--- language: F# contributors: - ["Scott Wlaschin", "http://fsharpforfunandprofit.com/"] filename: learnfsharp.fs --- F# is a general purpose functional/OO programming language. It's free and open source, and runs on Linux, Mac, Windows and more. It has a powerful type system that traps many errors at compile time, but it uses type inference so that it reads more like a dynamic language. The syntax of F# is different from C-style languages: * Curly braces are not used to delimit blocks of code. Instead, indentation is used (like Python). * Whitespace is used to separate parameters rather than commas. If you want to try out the code below, you can go to [https://try.fsharp.org](https://try.fsharp.org) and paste it into an interactive REPL. ```fsharp // single line comments use a double slash (* multi line comments use (* . . . *) pair -end of multi line comment- *) // ================================================ // Basic Syntax // ================================================ // ------ "Variables" (but not really) ------ // The "let" keyword defines an (immutable) value let myInt = 5 let myFloat = 3.14 let myString = "hello" // note that no types needed // Mutable variables let mutable a=3 a <- 4 // a is now 4. // Somewhat mutable variables // Reference cells are storage locations that enable you to create mutable values with reference semantics. // See https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/reference-cells let xRef = ref 10 printfn "%d" xRef.Value // 10 xRef.Value <- 11 printfn "%d" xRef.Value // 11 let a=[ref 0; ref 1] // somewhat mutable list a[0].Value <- 2 // ------ Lists ------ let twoToFive = [2; 3; 4; 5] // Square brackets create a list with // semicolon delimiters. let oneToFive = 1 :: twoToFive // :: creates list with new 1st element // The result is [1; 2; 3; 4; 5] let zeroToFive = [0; 1] @ twoToFive // @ concats two lists // IMPORTANT: commas are never used as delimiters, only semicolons! // ------ Functions ------ // The "let" keyword also defines a named function. let square x = x * x // Note that no parens are used. square 3 // Now run the function. Again, no parens. let add x y = x + y // don't use add (x,y)! It means something // completely different. add 2 3 // Now run the function. // to define a multiline function, just use indents. No semicolons needed. let evens list = let isEven x = x % 2 = 0 // Define "isEven" as a sub function. Note // that equality operator is single char "=". List.filter isEven list // List.filter is a library function // with two parameters: a boolean function // and a list to work on evens oneToFive // Now run the function // You can use parens to clarify precedence. In this example, // do "map" first, with two args, then do "sum" on the result. // Without the parens, "List.map" would be passed as an arg to List.sum let sumOfSquaresTo100 = List.sum ( List.map square [1..100] ) // You can pipe the output of one operation to the next using "|>" // Piping data around is very common in F#, similar to UNIX pipes. // Here is the same sumOfSquares function written using pipes let sumOfSquaresTo100piped = [1..100] |> List.map square |> List.sum // "square" was defined earlier // you can define lambdas (anonymous functions) using the "fun" keyword let sumOfSquaresTo100withFun = [1..100] |> List.map (fun x -> x * x) |> List.sum // In F# there is no "return" keyword. A function always // returns the value of the last expression used. // ------ Pattern Matching ------ // Match..with.. is a supercharged case/switch statement. let simplePatternMatch = let x = "a" match x with | "a" -> printfn "x is a" | "b" -> printfn "x is b" | _ -> printfn "x is something else" // underscore matches anything // F# doesn't allow nulls by default -- you must use an Option type // and then pattern match. // Some(..) and None are roughly analogous to Nullable wrappers let validValue = Some(99) let invalidValue = None // In this example, match..with matches the "Some" and the "None", // and also unpacks the value in the "Some" at the same time. let optionPatternMatch input = match input with | Some i -> printfn "input is an int=%d" i | None -> printfn "input is missing" optionPatternMatch validValue optionPatternMatch invalidValue // ------ Printing ------ // The printf/printfn functions are similar to the // Console.Write/WriteLine functions in C#. printfn "Printing an int %i, a float %f, a bool %b" 1 2.0 true printfn "A string %s, and something generic %A" "hello" [1; 2; 3; 4] // There are also sprintf/sprintfn functions for formatting data // into a string, similar to String.Format in C#. // ================================================ // More on functions // ================================================ // F# is