--- language: swift contributors: - ["Grant Timmerman", "http://github.com/grant"] - ["Christopher Bess", "http://github.com/cbess"] - ["Joey Huang", "http://github.com/kamidox"] - ["Anthony Nguyen", "http://github.com/anthonyn60"] - ["Clayton Walker", "https://github.com/cwalk"] - ["Fernando Valverde", "http://visualcosita.xyz"] - ["Alexey Nazaroff", "https://github.com/rogaven"] filename: learnswift.swift --- Swift is a programming language for iOS and OS X development created by Apple. Designed to coexist with Objective-C and to be more resilient against erroneous code, Swift was introduced in 2014 at Apple's developer conference WWDC. It is built with the LLVM compiler included in Xcode 6+. The official [Swift Programming Language](https://itunes.apple.com/us/book/swift-programming-language/id881256329) book from Apple is now available via iBooks. See also Apple's [getting started guide](https://developer.apple.com/library/prerelease/ios/referencelibrary/GettingStarted/DevelopiOSAppsSwift/), which has a complete tutorial on Swift. ```swift // import a module import UIKit // // MARK: Basics // // Xcode supports landmarks to annotate your code and lists them in the jump bar // MARK: Section mark // MARK: - Section mark with a separator line // TODO: Do something soon // FIXME: Fix this code // In Swift 2, println and print were combined into one print method. Print automatically appends a new line. print("Hello, world") // println is now print print("Hello, world", terminator: "") // printing without appending a newline // variables (var) value can change after being set // constants (let) value can NOT be changed after being set var myVariable = 42 let øπΩ = "value" // unicode variable names let π = 3.1415926 let convenience = "keyword" // contextual variable name let weak = "keyword"; let override = "another keyword" // statements can be separated by a semi-colon let `class` = "keyword" // backticks allow keywords to be used as variable names let explicitDouble: Double = 70 let intValue = 0007 // 7 let largeIntValue = 77_000 // 77000 let label = "some text " + String(myVariable) // String construction let piText = "Pi = \(π), Pi 2 = \(π * 2)" // String interpolation // Build Specific values // uses -D build configuration #if false print("Not printed") let buildValue = 3 #else let buildValue = 7 #endif print("Build value: \(buildValue)") // Build value: 7 /* Optionals are a Swift language feature that either contains a value, or contains nil (no value) to indicate that a value is missing. A question mark (?) after the type marks the value as optional. Because Swift requires every property to have a value, even nil must be explicitly stored as an Optional value. Optional<T> is an enum. */ var someOptionalString: String? = "optional" // Can be nil // same as above, but ? is a postfix operator (syntax candy) var someOptionalString2: Optional<String> = "optional" if someOptionalString != nil { // I am not nil if someOptionalString!.hasPrefix("opt") { print("has the prefix") } let empty = someOptionalString?.isEmpty } someOptionalString = nil /* Trying to use ! to access a non-existent optional value triggers a runtime error. Always make sure that an optional contains a non-nil value before using ! to force-unwrap its value. */ // implicitly unwrapped optional var unwrappedString: String! = "Value is expected." // same as above, but ! is a postfix operator (more syntax candy) var unwrappedString2: ImplicitlyUnwrappedOptional<String> = "Value is expected." // If let structure - // If let is a special structure in Swift that allows you to check if an Optional rhs holds a value, and in case it does - unwraps and assigns it to the lhs. if let someOptionalStringConstant = someOptionalString { // has `Some` value, non-nil if !someOptionalStringConstant.hasPrefix("ok") { // does not have the prefix } } // The nil-coalescing operator ?? unwraps an optional if it contains a non-nil value, or returns a default value. var someOptionalString: String? let someString = someOptionalString ?? "abc" print(someString) // abc // Swift has support for storing a value of any type. // For that purposes there is two keywords: `Any` and `AnyObject` // `AnyObject` == `id` from Objective-C // `Any` – also works with any scalar values (Class, Int, struct, etc.) var