Compare commits

...

4 Commits

Author SHA1 Message Date
scronge
5402b7131a
Merge b471f2179a into bc3598b1cd 2024-11-14 22:46:54 -03:00
Alex Hansen
bc3598b1cd
[qsharp/en] update (#5177)
All checks were successful
Trigger site build / deploy (push) Has been skipped
CI / lint (push) Successful in 16s
2024-11-14 14:20:21 -07:00
scronge
b471f2179a
Merge pull request #1 from scronge/scronge-patch-1
[spark/en] Spark Tutorial
2024-11-10 21:33:53 -06:00
scronge
5ae6d4c656
Create spark.html.markdown
This update refines the Spark tutorial to fully align with the established contribution and style guidelines.
2024-11-10 21:32:08 -06:00
2 changed files with 211 additions and 100 deletions

View File

@ -4,6 +4,7 @@ contributors:
- ["Vincent van Wingerden", "https://github.com/vivanwin"]
- ["Mariia Mykhailova", "https://github.com/tcNickolas"]
- ["Andrew Ryan Davis", "https://github.com/AndrewDavis1191"]
- ["Alex Hansen", "https://github.com/sezna"]
filename: LearnQSharp.qs
---
@ -16,35 +17,36 @@ Q# is a high-level domain-specific language which enables developers to write qu
/////////////////////////////////////
// 1. Quantum data types and operators
// The most important part of quantum programs is qubits.
// The most important part of quantum programs is qubits.
// In Q# type Qubit represents the qubits which can be used.
// This will allocate an array of two new qubits as the variable qs.
using (qs = Qubit[2]) {
operation QuantumDataTypes() : Unit {
use qs = Qubit[2];
// The qubits have internal state that you cannot access to read or modify directly.
// You can inspect the current state of your quantum program
// You can inspect the current state of your quantum program
// if you're running it on a classical simulator.
// Note that this will not work on actual quantum hardware!
DumpMachine();
Std.Diagnostics.DumpMachine();
// If you want to change the state of a qubit
// you have to do this by applying quantum gates to the qubit.
H(qs[0]); // This changes the state of the first qubit
// from |0⟩ (the initial state of allocated qubits)
// to (|0⟩ + |1⟩) / sqrt(2).
H(qs[0]); // This changes the state of the first qubit
// from |0⟩ (the initial state of allocated qubits)
// to (|0⟩ + |1⟩) / sqrt(2).
// qs[1] = |1⟩; - this does NOT work, you have to manipulate a qubit by using gates.
// You can apply multi-qubit gates to several qubits.
CNOT(qs[0], qs[1]);
// You can also apply a controlled version of a gate:
// You can also apply a controlled version of a gate:
// a gate that is applied if all control qubits are in |1⟩ state.
// The first argument is an array of control qubits,
// The first argument is an array of control qubits,
// the second argument is the target qubit.
Controlled Y([qs[0]], qs[1]);
Controlled Y([qs[0]], qs[1]);
// If you want to apply an anti-controlled gate
// (a gate that is applied if all control qubits are in |0⟩ state),
// If you want to apply an anti-controlled gate
// (a gate that is applied if all control qubits are in |0⟩ state),
// you can use a library function.
ApplyControlledOnInt(0, X, [qs[0]], qs[1]);
@ -58,96 +60,101 @@ using (qs = Qubit[2]) {
/////////////////////////////////////
// 2. Classical data types and operators
// Numbers in Q# can be stored in Int, BigInt or Double.
let i = 1; // This defines an Int variable i equal to 1
let bi = 1L; // This defines a BigInt variable bi equal to 1
let d = 1.0; // This defines a Double variable d equal to 1
function ClassicalDataTypes() : Unit {
// Numbers in Q# can be stored in Int, BigInt or Double.
let i = 1; // This defines an Int variable i equal to 1
let bi = 1L; // This defines a BigInt variable bi equal to 1
let d = 1.0; // This defines a Double variable d equal to 1
// Arithmetic is done as expected, as long as the types are the same
let n = 2 * 10; // = 20
// Q# does not have implicit type cast,
// so to perform arithmetic on values of different types,
// you need to cast type explicitly
let nd = IntAsDouble(2) * 1.0; // = 20.0
// Arithmetic is done as expected, as long as the types are the same
let n = 2 * 10; // = 20
// Q# does not have implicit type cast,
// so to perform arithmetic on values of different types,
// you need to cast type explicitly
let nd = Std.Convert.IntAsDouble(2) * 1.0; // = 20.0
// Boolean type is called Bool
let trueBool = true;
let falseBool = false;
// Boolean type is called Bool
let trueBool = true;
let falseBool = false;
// Logic operators work as expected
let andBool = true and false;
let orBool = true or false;
let notBool = not false;
// Logic operators work as expected
let andBool = true and false;
let orBool = true or false;
let notBool = not false;
// Strings
let str = "Hello World!";
// Strings
let str = "Hello World!";
// Equality is ==
let x = 10 == 15; // is false
// Equality is ==
let x = 10 == 15; // is false
// Range is a sequence of integers and can be defined like: start..step..stop
let xi = 1..2..7; // Gives the sequence 1,3,5,7
// Range is a sequence of integers and can be defined like: start..step..stop
let xi = 1..2..7; // Gives the sequence 1,3,5,7
// Assigning new value to a variable:
// by default all Q# variables are immutable;
// if the variable was defined using let, you cannot reassign its value.
// Assigning new value to a variable:
// by default all Q# variables are immutable;
// if the variable was defined using let, you cannot reassign its value.
