Merge pull request #16 from LuminosoInsight/more-tweaking

More tweaking
This commit is contained in:
Joshua Chin 2015-07-10 14:36:18 -04:00
commit 2c573b5a0e
9 changed files with 97 additions and 144 deletions

View File

@ -21,6 +21,12 @@ install them on Ubuntu:
sudo apt-get install mecab-ipadic-utf8 libmecab-dev
pip3 install mecab-python3
## Unicode data
The tokenizers used to split non-Japanese phrases use regexes built using the
`unicodedata` module from Python 3.4, which uses Unicode version 6.3.0. To
update these regexes, run `scripts/gen_regex.py`.
## License
`wordfreq` is freely redistributable under the MIT license (see

View File

@ -4,9 +4,34 @@ import pathlib
from pkg_resources import resource_filename
CATEGORIES = [unicodedata.category(chr(i)) for i in range(0x110000)]
DATA_PATH = pathlib.Path(resource_filename('wordfreq', 'data'))
def func_to_regex(accept_func):
"""
Given a function that returns True or False for a numerical codepoint,
return a regex character class accepting the characters resulting in True.
Ranges separated only by unassigned characters are merged for efficiency.
"""
# parsing_range is True if the current codepoint might be in a range that
# the regex will accept
parsing_range = False
ranges = []
for codepoint, category in enumerate(CATEGORIES):
if accept_func(codepoint):
if not parsing_range:
ranges.append([codepoint, codepoint])
parsing_range = True
else:
ranges[-1][1] = codepoint
elif category != 'Cn':
parsing_range = False
return '[%s]' % ''.join('%c-%c' % tuple(r) for r in ranges)
def cache_regex_from_func(filename, func):
"""
Generates a regex from a function that accepts a single unicode character,
@ -16,77 +41,36 @@ def cache_regex_from_func(filename, func):
file.write(func_to_regex(func))
def _emoji_char_class():
def _is_emoji_codepoint(i):
"""
Build a regex for emoji substitution. We create a regex character set
(like "[a-cv-z]") matching characters we consider emoji.
Report whether a numerical codepoint is (likely) an emoji: a Unicode 'So'
character (as future-proofed by the ftfy chardata module) but excluding
symbols like © and below U+2600 and the replacement character U+FFFD.
"""
cache_regex_from_func(
'emoji.txt',
lambda c:
chardata.CHAR_CLASS_STRING[ord(c)] == '3' and
c >= '\u2600' and c != '\ufffd'
)
return chardata.CHAR_CLASS_STRING[i] == '3' and i >= 0x2600 and i != 0xfffd
def _non_punct_class():
def _is_non_punct_codepoint(i):
"""
Builds a regex that matches anything that is not one of the following
classes:
Report whether a numerical codepoint is not one of the following classes:
- P: punctuation
- S: symbols
- Z: separators
- C: control characters
This will classify symbols, including emoji, as punctuation; callers that
want to treat emoji separately should filter them out first.
This will classify symbols, including emoji, as punctuation; users that
want to accept emoji should add them separately.
"""
cache_regex_from_func(
'non_punct.txt',
lambda c: unicodedata.category(c)[0] not in 'PSZC'
)
return CATEGORIES[i][0] not in 'PSZC'
def _combining_mark_class():
def _is_combining_mark_codepoint(i):
"""
Builds a regex that matches anything that is a combining mark
Report whether a numerical codepoint is a combining mark (Unicode 'M').
"""
cache_regex_from_func(
'combining_mark.txt',
lambda c: unicodedata.category(c)[0] == 'M'
)
def func_to_regex(accept):
"""
Converts a function that accepts a single unicode character into a regex.
Unassigned unicode characters are treated like their neighbors.
"""
ranges = []
start = None
has_accepted = False
for x in range(0x110000):
c = chr(x)
if accept(c):
has_accepted = True
if start is None:
start = c
elif unicodedata.category(c) == 'Cn':
if start is None:
start = c
elif start is not None:
if has_accepted:
ranges.append('-'.join([start, chr(x-1)]))
has_accepted = False
start = None
else:
if has_accepted and start is not None:
ranges.append('-'.join([start, chr(x-1)]))
return '[%s]' % ''.join(ranges)
return CATEGORIES[i][0] == 'M'
if __name__ == '__main__':
_combining_mark_class()
_non_punct_class()
_emoji_char_class()
cache_regex_from_func('emoji.txt', _is_emoji_codepoint)
cache_regex_from_func('non_punct.txt', _is_non_punct_codepoint)
cache_regex_from_func('combining_mark.txt', _is_combining_mark_codepoint)