a true functional language -- functions are first // class entities and can be combined easily to make powerful // constructs // Modules are used to group functions together // Indentation is needed for each nested module. module FunctionExamples = // define a simple adding function let add x y = x + y // basic usage of a function let a = add 1 2 printfn "1 + 2 = %i" a // partial application to "bake in" parameters let add42 = add 42 let b = add42 1 printfn "42 + 1 = %i" b // composition to combine functions let add1 = add 1 let add2 = add 2 let add3 = add1 >> add2 let c = add3 7 printfn "3 + 7 = %i" c // higher order functions [1..10] |> List.map add3 |> printfn "new list is %A" // lists of functions, and more let add6 = [add1; add2; add3] |> List.reduce (>>) let d = add6 7 printfn "1 + 2 + 3 + 7 = %i" d // ================================================ // Lists and collection // ================================================ // There are three types of ordered collection: // * Lists are most basic immutable collection. // * Arrays are mutable and more efficient when needed. // * Sequences are lazy and infinite (e.g. an enumerator). // // Other collections include immutable maps and sets // plus all the standard .NET collections module ListExamples = // lists use square brackets let list1 = ["a"; "b"] let list2 = "c" :: list1 // :: is prepending let list3 = list1 @ list2 // @ is concat // list comprehensions (aka generators) let squares = [for i in 1..10 do yield i * i] // A prime number generator // - this is using a short notation for the pattern matching syntax // - (p::xs) is 'first :: tail' of the list, could also be written as p :: xs // this means this matches 'p' (the first item in the list), and xs is the rest of the list // this is called the 'cons pattern' // - uses 'rec' keyword, which is necessary when using recursion let rec sieve = function | (p::xs) -> p :: sieve [ for x in xs do if x % p > 0 then yield x ] | [] -> [] let primes = sieve [2..50] printfn "%A" primes // pattern matching for lists let listMatcher aList = match aList with | [] -> printfn "the list is empty" | [first] -> printfn "the list has one element %A " first | [first; second] -> printfn "list is %A and %A" first second | first :: _ -> printfn "the list has more than two elements, first element %A" first listMatcher [1; 2; 3; 4] listMatcher [1; 2] listMatcher [1] listMatcher [] // recursion using lists let rec sum aList = match aList with | [] -> 0 | x::xs -> x + sum xs sum [1..10] // ----------------------------------------- // Standard library functions // ----------------------------------------- // map let add3 x = x + 3 [1..10] |> List.map add3 // filter let even x = x % 2 = 0 [1..10] |> List.filter even // many more -- see documentation module ArrayExamples = // arrays use square brackets with bar let array1 = [| "a"; "b" |] let first = array1.[0] // indexed access using dot // pattern matching for arrays is same as for lists let arrayMatcher aList = match aList with | [| |] -> printfn "the array is empty" | [| first |] -> printfn "the array has one element %A " first | [| first; second |] -> printfn "array is %A and %A" first second | _ -> printfn "the array has more than two elements" arrayMatcher [| 1; 2; 3; 4 |] // Standard library functions just as for List [| 1..10 |] |> Array.map (fun i -> i + 3) |> Array.filter (fun i -> i % 2 = 0) |> Array.iter (printfn "value is %i. ") module SequenceExamples = // sequences use curly braces let seq1 = seq { yield "a"; yield "b" } // sequences can use yield and // can contain subsequences let strange = seq { // "yield" adds one element yield 1; yield 2; // "yield!" adds a whole subsequence yield! [5..10] yield! seq { for i in 1..10 do if i % 2 = 0 then yield i }} // test strange |> Seq.toList // Sequences can be created using "unfold" // Here's the fibonacci series let fib = Seq.unfold (fun (fst,snd) -> Some(fst + snd, (snd, fst + snd))) (0,1) // test let fib10 = fib |> Seq.take 10 |> Seq.toList printf "first 10 fibs are %A" fib10 // ================================================ // Data Types // ================================================ module DataTypeExamples = // All data is immutable by default // Tuples are quick 'n easy anonymous types // -- Use a comma to create a tuple let twoTuple = 1, 2 let threeTuple = "a", 2, true // Pattern match to unpack let x, y = twoTuple // sets x = 1, y = 2 // ------------------------------------ // Record types have named fields // ------------------------------------ // Use "type" with curly braces to define a record type type Person = {First:string; Last:string} // Use "let" with curly braces to create a record let person1 = {First="John"; Last="Doe"} // Pattern match to