# 评论以 # 开始 # R 语言原生不支持 多行注释 # 但是你可以像这样来多行注释 # 在窗口里按回车键可以执行一条命令 ################################################################### # 不用懂编程就可以开始动手了 ################################################################### data() # 浏览内建的数据集 data(rivers) # 北美主要河流的长度(数据集) ls() # 在工作空间中查看「河流」是否出现 head(rivers) # 撇一眼数据集 # 735 320 325 392 524 450 length(rivers) # 我们测量了多少条河流? # 141 summary(rivers) # Min. 1st Qu. Median Mean 3rd Qu. Max. # 135.0 310.0 425.0 591.2 680.0 3710.0 stem(rivers) # 茎叶图(一种类似于直方图的展现形式) # # The decimal point is 2 digit(s) to the right of the | # # 0 | 4 # 2 | 011223334555566667778888899900001111223333344455555666688888999 # 4 | 111222333445566779001233344567 # 6 | 000112233578012234468 # 8 | 045790018 # 10 | 04507 # 12 | 1471 # 14 | 56 # 16 | 7 # 18 | 9 # 20 | # 22 | 25 # 24 | 3 # 26 | # 28 | # 30 | # 32 | # 34 | # 36 | 1 stem(log(rivers)) # 查看数据集的方式既不是标准形式,也不是取log后的结果! 看起来,是钟形曲线形式的基本数据集 # The decimal point is 1 digit(s) to the left of the | # # 48 | 1 # 50 | # 52 | 15578 # 54 | 44571222466689 # 56 | 023334677000124455789 # 58 | 00122366666999933445777 # 60 | 122445567800133459 # 62 | 112666799035 # 64 | 00011334581257889 # 66 | 003683579 # 68 | 0019156 # 70 | 079357 # 72 | 89 # 74 | 84 # 76 | 56 # 78 | 4 # 80 | # 82 | 2 hist(rivers, col="#333333", border="white", breaks=25) # 试试用这些参数画画 (译者注:给 river 做统计频数直方图,包含了这些参数:数据源,颜色,边框,空格) hist(log(rivers), col="#333333", border="white", breaks=25) #你还可以做更多式样的绘图 # 还有其他一些简单的数据集可以被用来加载。R 语言包括了大量这种 data() data(discoveries) plot(discoveries, col="#333333", lwd=3, xlab="Year", main="Number of important discoveries per year") # 译者注:参数为(数据源,颜色,线条宽度,X 轴名称,标题) plot(discoveries, col="#333333", lwd=3, type = "h", xlab="Year", main="Number of important discoveries per year") # 除了按照默认的年份排序,我们还可以排序来发现特征 sort(discoveries) # [1] 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 # [26] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 # [51] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 # [76] 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 8 9 10 12 stem(discoveries, scale=2) # 译者注:茎叶图(数据,放大系数) # # The decimal point is at the | # # 0 | 000000000 # 1 | 000000000000 # 2 | 00000000000000000000000000 # 3 | 00000000000000000000 # 4 | 000000000000 # 5 | 0000000 # 6 | 000000 # 7 | 0000 # 8 | 0 # 9 | 0 # 10 | 0 # 11 | # 12 | 0 max(discoveries) # 12 summary(discoveries) # Min. 1st Qu. Median Mean 3rd Qu. Max. # 0.0 2.0 3.0 3.1 4.0 12.0 #基本的统计学操作也不需要任何编程知识 #随机生成数据 round(runif(7, min=.5, max=6.5)) # 译者注:runif 产生随机数,round 四舍五入 # 1 4 6 1 4 6 4 # 你输出的结果会和我们给出的不同,除非我们设置了相同的随机种子 random.seed(31337) #从标准高斯函数中随机生成 9 次 rnorm(9) # [1] 0.07528471 1.03499859 1.34809556 -0.82356087 0.61638975 -1.88757271 # [7] -0.59975593 0.57629164 1.08455362 ######################### # 基础编程 ######################### # 数值 #“数值”指的是双精度的浮点数 5 # 5 class(5) # "numeric" 5e4 # 50000 # 用科学技术法方便的处理极大值、极小值或者可变的量级 6.02e23 # 阿伏伽德罗常数# 1.6e-35 # 布朗克长度 # 长整数并用 L 结尾 5L # 5 #输出5L class(5L) # "integer" # 可以自己试一试?