View File

@ -1,7 +1,6 @@
from wordfreq import (
word_frequency, available_languages, cB_to_freq,
top_n_list, random_words, random_ascii_words, tokenize,
half_harmonic_mean
top_n_list, random_words, random_ascii_words, tokenize
)
from nose.tools import (
eq_, assert_almost_equal, assert_greater, raises
@ -114,11 +113,8 @@ def test_phrase_freq():
plant = word_frequency("plan.t", 'en')
assert_greater(plant, 0)
assert_almost_equal(
plant,
half_harmonic_mean(
word_frequency('plan', 'en'),
word_frequency('t', 'en')
)
1.0 / plant,
1.0 / word_frequency('plan', 'en') + 1.0 / word_frequency('t', 'en')
)

View File

@ -1,5 +1,5 @@
from nose.tools import eq_, assert_almost_equal
from wordfreq import tokenize, word_frequency, half_harmonic_mean
from wordfreq import tokenize, word_frequency
def test_tokens():
@ -17,10 +17,7 @@ def test_combination():
ohayou_freq / 2
)
assert_almost_equal(
word_frequency('おはようございます', 'ja'),
half_harmonic_mean(
half_harmonic_mean(ohayou_freq, gozai_freq),
masu_freq
)
1.0 / word_frequency('おはようございます', 'ja'),
1.0 / ohayou_freq + 1.0 / gozai_freq + 1.0 / masu_freq
)

View File

@ -1,30 +0,0 @@
from nose.tools import assert_less_equal, assert_almost_equal
from wordfreq import half_harmonic_mean
from functools import reduce
import random
def check_hm_properties(inputs):
# I asserted that the half-harmonic-mean formula is associative,
# commutative, monotonic, and less than or equal to its inputs.
# (Less if its inputs are strictly positive, in fact.)
#
# So let's test that what I said is true.
hm1 = reduce(half_harmonic_mean, inputs)
random.shuffle(inputs)
hm2 = reduce(half_harmonic_mean, inputs)
assert_almost_equal(hm1, hm2)
inputs[0] *= 2
hm3 = reduce(half_harmonic_mean, inputs)
assert_less_equal(hm2, hm3)
def test_half_harmonic_mean():
for count in range(2, 6):
for rep in range(10):
# get some strictly positive arbitrary numbers
inputs = [random.expovariate(0.01)
for i in range(count)]
yield check_hm_properties, inputs