unpack let {First = first} = person1 // sets first="John" // ------------------------------------ // Union types (aka variants) have a set of choices // Only one case can be valid at a time. // ------------------------------------ // Use "type" with bar/pipe to define a union type type Temp = | DegreesC of float | DegreesF of float // Use one of the cases to create one let temp1 = DegreesF 98.6 let temp2 = DegreesC 37.0 // Pattern match on all cases to unpack let printTemp = function | DegreesC t -> printfn "%f degC" t | DegreesF t -> printfn "%f degF" t printTemp temp1 printTemp temp2 // ------------------------------------ // Recursive types // ------------------------------------ // Types can be combined recursively in complex ways // without having to create subclasses type Employee = | Worker of Person | Manager of Employee list let jdoe = {First="John"; Last="Doe"} let worker = Worker jdoe // ------------------------------------ // Modeling with types // ------------------------------------ // Union types are great for modeling state without using flags type EmailAddress = | ValidEmailAddress of string | InvalidEmailAddress of string let trySendEmail email = match email with // use pattern matching | ValidEmailAddress address -> () // send | InvalidEmailAddress address -> () // don't send // The combination of union types and record types together // provide a great foundation for domain driven design. // You can create hundreds of little types that accurately // reflect the domain. type CartItem = { ProductCode: string; Qty: int } type Payment = Payment of float type ActiveCartData = { UnpaidItems: CartItem list } type PaidCartData = { PaidItems: CartItem list; Payment: Payment} type ShoppingCart = | EmptyCart // no data | ActiveCart of ActiveCartData | PaidCart of PaidCartData // ------------------------------------ // Built in behavior for types // ------------------------------------ // Core types have useful "out-of-the-box" behavior, no coding needed. // * Immutability // * Pretty printing when debugging // * Equality and comparison // * Serialization // Pretty printing using %A printfn "twoTuple=%A,\nPerson=%A,\nTemp=%A,\nEmployee=%A" twoTuple person1 temp1 worker // Equality and comparison built in. // Here's an example with cards. type Suit = Club | Diamond | Spade | Heart type Rank = Two | Three | Four | Five | Six | Seven | Eight | Nine | Ten | Jack | Queen | King | Ace let hand = [ Club, Ace; Heart, Three; Heart, Ace; Spade, Jack; Diamond, Two; Diamond, Ace ] // sorting List.sort hand |> printfn "sorted hand is (low to high) %A" List.max hand |> printfn "high card is %A" List.min hand |> printfn "low card is %A" // ================================================ // Active patterns // ================================================ module ActivePatternExamples = // F# has a special type of pattern matching called "active patterns" // where the pattern can be parsed or detected dynamically. // "banana clips" are the syntax for active patterns // You can use "elif" instead of "else if" in conditional expressions. // They are equivalent in F# // for example, define an "active" pattern to match character types... let (|Digit|Letter|Whitespace|Other|) ch = if System.Char.IsDigit(ch) then Digit elif System.Char.IsLetter(ch) then Letter elif System.Char.IsWhiteSpace(ch) then Whitespace else Other // ... and then use it to make parsing logic much clearer let printChar ch = match ch with | Digit -> printfn "%c is a Digit" ch | Letter -> printfn "%c is a Letter" ch | Whitespace -> printfn "%c is a Whitespace" ch | _ -> printfn "%c is something else" ch // print a list ['a'; 'b'; '1'; ' '; '-'; 'c'] |> List.iter printChar // ----------------------------------- // FizzBuzz using active patterns // ----------------------------------- // You can create partial matching patterns as well // Just use underscore in the definition, and return Some if matched. let (|MultOf3|_|) i = if i % 3 = 0 then Some MultOf3 else None let (|MultOf5|_|) i = if i % 5 = 0 then Some MultOf5 else None // the main function let fizzBuzz i = match i with | MultOf3 & MultOf5 -> printf "FizzBuzz, " | MultOf3 -> printf "Fizz, " | MultOf5 -> printf "Buzz, " | _ -> printf "%i, " i // test [1..20] |> List.iter fizzBuzz // ================================================ // Conciseness // ================================================ module AlgorithmExamples = // F# has a high signal/noise ratio, so code reads // almost like the actual algorithm // ------ Example: define sumOfSquares function ------ let sumOfSquares n = [1..n] // 1) take all the numbers from 1 to n |> List.map square // 2) square each one |> List.sum // 3) sum the results // test sumOfSquares 100 |> printfn "Sum of