// When you want to make a variable mutable, you have to declare it as such,
// and use the set word to update value
mutable xii = true;
set xii = false;
// When you want to make a variable mutable, you have to declare it as such,
// and use the set word to update value
mutable xii = true;
set xii = false;
// You can create an array for any data type like this
let xiii = new Double[10];
// You can create an array for any data type like this
let xiii = [0.0, size = 10];
// Getting an element from an array
let xiv = xiii[8];
// Getting an element from an array
let xiv = xiii[8];
// Assigning a new value to an array element
mutable xv = new Double[10];
set xv w/= 5 <- 1;
// Assigning a new value to an array element
mutable xv = [0.0, size = 10];
set xv w/= 5 <- 1.0;
}
/////////////////////////////////////
// 3. Control flow
// If structures work a little different than most languages
if (a == 1) {
// ...
} elif (a == 2) {
// ...
} else {
// ...
}
operation ControlFlow() : Unit {
let a = 1;
// If expressions support a true branch, elif, and else.
if (a == 1) {
// ...
} elif (a == 2) {
// ...
} else {
// ...
}
use qubits = Qubit[2];
// Foreach loops can be used to iterate over an array
for (qubit in qubits) {
X(qubit);
}
// For loops can be used to iterate over an array
for qubit in qubits {
X(qubit);
}
// Regular for loops can be used to iterate over a range of numbers
for (index in 0 .. Length(qubits) - 1) {
X(qubits[index]);
}
// Regular for loops can be used to iterate over a range of numbers
for index in 0..Length(qubits) - 1 {
X(qubits[index]);
}
// While loops are restricted for use in classical context only
mutable index = 0;
while (index < 10) {
set index += 1;
}
// While loops are restricted for use in classical context only
mutable index = 0;
while (index < 10) {
set index += 1;
}
// Quantum equivalent of a while loop is a repeat-until-success loop.
// Because of the probabilistic nature of quantum computing sometimes
// you want to repeat a certain sequence of operations
// until a specific condition is achieved; you can use this loop to express this.
repeat {
// Your operation here
let success_criteria = true;
// Quantum equivalent of a while loop is a repeat-until-success loop.
// Because of the probabilistic nature of quantum computing sometimes
// you want to repeat a certain sequence of operations
// until a specific condition is achieved; you can use this loop to express this.
repeat {
// Your operation here
} until (success_criteria) // This could be a measurement to check if the state is reached
fixup {
// Resetting to the initial conditions, if required
}
}
until (success criteria) // This could be a measurement to check if the state is reached
fixup {
// Resetting to the initial conditions, if required
}
/////////////////////////////////////
// 4. Putting it all together
@ -157,11 +164,11 @@ operation ApplyXGate(source : Qubit) : Unit {
X(source);
}
// If the operation implements a unitary transformation, you can define
// adjoint and controlled variants of it.
// The easiest way to do that is to add "is Adj + Ctl" after Unit.
// If the operation implements a unitary transformation, you can define
// adjoint and controlled variants of it.
// The easiest way to do that is to add "is Adj + Ctl" after Unit.
// This will tell the compiler to generate the variants automatically.
operation ApplyXGateCA (source : Qubit) : Unit is Adj + Ctl {
operation ApplyXGateCA(source : Qubit) : Unit is Adj + Ctl {
X(source);
}
@ -169,20 +176,21 @@ operation ApplyXGateCA (source : Qubit) : Unit is Adj + Ctl {
// To run Q# code, you can put @EntryPoint() before the operation you want to run first
@EntryPoint()
operation XGateDemo() : Unit {
using (q = Qubit()) {
ApplyXGate(q);
}
use q = Qubit();
ApplyXGate(q);
}
// Here is a simple example: a quantum random number generator.
// Here is a simple example: a quantum random number generator.
// We will generate a classical array of random bits using quantum code.
@EntryPoint()
operation QRNGDemo() : Unit {
mutable bits = new Int[5]; // Array we'll use to store bits
using (q = Qubit()) { // Allocate a qubit
for (i in 0 .. 4) { // Generate each bit independently
// Callables (functions or operations) named `Main` are used as entry points.
operation Main() : Unit {
mutable bits = [0, size = 5]; // Array we'll use to store bits
use q = Qubit();
{
// Allocate a qubit
for i in 0..4 {
// Generate each bit independently
H(q); // Hadamard gate sets equal superposition
let result = M(q); // Measure qubit gets 0|1 with 50/50 prob
let bit = result == Zero ? 0 | 1; // Convert measurement result to integer
@ -196,9 +204,6 @@ operation QRNGDemo() : Unit {
## Further Reading
The [Quantum Katas][1] offer great self-paced tutorials and programming exercises to learn quantum computing and Q#.
The Quantum Katas ([repo](https://github.com/microsoft/qsharp/tree/main/katas) [hosted tutorials](https://quantum.microsoft.com/en-us/tools/quantum-katas) offer great self-paced tutorials and programming exercises to learn quantum computing and Q#.
[Q# Documentation][2] is official Q# documentation, including language reference and user guides.
[1]: https://github.com/microsoft/QuantumKatas
[2]: https://docs.microsoft.com/quantum/
[Q# Documentation](https://docs.microsoft.com/quantum/) is official Q# documentation, including language reference and user guides.