View File

@ -10,13 +10,13 @@ import random
import logging
logger = logging.getLogger(__name__)
DATA_PATH = pathlib.Path(resource_filename('wordfreq', 'data'))
CACHE_SIZE = 100000
DATA_PATH = pathlib.Path(resource_filename('wordfreq', 'data'))
def load_range(filename):
"""
Loads a file from the data path
Load a file from the data path.
"""
with (DATA_PATH / filename).open() as file:
return file.read()
@ -26,7 +26,6 @@ NON_PUNCT_RANGE = load_range('non_punct.txt')
COMBINING_MARK_RANGE = load_range('combining_mark.txt')
COMBINING_MARK_RE = re.compile(COMBINING_MARK_RANGE)
TOKEN_RE = re.compile("{0}|{1}+(?:'{1}+)*".format(EMOJI_RANGE, NON_PUNCT_RANGE))
@ -46,6 +45,7 @@ def simple_tokenize(text):
"""
return [token.casefold() for token in TOKEN_RE.findall(text)]
mecab_tokenize = None
def tokenize(text, lang):
"""
@ -209,18 +209,30 @@ def iter_wordlist(lang, wordlist='combined'):
return itertools.chain(*get_frequency_list(lang, wordlist))
def half_harmonic_mean(a, b):
"""
An associative, commutative, monotonic function that returns a value
less than or equal to both a and b.
# This dict and inner function are used to implement a "drop everything" cache
# for word_frequency(); the overheads of lru_cache() are comparable to the time
# it takes to look up frequencies from scratch, so something faster is needed.
_wf_cache = {}
Used for estimating the frequency of terms made of multiple tokens, given
the assumption that the tokens very frequently appear together.
"""
return (a * b) / (a + b)
def _word_frequency(word, lang, wordlist, minimum):
tokens = tokenize(word, lang)
if not tokens:
return minimum
# Frequencies for multiple tokens are combined using the formula
# 1 / f = 1 / f1 + 1 / f2 + ...
# Thus the resulting frequency is less than any individual frequency, and
# the smallest frequency dominates the sum.
freqs = get_frequency_dict(lang, wordlist)
one_over_result = 0.0
for token in tokens:
if token not in freqs:
# If any word is missing, just return the default value
return minimum
one_over_result += 1.0 / freqs[token]
return max(1.0 / one_over_result, minimum)
@lru_cache(maxsize=CACHE_SIZE)
def word_frequency(word, lang, wordlist='combined', minimum=0.):
"""
Get the frequency of `word` in the language with code `lang`, from the
@ -246,25 +258,14 @@ def word_frequency(word, lang, wordlist='combined', minimum=0.):
of the word frequency that is no greater than the frequency of any of its
individual tokens.
"""
freqs = get_frequency_dict(lang, wordlist)
combined_value = None
tokens = tokenize(word, lang)
if len(tokens) == 0:
return minimum
for token in tokens:
if token not in freqs:
# If any word is missing, just return the default value
return minimum
value = freqs[token]
if combined_value is None:
combined_value = value
else:
# Combine word values using the half-harmonic-mean formula,
# (a * b) / (a + b). This operation is associative.
combined_value = half_harmonic_mean(combined_value, value)
return max(combined_value, minimum)
args = (word, lang, wordlist, minimum)
try:
return _wf_cache[args]
except KeyError:
if len(_wf_cache) >= CACHE_SIZE:
_wf_cache.clear()
_wf_cache[args] = _word_frequency(*args)
return _wf_cache[args]
@lru_cache(maxsize=100)
@ -305,8 +306,7 @@ def random_words(lang='en', wordlist='combined', nwords=5, bits_per_word=12,
"There aren't enough words in the wordlist to provide %d bits of "
"entropy per word." % bits_per_word
)
selected = [random.choice(choices) for i in range(nwords)]
return ' '.join(selected)
return ' '.join([random.choice(choices) for i in range(nwords)])
def random_ascii_words(lang='en', wordlist='combined', nwords=5,

