Merge remote-tracking branch 'origin/master' into big-list

Conflicts:
	wordfreq_builder/wordfreq_builder/cli/merge_counts.py
This commit is contained in:
Rob Speer 2016-03-24 14:11:44 -04:00
commit 164a5b1a05
6 changed files with 44 additions and 21 deletions

View File

@ -24,7 +24,8 @@ classifiers = [
]
current_dir = os.path.dirname(__file__)
README_contents = open(os.path.join(current_dir, 'README.md')).read()
README_contents = open(os.path.join(current_dir, 'README.md'),
encoding='utf-8').read()
doclines = README_contents.split("\n")
dependencies = ['ftfy >= 4', 'msgpack-python', 'langcodes', 'regex >= 2015']
if sys.version_info < (3, 4):

View File

@ -100,7 +100,7 @@ def test_tokenization():
# data
eq_(tokenize("I don't split at apostrophes, you see.", 'en'),
['i', "don't", 'split', 'at', 'apostrophes', 'you', 'see'])
eq_(tokenize("I don't split at apostrophes, you see.", 'en', include_punctuation=True),
['i', "don't", 'split', 'at', 'apostrophes', ',', 'you', 'see', '.'])
@ -180,3 +180,10 @@ def test_ideographic_fallback():
tokenize(ja_text, 'en'),
['ひらがな', 'カタカナ', 'romaji']
)
# Test that we leave Thai letters stuck together. If we had better Thai support,
# we would actually split this into a three-word phrase.
eq_(tokenize('การเล่นดนตรี', 'th'), ['การเล่นดนตรี'])
eq_(tokenize('"การเล่นดนตรี" means "playing music"', 'en'),
['การเล่นดนตรี', 'means', 'playing', 'music'])

View File

@ -3,23 +3,24 @@ import unicodedata
TOKEN_RE = regex.compile(r"""
# Case 1: a special case for Chinese and Japanese
# Case 1: a special case for non-spaced languages
# -----------------------------------------------
# When we see characters that are Han ideographs (\p{IsIdeo}) or hiragana
# (\p{Script=Hiragana}), we allow a sequence of those characters to be
# glued together as a single token. Without this case, the standard rule
# (case 2) would make each character a separate token. This would be the
# correct behavior for word-wrapping, but a messy failure mode for NLP
# tokenization.
# When we see characters that are Han ideographs (\p{IsIdeo}), hiragana
# (\p{Script=Hiragana}), or Thai (\p{Script=Thai}), we allow a sequence
# of those characters to be glued together as a single token.
#
# It is, of course, better to use a tokenizer that is designed for Chinese
# or Japanese text. This is effectively a fallback for when the wrong
# Without this case, the standard rule (case 2) would make each character
# a separate token. This would be the correct behavior for word-wrapping,
# but a messy failure mode for NLP tokenization.
#
# It is, of course, better to use a tokenizer that is designed for Chinese,
# Japanese, or Thai text. This is effectively a fallback for when the wrong
# tokenizer is used.
#
# This rule is listed first so that it takes precedence.
[\p{IsIdeo}\p{Script=Hiragana}]+ |
[\p{IsIdeo}\p{Script=Hiragana}\p{Script=Thai}]+ |
# Case 2: standard Unicode segmentation
# -------------------------------------

View File

@ -13,10 +13,14 @@ def merge_lists(input_names, output_name, cutoff=0, max_size=1000000):
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-o', '--output', help='filename to write the output to', default='combined-counts.csv')
parser.add_argument('-c', '--cutoff', type=int, default=0, help='minimum count to read from an input file')
parser.add_argument('-m', '--max-words', type=int, default=1000000, help='maximum number of words to read from each list')
parser.add_argument('inputs', help='names of input files to merge', nargs='+')
parser.add_argument('-o', '--output', default='combined-counts.csv',
help='filename to write the output to')
parser.add_argument('-c', '--cutoff', type=int, default=0,
help='minimum count to read from an input file')
parser.add_argument('-m', '--max-words', type=int, default=1000000,
help='maximum number of words to read from each list')
parser.add_argument('inputs', nargs='+',
help='names of input files to merge')
args = parser.parse_args()
merge_lists(args.inputs, args.output, cutoff=args.cutoff, max_size=args.max_words)

View File

@ -18,10 +18,14 @@ def merge_lists(input_names, output_name, cutoff, lang):
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-o', '--output', help='filename to write the output to', default='combined-freqs.csv')
parser.add_argument('-c', '--cutoff', type=int, help='stop after seeing a count below this', default=2)
parser.add_argument('-l', '--language', help='language code for which language the words are in', default=None)
parser.add_argument('inputs', help='names of input files to merge', nargs='+')
parser.add_argument('-o', '--output', default='combined-freqs.csv',
help='filename to write the output to')
parser.add_argument('-c', '--cutoff', type=int, default=2,
help='stop after seeing a count below this')
parser.add_argument('-l', '--language', default=None,
help='language code for which language the words are in')
parser.add_argument('inputs', nargs='+',
help='names of input files to merge')
args = parser.parse_args()
merge_lists(args.inputs, args.output, args.cutoff, args.language)

View File

@ -54,11 +54,17 @@ KEEP_THESE_LANGUAGES = {
def cld2_reddit_tokenizer(text):
"""
A language-detecting tokenizer with special cases for handling text from
Reddit.
"""
text = URL_RE.sub('', text)
text = MARKDOWN_URL_RESIDUE_RE.sub(']', text)
lang = cld2_detect_language(text)
if lang not in KEEP_THESE_LANGUAGES:
# Reddit is 99.9% English, so if we detected a rare language, it's
# much more likely that it's actually English.
lang = 'en'
tokens = tokenize(text, lang, include_punctuation=True)
@ -86,7 +92,7 @@ def tokenize_by_language(in_filename, out_prefix, tokenizer):
"""
Process a file by running it through a given tokenizer.
Produces output files that are separated by language, with newlines
Produces output files that are separated by language, with spaces
between the tokens.
"""
out_files = {}