106
spark.html.markdown Normal file
View File

@ -0,0 +1,106 @@
---
language: Spark
category: tool
tool: Spark
filename: learnspark-en.spark
contributors:
- ["Scronge", "https://github.com/Scronge"]
---
[Spark](https://spark.apache.org/) is an open-source distributed data processing framework that enables large-scale data processing across clusters. This guide covers the basics of **Apache Spark** using PySpark, the Python API.
```python
# Setting Up Spark
from pyspark.sql import SparkSession
spark = SparkSession.builder \
.appName("RealWorldExampleApp") \
.getOrCreate()
# Working with Larger DataFrames
# Sample data for a retail dataset with multiple columns for complex queries
data = [
("Alice", "Electronics", 30, 200),
("Bob", "Clothing", 40, 150),
("Carol", "Electronics", 25, 300),
("Dave", "Home Goods", 35, 100),
("Eve", "Clothing", 28, 80),
("Frank", "Home Goods", 40, 120)
]
columns = ["Name", "Category", "Age", "PurchaseAmount"]
df = spark.createDataFrame(data, columns)
df.show()
# +-----+-----------+---+--------------+
# | Name| Category|Age|PurchaseAmount|
# +-----+-----------+---+--------------+
# |Alice|Electronics| 30| 200|
# | Bob| Clothing| 40| 150|
# |Carol|Electronics| 25| 300|
# | Dave| Home Goods| 35| 100|
# | Eve| Clothing| 28| 80|
# |Frank| Home Goods| 40| 120|
# +-----+-----------+---+--------------+
# Transformations and Actions
# Filtering data to select customers over 30 with purchases above $100
filtered_df = df.filter((df.Age > 30) & (df.PurchaseAmount > 100))
filtered_df.show()
# +-----+-----------+---+--------------+
# | Name| Category|Age|PurchaseAmount|
# +-----+-----------+---+--------------+
# | Bob| Clothing| 40| 150|
# |Frank| Home Goods| 40| 120|
# +-----+-----------+---+--------------+
# Grouping and Aggregations
# Calculate total purchases by category
category_totals = df.groupBy("Category").sum("PurchaseAmount")
category_totals.show()
# +-----------+------------------+
# | Category|sum(PurchaseAmount)|
# +-----------+------------------+
# |Electronics| 500|
# | Clothing| 230|
# | Home Goods| 220|
# +-----------+------------------+
# SQL Queries
# Registering DataFrame as a SQL temporary view
df.createOrReplaceTempView("customers")
high_spenders = spark.sql("SELECT Name, Category, PurchaseAmount FROM customers WHERE PurchaseAmount > 100")
high_spenders.show()
# +-----+-----------+--------------+
# | Name| Category|PurchaseAmount|
# +-----+-----------+--------------+
# |Alice|Electronics| 200|
# | Bob| Clothing| 150|
# |Carol|Electronics| 300|
# |Frank| Home Goods| 120|
# +-----+-----------+--------------+
# Reading and Writing Files
# Reading from CSV with additional options
csv_df = spark.read.csv("path/to/large_retail_data.csv", header=True, inferSchema=True, sep=",")
csv_df.show(5) # Display only first 5 rows for preview
# Writing DataFrame to Parquet format for optimized storage and access
df.write.parquet("output/retail_data")
# RDD Basics
# Creating an RDD and performing complex transformations
sales_data = [(1, 100), (2, 150), (3, 200), (4, 250)]
rdd = spark.sparkContext.parallelize(sales_data)
# Transformations to calculate discounts for each sale
discounted_sales_rdd = rdd.map(lambda x: (x[0], x[1] * 0.9))
print(discounted_sales_rdd.collect())
# Output: [(1, 90.0), (2, 135.0), (3, 180.0), (4, 225.0)]
# Ending the Spark Session
spark.stop()