name2="hello") # note the ;
return Dict("k1" => k1, "name2" => name2)
end
# => keyword_args (generic function with 1 method)
# => keywordArgs (generic function with 1 method)
keyword_args(name2="ness") # => ["name2"=>"ness", "k1"=>4]
keyword_args(k1="mine") # => ["name2"=>"hello", "k1"=>"mine"]
keyword_args() # => ["name2"=>"hello", "k1"=>4]
keywordArgs(name2="ness") # => ["name2"=>"ness", "k1"=>4]
keywordArgs(k1="mine") # => ["name2"=>"hello", "k1"=>"mine"]
keywordArgs() # => ["name2"=>"hello", "k1"=>4]
# You can combine all kinds of arguments in the same function
function all_the_args(normal_arg, optional_positional_arg=2; keyword_arg="foo")
println("normal arg: $normal_arg")
println("optional arg: $optional_positional_arg")
println("keyword arg: $keyword_arg")
function allTheArgs(normalArg, optionalPositionalArg=2; keywordArg="foo")
println("normal arg: $normalArg")
println("optional arg: $optionalPositionalArg")
println("keyword arg: $keywordArg")
end
# => all_the_args (generic function with 2 methods)
# => allTheArgs (generic function with 2 methods)
all_the_args(1, 3, keyword_arg=4)
allAheArgs(1, 3, keywordArg=4)
# => normal arg: 1
# => optional arg: 3
# => keyword arg: 4
# Julia has first class functions
function create_adder(x)
function createAdder(x)
adder = function (y)
return x + y
end
return adder
end
# => create_adder (generic function with 1 method)
# => createAdder (generic function with 1 method)
# This is "stabby lambda syntax" for creating anonymous functions
(x -> x > 2)(3) # => true
# This function is identical to create_adder implementation above.
function create_adder(x)
# This function is identical to createAdder implementation above.
function createAdder(x)
y -> x + y
end
# => create_adder (generic function with 1 method)
# => createAdder (generic function with 1 method)
# You can also name the internal function, if you want
function create_adder(x)
function createAdder(x)
function adder(y)
x + y
end
adder
end
# => create_adder (generic function with 1 method)
# => createAdder (generic function with 1 method)
add_10 = create_adder(10) # => (::getfield(Main, Symbol("#adder#11")){Int64})
add10 = createAdder(10) # => (::getfield(Main, Symbol("#adder#11")){Int64})
# (generic function with 1 method)
add_10(3) # => 13
add10(3) # => 13
# There are built-in higher order functions
map(add_10, [1,2,3]) # => [11, 12, 13]
map(add10, [1,2,3]) # => [11, 12, 13]
filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
# We can use list comprehensions
[add_10(i) for i = [1, 2, 3]] # => [11, 12, 13]
[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
[add10(i) for i = [1, 2, 3]] # => [11, 12, 13]
[add10(i) for i in [1, 2, 3]] # => [11, 12, 13]
[x for x in [3, 4, 5, 6, 7] if x > 5] # => [6, 7]
####################################################
@ -616,7 +616,7 @@ supertype(SubString) # => AbstractString
# <: is the subtyping operator
struct Lion <: Cat # Lion is a subtype of Cat
mane_color
maneColor
roar::AbstractString
end
@ -627,7 +627,7 @@ Lion(roar::AbstractString) = Lion("green", roar)
# This is an outer constructor because it's outside the type definition
struct Panther <: Cat # Panther is also a subtype of Cat
eye_color
eyeColor
Panther() = new("green")
# Panthers will only have this constructor, and no default constructor.
end
@ -669,14 +669,14 @@ Lion <: Cat # => true
Panther <: Cat # => true
# Defining a function that takes Cats
function pet_cat(cat::Cat)
function petCat(cat::Cat)
println("The cat says $(meow(cat))")
end
# => pet_cat (generic function with 1 method)
# => petCat (generic function with 1 method)
pet_cat(Lion("42")) # => The cat says 42
petCat(Lion("42")) # => The cat says 42
try
pet_cat(tigger) # => ERROR: MethodError: no method matching pet_cat(::Tiger)
petCat(tigger) # => ERROR: MethodError: no method matching petCat(::Tiger)
catch e
println(e)
end
@ -695,7 +695,7 @@ fight(tigger, Panther()) # => The orange tiger wins!
fight(tigger, Lion("ROAR")) # => The orange tiger wins!
# Let's change the behavior when the Cat is specifically a Lion
fight(t::Tiger, l::Lion) = println("The $(l.mane_color)-maned lion wins!")
fight(t::Tiger, l::Lion) = println("The $(l.maneColor)-maned lion wins!")
# => fight (generic function with 2 methods)
fight(tigger, Panther()) # => The orange tiger wins!
@ -744,14 +744,14 @@ fight(Lion("RAR"), Lion("brown", "rarrr")) # => The lions come to a tie
# Under the hood
# You can take a look at the llvm and the assembly code generated.
square_area(l) = l * l # square_area (generic function with 1 method)
squareArea(l) = l * l # squareArea (generic function with 1 method)
square_area(5) # => 25
squareArea(5) # => 25
# What happens when we feed square_area an integer?
code_native(square_area, (Int32,), syntax = :intel)
# What happens when we feed squareArea an integer?
codeNative(squareArea, (Int32,), syntax = :intel)
# .text
# ; Function square_area {
# ; Function squareArea {
# ; Location: REPL[116]:1 # Prologue
# push rbp
# mov rbp, rsp
@ -765,9 +765,9 @@ code_native(square_area, (Int32,), syntax = :intel)
# nop dword ptr [rax + rax]
# ;}
code_native(square_area, (Float32,), syntax = :intel)
codeNative(squareArea, (Float32,), syntax = :intel)
# .text
# ; Function square_area {
# ; Function squareArea {
# ; Location: REPL[116]:1
# push rbp
# mov rbp, rsp
@ -780,9 +780,9 @@ code_native(square_area, (Float32,), syntax = :intel)
# nop word ptr [rax + rax]
# ;}
code_native(square_area, (Float64,), syntax = :intel)
codeNative(squareArea, (Float64,), syntax = :intel)
# .text
# ; Function square_area {
# ; Function squareArea {
# ; Location: REPL[116]:1
# push rbp
# mov rbp, rsp
@ -798,12 +798,12 @@ code_native(square_area, (Float64,), syntax = :intel)
# Note that julia will use floating point instructions if any of the
# arguments are floats.
# Let's calculate the area of a circle
circle_area(r) = pi * r * r # circle_area (generic function with 1 method)
circle_area(5) # 78.53981633974483
circleArea(r) = pi * r * r # circleArea (generic function with 1 method)
circleArea(5) # 78.53981633974483
code_native(circle_area, (Int32,), syntax = :intel)
codeNative(circleArea, (Int32,), syntax = :intel)
# .text
# ; Function circle_area {
# ; Function circleArea {
# ; Location: REPL[121]:1
# push rbp
# mov rbp, rsp
@ -832,9 +832,9 @@ code_native(circle_area, (Int32,), syntax = :intel)
# nop dword ptr [rax]
# ;}
code_native(circle_area, (Float64,), syntax = :intel)
codeNative(circleArea, (Float64,), syntax = :intel)
# .text
# ; Function circle_area {
# ; Function circleArea {
# ; Location: REPL[121]:1
# push rbp
# mov rbp, rsp