View File

@ -1 +1 @@
[̀-ͯ҃-҉֐-ֽֿ-ֿׁ-ׂׄ-ׇׅ-׏ؐ-ًؚ-ٰٟ-ٰۖ-ۜ۟-ۤۧ-۪ۨ-ܑۭ-ܑܰ-݌ަ-ް߫-߳ࠖ-࠙ࠛ-ࠣࠥ-ࠧࠩ-࠯࡙-࡝ࢭ-ःऺ-़ा-ॏ॑-ॗॢ-ॣঀ-঄঺-়া-্৏-৛ৢ-৥ৼ-਄਺-੘ੰ-ੱੵ-઄઺-઼ા-૏ૢ-૥૲-଄଺-଼ା-୛ୢ-୥୸-ஂ஺-௏௑-௥௻-ఄా-౗ౢ-౥ಀ-಄಺-಼ಾ-ೝೢ-೥ೳ-ഄാ-്൏-ൟൢ-൥඀-඄෇-ෳั-ัิ-฾็-๎ັ-ັິ-ຼ໇-໏༘-༙༵-༵༷-༹༷-༹༾-༿཭-྄྆-྇ྍ-྽࿆-࿆ါ-ှၖ-ၙၞ-ၠၢ-ၤၧ-ၭၱ-ၴႂ-ႍႏ-ႏႚ-ႝ፛-፟ᜒ-ᜟᜲ-᜴ᝒ-᝟᝱-᝿឴-៓៝-៟᠋-᠍ᢩ-ᢩᤝ-᤿᦬-ᧀᧈ-᧏ᨗ-᨝ᩕ-᩿᪮-ᬄ᬴-᭄᭫-᭳᭽-ᮂᮡ-ᮭ᯦-᯻ᰤ-᰺᳈-᳔᳒-᳨᳭-᳭ᳲ-᳴᷀-᷿₻-⃿⳯-⳱⵱-⵿⷟-〪ⷿ-〯゗-゚꙯-꙲ꙴ-꙽Ꚙ-ꚟ꛰-꛱ꠂ-ꠂ꠆-꠆ꠋ-ꠋꠣ-ꠧ꡸-ꢁꢴ-꣍꣚-꣱ꤦ-꤭ꥇ-꥞꥽-ꦃ꦳-꧀ꨩ-꨿ꩃ-ꩃꩌ-꩏ꩻ-ꩿꪰ-ꪰꪲ-ꪴꪷ-ꪸꪾ-꪿꫁-꫁ꫫ-ꫯꫵ-꬀ꯣ-ꯪ꯬-꯯ﬞ-ﬞ﷾-️︚-𐇽︯-𐉿𐨁-𐨏𐨴-𐨿𐹿-𑀂𑀸-𑁆𑁰-𑂂𑂰-𑂺𑃺-𑄂𑄧-𑄵𑅄-𑆂𑆳-𑇀𑚫-𑚿𖽑-𖾒𝅥-𝅩𝅭-𝅲𝅻-𝆂𝆅-𝆋𝆪-𝆭𝉂-𝉄󠂀-󯿿]
[̀-ͯ҃-҉֑-ֽֿ-ֿׁ-ׂׄ-ׇׅ-ׇؐ-ًؚ-ٰٟ-ٰۖ-ۜ۟-ۤۧ-۪ۨ-ܑۭ-ܑܰ-݊ަ-ް߫-߳ࠖ-࠙ࠛ-ࠣࠥ-ࠧࠩ-࡙࠭-࡛ࣤ-ःऺ-़ा-ॏ॑-ॗॢ-ॣঁ-ঃ়-়া-্ৗ-ৗৢ-ৣਁ-ਃ਼-ੑੰ-ੱੵ-ઃ઼-઼ા-્ૢ-ૣଁ-ଃ଼-଼ା-ୗୢ-ୣஂ-ஂா-்ௗ-ௗఁ-ఃా-ౖౢ-ౣಂ-ಃ಼-಼ಾ-ೖೢ-ೣം-ഃാ-്ൗ-ൗൢ-ൣං-ඃ්-ෳั-ัิ-ฺ็-๎ັ-ັິ-ຼ່-ໍ༘-༙༵-༵༷-༹༷-༹༾-༿ཱ-྄྆-྇ྍ-ྼ࿆-࿆ါ-ှၖ-ၙၞ-ၠၢ-ၤၧ-ၭၱ-ၴႂ-ႍႏ-ႏႚ-ႝ፝-፟ᜒ-᜔ᜲ-᜴ᝒ-ᝓᝲ-ᝳ឴-៓៝-៝᠋-᠍ᢩ-ᢩᤠ-᤻ᦰ-ᧀᧈ-ᧉᨗ-ᨛᩕ-᩿ᬀ-ᬄ᬴-᭄᭫-᭳ᮀ-ᮂᮡ-ᮭ᯦-᯳ᰤ-᰷᳐-᳔᳒-᳨᳭-᳭ᳲ-᳴᷀-᷿⃐-⃰⳯-⵿⳱-⵿ⷠ-〪ⷿ-゙〯-゚꙯-꙲ꙴ-꙽ꚟ-ꚟ꛰-꛱ꠂ-ꠂ꠆-꠆ꠋ-ꠋꠣ-ꠧꢀ-ꢁꢴ-꣄꣠-꣱ꤦ-꤭ꥇ-꥓ꦀ-ꦃ꦳-꧀ꨩ-ꨶꩃ-ꩃꩌ-ꩍꩻ-ꩻꪰ-ꪰꪲ-ꪴꪷ-ꪸꪾ-꪿꫁-꫁ꫫ-ꫯꫵ-꫶ꯣ-ꯪ꯬-꯭ﬞ-ﬞ︀-️︠-𐇽︦-𐇽𐨁-𐨏𐨸-𐨿𑀀-𑀂𑀸-𑁆𑂀-𑂂𑂰-𑂺𑄀-𑄂𑄧-𑄴𑆀-𑆂𑆳-𑇀𑚫-𑚷𖽑-𖾒𝅥-𝅩𝅭-𝅲𝅻-𝆂𝆅-𝆋𝆪-𝆭𝉂-𝉄󠄀-󠇯]