anyVar: Any = 7 anyVar = "Changed value to a string, not good practice, but possible." let anyObjectVar: AnyObject = Int(1) as NSNumber /* Comment here /* Nested comments are also supported */ */ // // MARK: Collections // /* Array and Dictionary types are structs. So `let` and `var` also indicate that they are mutable (var) or immutable (let) when declaring these types. */ // Array var shoppingList = ["catfish", "water", "lemons"] shoppingList[1] = "bottle of water" let emptyArray = [String]() // let == immutable let emptyArray2 = Array<String>() // same as above var emptyMutableArray = [String]() // var == mutable var explicitEmptyMutableStringArray: [String] = [] // same as above // Dictionary var occupations = [ "Malcolm": "Captain", "kaylee": "Mechanic" ] occupations["Jayne"] = "Public Relations" let emptyDictionary = [String: Float]() // let == immutable let emptyDictionary2 = Dictionary<String, Float>() // same as above var emptyMutableDictionary = [String: Float]() // var == mutable var explicitEmptyMutableDictionary: [String: Float] = [:] // same as above // // MARK: Control Flow // // Condition statements support "," (comma) clauses, which can be used // to help provide conditions on optional values. // Both the assignment and the "," clause must pass. let someNumber = Optional<Int>(7) if let num = someNumber, num > 3 { print("num is greater than 3") } // for loop (array) let myArray = [1, 1, 2, 3, 5] for value in myArray { if value == 1 { print("One!") } else { print("Not one!") } } // for loop (dictionary) var dict = ["one": 1, "two": 2] for (key, value) in dict { print("\(key): \(value)") } // for loop (range) for i in -1...shoppingList.count { print(i) } shoppingList[1...2] = ["steak", "peacons"] // use ..< to exclude the last number // while loop var i = 1 while i < 1000 { i *= 2 } // repeat-while loop repeat { print("hello") } while 1 == 2 // Switch // Very powerful, think `if` statements with syntax candy // They support String, object instances, and primitives (Int, Double, etc) let vegetable = "red pepper" switch vegetable { case "celery": let vegetableComment = "Add some raisins and make ants on a log." case "cucumber", "watercress": let vegetableComment = "That would make a good tea sandwich." case let localScopeValue where localScopeValue.hasSuffix("pepper"): let vegetableComment = "Is it a spicy \(localScopeValue)?" default: // required (in order to cover all possible input) let vegetableComment = "Everything tastes good in soup." } // // MARK: Functions // // Functions are a first-class type, meaning they can be nested // in functions and can be passed around // Function with Swift header docs (format as Swift-modified Markdown syntax) /** A greet operation - A bullet in docs - Another bullet in the docs - Parameter name : A name - Parameter day : A day - Returns : A string containing the name and day value. */ func greet(name: String, day: String) -> String { return "Hello \(name), today is \(day)." } greet(name: "Bob", day: "Tuesday") // similar to above except for the function parameter behaviors func greet2(name: String, externalParamName localParamName: String) -> String { return "Hello \(name), the day is \(localParamName)" } greet2(name: "John", externalParamName: "Sunday") // Function that returns multiple items in a tuple func getGasPrices() -> (Double, Double, Double) { return (3.59, 3.69, 3.79) } let pricesTuple = getGasPrices() let price = pricesTuple.2 // 3.79 // Ignore Tuple (or other) values by using _ (underscore) let (_, price1, _) = pricesTuple // price1 == 3.69 print(price1 == pricesTuple.1) // true print("Gas price: \(price)") // Labeled/named tuple params func getGasPrices2() -> (lowestPrice: Double, highestPrice: Double, midPrice: Double) { return (1.77, 37.70, 7.37) } let pricesTuple2 = getGasPrices2() let price2 = pricesTuple2.lowestPrice let (_, price3, _) = pricesTuple2 print(pricesTuple2.highestPrice == pricesTuple2.1) // true print("Highest gas price: \(pricesTuple2.highestPrice)") // guard statements func testGuard() { // guards provide early exits or breaks, placing the error handler code near the conditions. // it places variables it declares in the same scope as the guard statement. guard let aNumber = Optional<Int>(7) else { return } print("number is \(aNumber)") } testGuard() // Variadic Args func setup(numbers: Int...) { // it's an array let _ = numbers[0] let _ = numbers.count } // Passing and returning functions func makeIncrementer() -> ((Int) -> Int) { func addOne(number: Int) -> Int { return 1 + number } return addOne } var increment = makeIncrementer() increment(7) // pass by ref func swapTwoInts(a: inout Int, b: inout Int) { let tempA = a a = b b = tempA } var someIntA = 7 var someIntB = 3 swapTwoInts(a: &someIntA, b: &someIntB) print(someIntB) // 7 // // MARK: Closures // var numbers = [1, 2, 6] // Functions are special case closures ({}) // Closure example. // `->` separates the arguments and return type // `in` separates the closure header from the closure body numbers.map({ (number: Int) -> Int in let result = 3 * number return result }) // When the type is known, like above, we can do this numbers = numbers.map({ number in 3 * number }) // Or even this //numbers = numbers.map({ $0 * 3 }) print(numbers) // [3, 6, 18] // Trailing closure numbers = numbers.sorted { $0 > $1 } print(numbers) // [18, 6, 3] // // MARK: Structures // // Structures and classes have very similar capabilities struct NamesTable { let names: [String] // Custom subscript subscript(index: Int) -> String { return names[index] } } // Structures have an auto-generated (implicit) designated initializer let namesTable = NamesTable(names: ["Me", "Them"]) let name = namesTable[1] print("Name is \(name)") // Name is Them // // MARK: Error Handling // // The `Error` protocol is used when throwing errors to catch enum MyError: Error { case badValue(msg: String) case reallyBadValue(msg: String) } // functions marked with `throws` must be called using `try` func fakeFetch(value: Int) throws -> String { guard 7 == value else { throw MyError.reallyBadValue(msg: "Some really bad value") } return "test" } func testTryStuff() { // assumes there will be no error thrown, otherwise a runtime exception is raised let _ = try! fakeFetch(value: 7) // if an error is thrown, then it proceeds, but if the value is nil // it also wraps every return value in an optional, even if its already optional let _ = try? fakeFetch(value: 7) do { // normal try operation that provides error handling via `catch` block try fakeFetch(value: 1) } catch MyError.badValue(let msg) { print("Error message: \(msg)") } catch { // must be exhaustive } } testTryStuff() // // MARK: Classes // // Classes, structures and its members have three levels of access control // They are: internal (default), public, private public class Shape { public func getArea() -> Int { return 0 } } // All methods and properties of a class are public. // If you just need to store data in a // structured object, you should use a `struct` internal class Rect: Shape { var sideLength: Int = 1 // Custom getter and setter property private var perimeter: Int { get { return 4 * sideLength } set { // `newValue` is an implicit variable available to setters sideLength = newValue / 4 } } // Computed properties must be declared as `var`, you know, cause' they can change var smallestSideLength: Int { return self.sideLength - 1 } // Lazily load a property // subShape remains nil (uninitialized) until getter called lazy var subShape = Rect(sideLength: 4) // If you don't need a custom getter and setter, // but still want to run code before and after getting or setting // a property, you can use `willSet` and `didSet` var identifier: String = "defaultID" { // the `willSet` arg will be the variable name for the new value willSet(someIdentifier) { print(someIdentifier) } } init(sideLength: Int) { self.sideLength = sideLength // always super.init last when init custom properties super.init() } func shrink() { if sideLength > 0 { sideLength -= 1 } } override func getArea() -> Int { return sideLength * sideLength } } // A simple class `Square` extends `Rect` class Square: Rect { convenience init() { self.init(sideLength: 5) } } var mySquare = Square() print(mySquare.getArea()) // 25 mySquare.shrink() print(mySquare.sideLength) // 4 // cast instance let aShape = mySquare as Shape // compare instances, not the same as == which compares objects (equal to) if mySquare === mySquare { print("Yep, it's mySquare") } // Optional init class Circle: Shape { var radius: Int override func getArea() -> Int { return 3 * radius * radius } // Place a question mark postfix after `init` is an optional init // which can return nil init?