用 class() 函数获取更多信息 # 事实上,你可以找一些文件查阅 `xyz` 以及xyz的差别 # `xyz` 用来查看源码实现,?xyz 用来看帮助 # 算法 10 + 66 # 76 53.2 - 4 # 49.2 2 * 2.0 # 4 3L / 4 # 0.75 3 %% 2 # 1 # 特殊数值类型 class(NaN) # "numeric" class(Inf) # "numeric" class(-Inf) # "numeric" # 在以下场景中会用到 integrate( dnorm(x), 3, Inf ) -- 消除 Z 轴数据 # 但要注意,NaN 并不是唯一的特殊数值类型…… class(NA) # 看上面 class(NULL) # NULL # 简单列表 c(6, 8, 7, 5, 3, 0, 9) # 6 8 7 5 3 0 9 c('alef', 'bet', 'gimmel', 'dalet', 'he') c('Z', 'o', 'r', 'o') == "Zoro" # FALSE FALSE FALSE FALSE # 一些优雅的内置功能 5:15 # 5 6 7 8 9 10 11 12 13 14 15 seq(from=0, to=31337, by=1337) # [1] 0 1337 2674 4011 5348 6685 8022 9359 10696 12033 13370 14707 # [13] 16044 17381 18718 20055 21392 22729 24066 25403 26740 28077 29414 30751 letters # [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" # [20] "t" "u" "v" "w" "x" "y" "z" month.abb # "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec" # Access the n'th element of a list with list.name[n] or sometimes list.name[[n]] # 使用 list.name[n] 来访问第 n 个列表元素,有时候需要使用 list.name[[n]] letters[18] # "r" LETTERS[13] # "M" month.name[9] # "September" c(6, 8, 7, 5, 3, 0, 9)[3] # 7 # CHARACTERS #特性 # There's no difference between strings and characters in R # 字符串和字符在R语言中没有区别 "Horatio" # "Horatio" #字符输出"Horatio" class("Horatio") # "character" #字符串输出("Horatio") # "character" substr("Fortuna multis dat nimis, nulli satis.", 9, 15) # "multis " #提取字符串("Fortuna multis dat nimis, nulli satis.", 第9个到15个之前并输出) gsub('u', 'ø', "Fortuna multis dat nimis, nulli satis.") # "Fortøna møltis dat nimis, nølli satis." #替换字符春,用ø替换u # LOGICALS #逻辑值 # booleans #布尔运算 class(TRUE) # "logical" #定义为真,逻辑型 class(FALSE) # "logical" #定义为假,逻辑型 # Behavior is normal #表现的标准形式 TRUE == TRUE # TRUE TRUE == FALSE # FALSE FALSE != FALSE # FALSE FALSE != TRUE # TRUE # Missing data (NA) is logical, too #缺失数据也是逻辑型的 class(NA) # "logical" #定义NA为逻辑型 # FACTORS #因子 # The factor class is for categorical data #因子是分类数据的定义函数 # which can be ordered (like childrens' grade levels) #可以使有序的(就像儿童的等级水平) # or unordered (like gender) #也可以是无序的(就像性别) levels(factor(c("female", "male", "male", "female", "NA", "female"))) # "female" "male" "NA" #c("female", "male", "male", "female", "NA", "female")向量,变量是字符型,levels factor()因子的等级水平 factor(c("female", "female", "male", "NA", "female")) # female female male NA female # Levels: female male NA data(infert) #Infertility after Spontaneous and Induced Abortion #数据集(感染) 自然以及引产导致的不育症 levels(infert$education) # "0-5yrs" "6-11yrs" "12+ yrs" #等级(感染与教育程度) 输出 # VARIABLES #变量 # Lots of way to assign stuff #许多种方式用来分配素材 x = 5 # this is possible #x = 5可能的 y <- "1" # this is preferred #y <- "1" 优先级的 TRUE -> z # this works but is weird #输出真实的,存在一个超自然数满足条件 # We can use coerce variables to different classes #我们还可以使用枪支变量去进行不同的定义 as.numeric(y) # 1 #定义数值型 as.character(x) # "5" #字符型 # LOOPS #循环 # We've got for loops #循环语句 for (i in 1:4) { print(i) } #定义一个i,从1-4输出 # We've got while loops #我们可以获取循环结构 a <- 10 while (a > 4) { cat(a, "...", sep = "") a <- a - 1 } #把10负值为a,a<4,输出文件(a,"...",sep="" ),跳出继续下一个循环取a=a-1,如此循环,直到a=10终止 # Keep in mind that for and while loops run slowly in R #在R语言中牢记 for和它的循环结构 # Operations on entire vectors (i.e. a whole row, a whole column) #牢记矢量中附带的操作(例如,整行和整列) # or apply()-type functions (we'll discuss later) are preferred #或者优先使用()-函数,稍后会进行讨论 # IF/ELSE #判断分支 # Again, pretty standard #再一次,看这些优雅的标准 if (4 > 3) { print("Huzzah! It worked!") } else { print("Noooo! This is blatantly illogical!") } # => # [1] "Huzzah! It worked!" # FUNCTIONS #功能函数 # Defined like so: #定义如下 jiggle <- function(x) { x+ rnorm(x, sd=.1) #add in a bit of (controlled) noise return(x) } #把功能函数x负值给jiggle, # Called like any other R function: jiggle(5) # 5±ε. After set.seed(2716057), jiggle(5)==5.005043 ######################### # Fun with data: vectors, matrices, data frames, and arrays # 数据参数:向量,矩阵,数据框,数组, ######################### # ONE-DIMENSIONAL #单维度 # You can vectorize anything, so long as all components have the same type #你可以将任何东西矢量化,因此所有的组分都有相同的类型 vec <- c(8, 9, 10, 11) vec # 8 9 10 11 # The class of a vector is the class of its components #矢量class表示这一组分的类型 class(vec) # "numeric" # If you vectorize items of different classes, weird coercions happen #如果你强制的将不同类型的classes矢量化,会发生超自然形式的函数,例如都转变成数值型、字符型 c(TRUE, 4) # 1 4 c("dog", TRUE, 4) # "dog" "TRUE" "4" # We ask for specific components like so (R starts counting from 1) #我们可以找寻特定的组分,例如这个例子(R从1算起) vec[1] # 8 # We can also search for the indices of specific components, #我们也可以从这些特定组分中找寻这些指标 which(vec %% 2 == 0) # 1 3 # or grab just the first or last entry in the vector #抓取矢量中第1个和最后一个字符 head(vec, 1) # 8 tail(vec, 1) # 11 #如果指数结束或不存在即"goes over" 可以获得NA # If an index "goes over" you'll get NA: vec[6] # NA # You can find the length of your vector with length() #你也可以找到矢量的长度 length(vec) # 4 # You can perform operations on entire vectors or subsets of vectors #你可以将整个矢量或者子矢量集进行展示 vec * 4 # 16 20 24 28 # vec[2:3] * 5 # 25 30 # and there are many built-in functions to summarize vectors #这里有许多内置的功能函数,并且可对矢量特征进行总结 mean(vec) # 9.5 var(vec) # 1.666667 sd(vec) # 1.290994 max(vec) # 11 min(vec) # 8 sum(vec) # 38 # TWO-DIMENSIONAL (ALL ONE CLASS) #二维函数 # You can make a matrix out of entries all of the same type like so: #你可以建立矩阵,保证所有的变量形式相同 mat <- matrix(nrow = 3, ncol = 2, c(1,2,3,4,5,6)) #建立mat矩阵,3行2列,从1到6排列,默认按列排布 mat # => # [,1] [,2] # [1,] 1 4 # [2,] 2 5 # [3,] 3 6 # Unlike a vector, the class of a matrix is "matrix", no matter what's in it class(mat) # => "matrix" # Ask for the first row #访问第一行的字符 mat[1,] # 1 4 # Perform operation on the first column #优先输入第一列,分别×3输出 3 * mat[,1] # 3 6 9 # Ask for a specific cell #访问特殊的单元,第3行第二列 mat[3,2] # 6 # Transpose the whole matrix #转置整个矩阵,变成2行3列 t(mat) # => # [,1] [,2] [,3] # [1,] 1 2 3 # [2,] 4 5 6 # cbind() sticks vectors together column-wise to make a matrix 把两个矩阵按列合并,形成新的矩阵 mat2 <- cbind(1:4, c("dog", "cat", "bird", "dog")) mat2 # => # [,1] [,2] # [1,] "1" "dog" # [2,] "2" "cat" # [3,] "3" "bird" # [4,] "4" "dog" class(mat2) # matrix #定义mat2矩阵 # Again, note what happened! #同样的注释 # Because matrices must contain entries all of the same class, #矩阵必须包含同样的形式 # everything got converted to the character class #每一个变量都可以转化成字符串形式 c(class(mat2[,1]), class(mat2[,2])) # rbind() sticks vectors together row-wise to make a matrix #按行合并两个向量,建立新的矩阵 mat3 <- rbind(c(1,2,4,5), c(6,7,0,4)) mat3 # => # [,1] [,2] [,3] [,4] # [1,] 1 2 4 5 # [2,] 6 7 0 4 # Aah, everything of the same class. No coercions. Much better. # TWO-DIMENSIONAL (DIFFERENT CLASSES) ##二维函数(不同的变量类型) # For columns of different classes, use the data frame 利用数组可以将不同类型放在一起 dat <- data.frame(c(5,2,1,4), c("dog", "cat", "bird", "dog")) #dat<-数据集(c(5,2,1,4), c("dog", "cat", "bird", "dog")) names(dat) <- c("number", "species") # name the columns #给每一个向量命名 class(dat) # "data.frame" #建立数据集dat dat # => # number species # 1 5 dog # 2 2 cat # 3 1 bird # 4 4 dog class(dat$number) # "numeric" class(dat[,2]) # "factor" # The data.frame() function converts character vectors to factor vectors #数据集,将字符特征转化为因子矢量 # There are many twisty ways to subset data frames, all subtly unalike #这里有许多种生成数据集的方法,所有的都很巧妙但又不相似 dat$number # 5 2 1 4 dat[,1] # 5 2 1 4 dat[,"number"] # 5 2 1 4 # MULTI-DIMENSIONAL (ALL OF ONE CLASS) #多维函数 # Arrays creates n-dimensional tables #利用数组创造一个n维的表格 # You can make a two-dimensional table (sort of like a matrix) #你可以建立一个2维表格(类型和矩阵相似) array(c(c(1,2,4,5),c(8,9,3,6)), dim=c(2,4)) #数组(c(c(1,2,4,5),c(8,9,3,6)),有前两个向量组成,2行4列 # => # [,1] [,2] [,3] [,4] # [1,] 1 4 8 3 # [2,] 2 5 9 6 # You can use array to make three-dimensional matrices too #你也可以利用数组建立一个三维的矩阵 array(c(c(c(2,300,4),c(8,9,0)),c(c(5,60,0),c(66,7,847))), dim=c(3,2,2)) # => # , , 1 # # [,1] [,2] # [1,] 2 8 # [2,] 300 9 # [3,] 4 0 # # , , 2 # # [,1] [,2] # [1,] 5 66 # [2,] 60 7 # [3,] 0 847 # LISTS (MULTI-DIMENSIONAL, POSSIBLY RAGGED, OF DIFFERENT TYPES) #列表(多维的,不同类型的) # Finally, R has lists (of vectors) #R语言有列表的形式 list1 <- list(time = 1:40) list1$price = c(rnorm(40,.5*list1$time,4)) # random list1 # You can get items in the list like so #你可以获得像上面列表的形式 list1$time # You can subset list items like vectors #你也可以获取他们的子集,一种类似于矢量的形式 list1$price[4] ######################### # The apply() family of functions #apply()函数家族的应用 ######################### # Remember mat? #输出mat矩阵 mat # => # [,1] [,2] # [1,] 1 4 # [2,] 2 5 # [3,] 3 6 # Use apply(X, MARGIN, FUN) to apply function FUN to a matrix X #使用(X, MARGIN, FUN)将一个function功能函数根据其特征应用到矩阵x中 # over rows (MAR = 1) or columns (MAR = 2) #规定行列,其边界分别为1,2 # That is, R does FUN to each row (or column) of X, much faster than a #即就是,R定义一个function使每一行/列的x快于一个for或者while循环 # for or while loop would do apply(mat, MAR = 2, myFunc) # => # [,1] [,2] # [1,] 3 15 # [2,] 7 19 # [3,] 11 23 # Other functions: ?lapply, ?sapply 其他的功能函数, # Don't feel too intimidated; everyone agrees they are rather confusing #不要被这些吓到,许多人在此都会容易混淆 # The plyr package aims to replace (and improve upon!) the *apply() family. #plyr程序包的作用是用来改进family函数家族 install.packages("plyr") require(plyr) ?plyr ######################### # Loading data ######################### # "pets.csv" is a file on the internet #"pets.csv" 是网上的一个文本 pets <- read.csv("http://learnxinyminutes.com/docs/pets.csv") #首先读取这个文本 pets head(pets, 2) # first two rows #显示前两行 tail(pets, 1) # last row #显示最后一行 # To save a data frame or matrix as a .csv file #以.csv格式来保存数据集或者矩阵 write.csv(pets, "pets2.csv") # to make a new .csv file #输出新的文本pets2.csv # set working directory with setwd(), look it up with getwd() #改变工作路径setwd(),查找工作路径getwd() # Try ?read.csv and ?write.csv for more information #试着做一做以上学到的,或者运行更多的信息 ######################### # Plots #画图 ######################### # Scatterplots! #散点图 plot(list1$time, list1$price, main = "fake data") #作图,横轴list1$time,纵轴list1$price,主题fake data # Regressions! #退回 linearModel <- lm(price ~ time, data = list1) # 线性模型,数据集为list1,以价格对时间做相关分析模型 linearModel # outputs result of regression #输出拟合结果,并退出 # Plot regression line on existing plot #将拟合结果展示在图上,颜色设为红色 abline(linearModel, col = "red") # Get a variety of nice diagnostics #也可以获取各种各样漂亮的分析图 plot(linearModel) # Histograms! #直方图 hist(rpois(n = 10000, lambda = 5), col = "thistle") #统计频数直方图() # Barplots! #柱状图 barplot(c(1,4,5,1,2), names.arg = c("red","blue","purple","green","yellow")) #作图,柱的高度负值c(1,4,5,1,2),各个柱子的名称"red","blue","purple","green","yellow" # Try the ggplot2 package for more and better graphics #可以尝试着使用ggplot2程序包来美化图片 install.packages("ggplot2") require(ggplot2) ?ggplot2