View File

@ -1 +1 @@
[☀-♮♰-❧➔-➿⠀-⣿⬀-⬯⭅-⭆⭍-⯿⳥-⳪⸼-⿿〄-〄〒-〓〠-〠〶-〷〾-぀㆏-㆑㆖-㆟ㆻ-㇯㈀-㈟㈪-㉇㉐-㉐㉠-㉿㊊-㊰㋀-㏿䶶-䷿꒍-꓏꠨-꠯꠶-꠷꠹-꠿꩷-꩹﷽-﷿¦-¦￧-│■--𐄴-𐄿𐅹-𐆉𐆋-𐇼𐡠-𐣿𐪀-𐫿𖨹-𖻿𛀂-𝅘𝅥𝅲𝅪-𝅬𝆃-𝆄𝆌-𝆩𝆮-𝉁𝉅-𝍟𞻲-🃿🄋-🿿]
[☀-♮♰-❧➔-➿⠀-⣿⬀-⬯⭅-⭆⭍-⯑⳥-⳪⺀-⿻〄-〄〒-〓〠-〠〶-〷〾-〿㆐-㆑㆖-㆟㇀-㇣㈀-㈞㈪-㉇㉐-㉐㉠-㉿㊊-㊰㋀-㏿䷀-䷿꒐-꓆꠨-꠫꠶-꠷꠹-꠹꩷-꩹﷽-﷽¦-¦│-│■-○-𐄷-𐄿𐅹-𐆉𐆌-𐇼𐡷-𐡸𐫈-𐫈𖬼-𖭅𛲜-𝅘𝅥𝅲𝅪-𝅬𝆃-𝆄𝆌-𝆩𝆮-𝉁𝉅-𝍖🀀-🃿🄍-🣿]