(radius: Int) { self.radius = radius super.init() if radius <= 0 { return nil } } } var myCircle = Circle(radius: 1) print(myCircle?.getArea()) // Optional(3) print(myCircle!.getArea()) // 3 var myEmptyCircle = Circle(radius: -1) print(myEmptyCircle?.getArea()) // "nil" if let circle = myEmptyCircle { // will not execute since myEmptyCircle is nil print("circle is not nil") } // // MARK: Enums // // Enums can optionally be of a specific type or on their own. // They can contain methods like classes. enum Suit { case spades, hearts, diamonds, clubs func getIcon() -> String { switch self { case .spades: return "♤" case .hearts: return "♡" case .diamonds: return "♢" case .clubs: return "♧" } } } // Enum values allow short hand syntax, no need to type the enum type // when the variable is explicitly declared var suitValue: Suit = .hearts // String enums can have direct raw value assignments // or their raw values will be derived from the Enum field enum BookName: String { case john case luke = "Luke" } print("Name: \(BookName.john.rawValue)") // Enum with associated Values enum Furniture { // Associate with Int case desk(height: Int) // Associate with String and Int case chair(String, Int) func description() -> String { switch self { case .desk(let height): return "Desk with \(height) cm" case .chair(let brand, let height): return "Chair of \(brand) with \(height) cm" } } } var desk: Furniture = .desk(height: 80) print(desk.description()) // "Desk with 80 cm" var chair = Furniture.chair("Foo", 40) print(chair.description()) // "Chair of Foo with 40 cm" // // MARK: Protocols // // `protocol`s can require that conforming types have specific // instance properties, instance methods, type methods, // operators, and subscripts. protocol ShapeGenerator { var enabled: Bool { get set } func buildShape() -> Shape } // Protocols declared with @objc allow optional functions, // which allow you to check for conformance. These functions must be // marked with @objc also. @objc protocol TransformShape { @objc optional func reshape() @objc optional func canReshape() -> Bool } class MyShape: Rect { var delegate: TransformShape? func grow() { sideLength += 2 // Place a question mark after an optional property, method, or // subscript to gracefully ignore a nil value and return nil // instead of throwing a runtime error ("optional chaining"). if let reshape = self.delegate?.canReshape?(), reshape { // test for delegate then for method self.delegate?.reshape?() } } } // // MARK: Other // // `extension`s: Add extra functionality to an already existing type // Square now "conforms" to the `CustomStringConvertible` protocol extension Square: CustomStringConvertible { var description: String { return "Area: \(self.getArea()) - ID: \(self.identifier)" } } print("Square: \(mySquare)") // You can also extend built-in types extension Int { var customProperty: String { return "This is \(self)" } func multiplyBy(num: Int) -> Int { return num * self } } print(7.customProperty) // "This is 7" print(14.multiplyBy(num: 3)) // 42 // Generics: Similar to Java and C#. Use the `where` keyword to specify the // requirements of the generics. func findIndex<T: Equatable>(array: [T], valueToFind: T) -> Int? { for (index, value) in array.enumerated() { if value == valueToFind { return index } } return nil } let foundAtIndex = findIndex(array: [1, 2, 3, 4], valueToFind: 3) print(foundAtIndex == 2) // true // Operators: // Custom operators can start with the characters: // / = - + * % < > ! & | ^ . ~ // or // Unicode math, symbol, arrow, dingbat, and line/box drawing characters. prefix operator !!! // A prefix operator that triples the side length when used prefix func !!! (shape: inout Square) -> Square { shape.sideLength *= 3 return shape } // current value print(mySquare.sideLength) // 4 // change side length using custom !!! operator, increases size by 3 !!!mySquare print(mySquare.sideLength) // 12 // Operators can also be generics infix operator <-> func <-><T: Equatable> (a: inout T, b: inout T) { let c = a a = b b = c } var foo: Float = 10 var bar: Float = 20 foo <-> bar print("foo is \(foo), bar is \(bar)") // "foo is 20.0, bar is 10.0" ```