squares = %A" // ------ Example: define a sort function ------ let rec sort list = match list with // If the list is empty | [] -> [] // return an empty list // If the list is not empty | firstElem::otherElements -> // take the first element let smallerElements = // extract the smaller elements otherElements // from the remaining ones |> List.filter (fun e -> e < firstElem) |> sort // and sort them let largerElements = // extract the larger ones otherElements // from the remaining ones |> List.filter (fun e -> e >= firstElem) |> sort // and sort them // Combine the 3 parts into a new list and return it List.concat [smallerElements; [firstElem]; largerElements] // test sort [1; 5; 23; 18; 9; 1; 3] |> printfn "Sorted = %A" // ================================================ // Asynchronous Code // ================================================ module AsyncExample = // F# has built-in features to help with async code // without encountering the "pyramid of doom" // // The following example downloads a set of web pages in parallel. open System.Net open System open System.IO open Microsoft.FSharp.Control.CommonExtensions // Fetch the contents of a URL asynchronously let fetchUrlAsync url = async { // "async" keyword and curly braces // creates an "async" object let req = WebRequest.Create(Uri(url)) use! resp = req.AsyncGetResponse() // use! is async assignment use stream = resp.GetResponseStream() // "use" triggers automatic close() // on resource at end of scope use reader = new IO.StreamReader(stream) let html = reader.ReadToEnd() printfn "finished downloading %s" url } // a list of sites to fetch let sites = ["http://www.bing.com"; "http://www.google.com"; "http://www.microsoft.com"; "http://www.amazon.com"; "http://www.yahoo.com"] // do it sites |> List.map fetchUrlAsync // make a list of async tasks |> Async.Parallel // set up the tasks to run in parallel |> Async.RunSynchronously // start them off // ================================================ // .NET compatibility // ================================================ module NetCompatibilityExamples = // F# can do almost everything C# can do, and it integrates // seamlessly with .NET or Mono libraries. // ------- work with existing library functions ------- let (i1success, i1) = System.Int32.TryParse("123"); if i1success then printfn "parsed as %i" i1 else printfn "parse failed" // ------- Implement interfaces on the fly! ------- // create a new object that implements IDisposable let makeResource name = { new System.IDisposable with member this.Dispose() = printfn "%s disposed" name } let useAndDisposeResources = use r1 = makeResource "first resource" printfn "using first resource" for i in [1..3] do let resourceName = sprintf "\tinner resource %d" i use temp = makeResource resourceName printfn "\tdo something with %s" resourceName use r2 = makeResource "second resource" printfn "using second resource" printfn "done." // ------- Object oriented code ------- // F# is also a fully fledged OO language. // It supports classes, inheritance, virtual methods, etc. // interface with generic type type IEnumerator<'a> = abstract member Current : 'a abstract MoveNext : unit -> bool // abstract base class with virtual methods [<AbstractClass>] type Shape() = // readonly properties abstract member Width : int with get abstract member Height : int with get // non-virtual method member this.BoundingArea = this.Height * this.Width // virtual method with base implementation abstract member Print : unit -> unit default this.Print () = printfn "I'm a shape" // concrete class that inherits from base class and overrides type Rectangle(x:int, y:int) = inherit Shape() override this.Width = x override this.Height = y override this.Print () = printfn "I'm a Rectangle" // test let r = Rectangle(2, 3) printfn "The width is %i" r.Width printfn "The area is %i" r.BoundingArea r.Print() // ------- extension methods ------- // Just as in C#, F# can extend existing classes with extension methods. type System.String with member this.StartsWithA = this.StartsWith "A" // test let s = "Alice" printfn "'%s' starts with an 'A' = %A" s s.StartsWithA // ------- events ------- type MyButton() = let clickEvent = new Event<_>() [<CLIEvent>] member this.OnClick = clickEvent.Publish member this.TestEvent(arg) = clickEvent.Trigger(this, arg) // test let myButton = new MyButton() myButton.OnClick.Add(fun (sender, arg) -> printfn "Click event with arg=%O" arg) myButton.TestEvent("Hello World!") ``` ## More Information For more demonstrations of F#, go to my [why use F#](http://fsharpforfunandprofit.com/why-use-fsharp/) series. Read more about F# at [fsharp.org](http://fsharp.org/) and [dotnet's F# page](https://dotnet.microsoft.com/languages/fsharp).