wordfreq/tests/test.py

190 lines
5.9 KiB
Python
Raw Normal View History

from wordfreq import (
2015-07-07 20:21:22 +00:00
word_frequency, available_languages, cB_to_freq,
top_n_list, random_words, random_ascii_words, tokenize
)
from nose.tools import (
2015-07-07 20:21:22 +00:00
eq_, assert_almost_equal, assert_greater, raises
)
def test_freq_examples():
# Stopwords are most common in the correct language
assert_greater(word_frequency('the', 'en'),
word_frequency('de', 'en'))
assert_greater(word_frequency('de', 'es'),
word_frequency('the', 'es'))
def test_languages():
# Make sure the number of available languages doesn't decrease
avail = available_languages()
2015-09-04 20:40:11 +00:00
assert_greater(len(avail), 15)
# Laughter is the universal language. Look up either 'lol' or '笑' in each
# language and make sure it has a non-zero frequency.
for lang in avail:
if lang in {'zh', 'ja'}:
text = ''
else:
text = 'lol'
assert_greater(word_frequency(text, lang), 0)
# Make up a weirdly verbose language code and make sure
# we still get it
new_lang_code = '%s-001-x-fake-extension' % lang.upper()
assert_greater(word_frequency(text, new_lang_code), 0)
def test_twitter():
avail = available_languages('twitter')
2015-09-04 20:40:11 +00:00
assert_greater(len(avail), 14)
for lang in avail:
assert_greater(word_frequency('rt', lang, 'twitter'),
word_frequency('rt', lang, 'combined'))
2015-07-07 19:46:33 +00:00
def test_minimums():
eq_(word_frequency('esquivalience', 'en'), 0)
eq_(word_frequency('esquivalience', 'en', minimum=1e-6), 1e-6)
2015-07-07 19:46:33 +00:00
eq_(word_frequency('the', 'en', minimum=1), 1)
def test_most_common_words():
# If something causes the most common words in well-supported languages to
# change, we should know.
def get_most_common(lang):
"""
Return the single most common word in the language.
"""
return top_n_list(lang, 1)[0]
eq_(get_most_common('ar'), 'في')
eq_(get_most_common('de'), 'die')
eq_(get_most_common('en'), 'the')
eq_(get_most_common('es'), 'de')
eq_(get_most_common('fr'), 'de')
eq_(get_most_common('it'), 'di')
eq_(get_most_common('ja'), '')
eq_(get_most_common('nl'), 'de')
eq_(get_most_common('pt'), 'de')
eq_(get_most_common('ru'), 'в')
2015-09-04 20:40:11 +00:00
eq_(get_most_common('tr'), 'bir')
eq_(get_most_common('zh'), '')
def test_language_matching():
freq = word_frequency('', 'zh')
eq_(word_frequency('', 'zh-TW'), freq)
eq_(word_frequency('', 'zh-CN'), freq)
eq_(word_frequency('', 'zh-Hant'), freq)
eq_(word_frequency('', 'zh-Hans'), freq)
eq_(word_frequency('', 'yue-HK'), freq)
eq_(word_frequency('', 'cmn'), freq)
def test_cB_conversion():
eq_(cB_to_freq(0), 1.)
assert_almost_equal(cB_to_freq(-100), 0.1)
assert_almost_equal(cB_to_freq(-600), 1e-6)
@raises(ValueError)
def test_failed_cB_conversion():
cB_to_freq(1)
def test_tokenization():
# We preserve apostrophes within words, so "can't" is a single word in the
2015-07-17 18:50:12 +00:00
# data
eq_(tokenize("I don't split at apostrophes, you see.", 'en'),
['i', "don't", 'split', 'at', 'apostrophes', 'you', 'see'])
eq_(tokenize("I don't split at apostrophes, you see.", 'en', include_punctuation=True),
['i', "don't", 'split', 'at', 'apostrophes', ',', 'you', 'see', '.'])
2015-06-25 15:25:51 +00:00
# Certain punctuation does not inherently split a word.
eq_(tokenize("Anything is possible at zombo.com", 'en'),
['anything', 'is', 'possible', 'at', 'zombo.com'])
# Splits occur after symbols, and at splitting punctuation such as hyphens.
2015-06-25 15:25:51 +00:00
eq_(tokenize('😂test', 'en'), ['😂', 'test'])
eq_(tokenize("flip-flop", 'en'), ['flip', 'flop'])
2015-06-25 15:25:51 +00:00
eq_(tokenize('this text has... punctuation :)', 'en', include_punctuation=True),
['this', 'text', 'has', '...', 'punctuation', ':)'])
def test_casefolding():
eq_(tokenize('WEISS', 'de'), ['weiss'])
eq_(tokenize('weiß', 'de'), ['weiss'])
2015-09-04 20:40:11 +00:00
eq_(tokenize('İstanbul', 'tr'), ['istanbul'])
eq_(tokenize('SIKISINCA', 'tr'), ['sıkısınca'])
2015-06-25 15:25:51 +00:00
def test_phrase_freq():
ff = word_frequency("flip-flop", 'en')
assert_greater(ff, 0)
2015-07-07 18:13:28 +00:00
assert_almost_equal(
1.0 / ff,
1.0 / word_frequency('flip', 'en') + 1.0 / word_frequency('flop', 'en')
)
def test_not_really_random():
# If your xkcd-style password comes out like this, maybe you shouldn't
# use it
eq_(random_words(nwords=4, lang='en', bits_per_word=0),
'the the the the')
# This not only tests random_ascii_words, it makes sure we didn't end
# up with 'eos' as a very common Japanese word
eq_(random_ascii_words(nwords=4, lang='ja', bits_per_word=0),
2015-07-01 15:18:39 +00:00
'rt rt rt rt')
@raises(ValueError)
def test_not_enough_ascii():
random_ascii_words(lang='zh')
2015-07-07 19:10:59 +00:00
2015-07-20 20:48:36 +00:00
def test_ar():
2015-07-20 20:48:36 +00:00
# Remove tatweels
2015-07-07 19:10:59 +00:00
eq_(
tokenize('متــــــــعب', 'ar'),
['متعب']
)
2015-07-20 20:48:36 +00:00
# Remove combining marks
2015-07-07 19:10:59 +00:00
eq_(
tokenize('حَرَكَات', 'ar'),
['حركات']
)
2015-07-20 20:48:36 +00:00
eq_(
tokenize('\ufefb', 'ar'), # An Arabic ligature...
['\u0644\u0627'] # ...that is affected by NFKC normalization
2015-07-20 20:48:36 +00:00
)
def test_ideographic_fallback():
# Try tokenizing Chinese text as English -- it should remain stuck together.
eq_(tokenize('中国文字', 'en'), ['中国文字'])
# When Japanese is tagged with the wrong language, it will be split
# at script boundaries.
ja_text = 'ひらがなカタカナromaji'
eq_(
tokenize(ja_text, 'en'),
['ひらがな', 'カタカナ', 'romaji']
)
# Test that we leave Thai letters stuck together. If we had better Thai support,
# we would actually split this into a three-word phrase.
eq_(tokenize('การเล่นดนตรี', 'th'), ['การเล่นดนตรี'])
eq_(tokenize('"การเล่นดนตรี" means "playing music"', 'en'),
['การเล่นดนตรี', 'means', 'playing', 'music'])