View File

@ -1 +1 @@
[0-9A-Za-zª-ª²-³µ-µ¹-º¼-¾À-ÖØ-öø-ˁˆ-ˑˠ-ˤˬ-ˬˮ-ˮ̀-ʹͶ-ͽΆ-ΆΈ-ϵϷ-ҁ҃-ՙՠ-ֈ֐-ֽֿ-ֿׁ-ׂׄ-ׇׅ-ײؐ-ؚؠ-٩ٮ-ۓە-ۜ۟-۪ۨ-ۼۿ-ۿܐ-ߵߺ-࠯࠿-࡝࡟-ॣ०-९ॱ-ৱ৴-৹ৼ-૯૲-୯ୱ-௲௻-౾ಀ-൸ൺ-ෳ෵-฾เ-๎๐-๙๜-ༀ༘-༙༠-༳༵-༵༷-༹༷-༹༾-྄྆-྽࿆-࿆࿛-၉ၐ-ႝႠ-ჺჼ-፟፩-ᎏ᎚-᏿ᐁ-ᙬᙯ-ᙿᚁ-ᚚ᚝-ᛪᛮ-᜴᜷-៓ៗ-ៗៜ-៿᠋-᠍᠏-᤿᥆-᧝ᨀ-᨝ᨠ-᪟ᪧ-ᪧ᪮-᭙᭫-᭳᭽-᯻ᰀ-᰺᱀-ᱽ᳈-᳔᳒-ᾼι-ιῂ-ῌῐ-῜ῠ-Ῥ῰-ῼ⁰-⁹ⁿ-₉₏-₟₻-⃿ℂ-ℂℇ-ℇℊ----ℤΩ-Ωℨ---ℹℼ-ℿⅅ-ⅉⅎ-ⅎ⅐-↏⑋-⒛⓪-⓿❶-➓⭚-ⳤⳫ-⳸⳽-⳽ⴀ-ⵯ⵱-ⷿⸯ-ⸯ々-〇〡-〯〱-〵〸-〼぀-゚ゝ-ゟァ-ヺー-㆏㆒-㆕ㆠ-ㆿ㇤-ㇿ㈟-㈩㉈-㉏㉑-㉟㊀-㊉㊱-㊿㐀-䶿一-꒏꓇-ꓽꔀ-ꘌꘐ-꙲ꙴ-꙽ꙿ-꛱ꜗ-ꜟꜢ-ꞈꞋ-ꠧ꠬-꠵꠺-ꡳ꡸-꣍꣐-ꣷꣻ-꤭ꤰ-꥞ꥠ-꧀꧎-꧝ꧠ-꩛ꩠ-ꩶꩺ-ꫝꫠ-ꫯꫲ-ꯪ꯬-퟿豈-ﬨשׁ-ﮱ﯂-ﴽ﵀-ﷻ﷾-️︚-︯﹬-﻾0---zヲ-￟￾-𐃿𐄃-𐄶𐅀-𐅸𐆊-𐆏𐇽-𐎞𐎠-𐏏𐏑-𐡖𐡘-𐤞𐤠-𐤾𐥀-𐩏𐩙-𐩾𐪀-𐬸𐭀-𑁆𑁎-𑂺𑃂-𑄿𑅄-𑇄𑇉-𒑯𒑴-𜿿𝅥-𝅩𝅭-𝅲𝅻-𝆂𝆅-𝆋𝆪-𝆭𝉂-𝉄𝍗-𝛀𝛂-𝛚𝛜-𝛺𝛼-𝜔𝜖-𝜴𝜶-𝝎𝝐-𝝮𝝰-𝞈𝞊-𝞨𝞪-𝟂𝟄-𞻯🃠-🄏🝴-󠀀󠂀-󯿿]
[0-9A-Za-zª-ª²-³µ-µ¹-º¼-¾À-ÖØ-öø-ˁˆ-ˑˠ-ˤˬ-ˬˮ-ˮ̀-ʹͶ-ͽΆ-ΆΈ-ϵϷ-ҁ҃-ՙա-և֑-ֽֿ-ֿׁ-ׂׄ-ׇׅ-ײؐ-ؚؠ-٩ٮ-ۓە-ۜ۟-۪ۨ-ۼۿ-ۿܐ-ߵߺ-࠭ࡀ-࡛ࢠ-ॣ०-९ॱ-ৱ৴-৹ਁ-૯ଁ-୯ୱ-௲ఁ-౾ಂ-൵ൺ-ෳก-ฺเ-๎๐-๙ກ-ༀ༘-༙༠-༳༵-༵༷-༹༷-༹༾-྄྆-ྼ࿆-࿆က-၉ၐ-ႝႠ-ჺჼ-፟፩-ᎏᎠ-Ᏼᐁ-ᙬᙯ-ᙿᚁ-ᚚᚠ-ᛪᛮ-᜴ᝀ-៓ៗ-ៗៜ-៹᠋-᠍᠐-᤻᥆-᧚ᨀ-ᨛᨠ-᪙ᪧ-ᪧᬀ-᭙᭫-᭳ᮀ-᯳ᰀ-᰷᱀-ᱽ᳐-᳔᳒-ᾼι-ιῂ-ῌῐ-Ίῠ-Ῥῲ-ῼ⁰-⁹ⁿ-₉ₐ-ₜ⃐-⃰ℂ-ℂℇ-ℇℊ----ℤΩ-Ωℨ---ℹℼ-ℿⅅ-ⅉⅎ-ⅎ⅐-↉①-⒛⓪-⓿❶-➓Ⰰ-ⳤⳫ-ⳳ⳽-⳽ⴀ-ⵯ⵿-ⷿⸯ-ⸯ々-〇〡-〯〱-〵〸-〼ぁ-゚ゝ-ゟァ-ヺー-ㆎ㆒-㆕ㆠ-ㆺㇰ-ㇿ㈠-㈩㉈-㉏㉑-㉟㊀-㊉㊱-㊿㐀-䶵一-ꒌꓐ-ꓽꔀ-ꘌꘐ-꙲ꙴ-꙽ꙿ-꛱ꜗ-ꜟꜢ-ꞈꞋ-ꠧ꠰-꠵ꡀ-ꡳꢀ-꣄꣐-ꣷꣻ-꤭ꤰ-꥓ꥠ-꧀ꧏ-꧙ꨀ-꩙ꩠ-ꩶꩺ-ꫝꫠ-ꫯꫲ-ꯪ꯬-ퟻ豈-ﬨשׁ-ﮱﯓ-ﴽﵐ-ﷻ︀-️︠-︦ﹰ-ﻼ0---zヲ-ᅵ𐀀-𐃺𐄇-𐄳𐅀-𐅸𐆊-𐆊𐇽-𐎝𐎠-𐏏𐏑-𐡕𐡘-𐤛𐤠-𐤹𐦀-𐩇𐩠-𐩾𐬀-𐬵𐭀-𑁆𑁒-𑂺𑃐-𑄿𑆀-𑇄𑇐-𒑢𓀀-𛀁𝅥-𝅩𝅭-𝅲𝅻-𝆂𝆅-𝆋𝆪-𝆭𝉂-𝉄𝍠-𝛀𝛂-𝛚𝛜-𝛺𝛼-𝜔𝜖-𝜴𝜶-𝝎𝝐-𝝮𝝰-𝞈𝞊-𝞨𝞪-𝟂𝟄-𞺻🄀-🄊𠀀-𪘀󠄀-󠇯]