Merge pull request #18 from LuminosoInsight/add-builder

Add wordfreq_builder as a sub-directory to wordfreq

Former-commit-id: e02f41076d
This commit is contained in:
Rob Speer 2015-07-13 14:43:53 -04:00
commit 37157ef09d
19 changed files with 981 additions and 0 deletions

12
wordfreq_builder/.gitignore vendored Normal file
View File

@ -0,0 +1,12 @@
*.pyc
__pycache__
.coverage
.idea
dist
*.egg-info
build
_build
build.ninja
data
.ninja_deps
.ninja_log

View File

@ -0,0 +1,8 @@
PYTHON = python
all: build.ninja
# build the Ninja file that will take over the build process
build.ninja: rules.ninja wordfreq_builder/ninja.py wordfreq_builder/config.py wordfreq_builder.egg-info/PKG-INFO
$(PYTHON) -m wordfreq_builder.cli.build_deps rules.ninja > build.ninja

148
wordfreq_builder/README.md Normal file
View File

@ -0,0 +1,148 @@
# wordfreq\_builder
This package builds the data files for [wordfreq](https://github.com/LuminosoInsight/wordfreq).
It requires a fair amount of external input data (42 GB of it, as of this
writing), which unfortunately we don't have a plan for how to distribute
outside of Luminoso yet.
The data can be publicly obtained in various ways, so here we'll at least
document where it comes from. We hope to come up with a process that's more
reproducible eventually.
The good news is that you don't need to be able to run this process to use
wordfreq. The built results are already in the `wordfreq/data` directory.
## How to build it
Set up your external hard disk, your networked file system, or whatever thing
you have that's got a couple hundred GB of space free. Let's suppose the
directory of it that you want to use is called `/ext/data`.
Get the input data. At Luminoso, this is available in the directory
`/nfs/broadway/data/wordfreq_builder`. The sections below explain where the
data comes from.
Copy the input data:
cp -rv /nfs/broadway/data/wordfreq_builder /ext/data/
Make a symbolic link so that `data/` in this directory points to
your copy of the input data:
ln -s /ext/data/wordfreq_builder data
Install the Ninja build system:
sudo apt-get install ninja-build
We need to build a Ninja build file using the Python code in
`wordfreq_builder/ninja.py`. We could do this with Ninja, but... you see the
chicken-and-egg problem, don't you. So this is the one thing the Makefile
knows how to do.
make
Start the build, and find something else to do for a few hours:
ninja -v
You can copy the results into wordfreq with this command (supposing that
$WORDFREQ points to your wordfreq repo):
cp data/dist/*.msgpack.gz ../wordfreq/data/
## The Ninja build process
Ninja is a lot like Make, except with one big {drawback|advantage}: instead of
writing bizarre expressions in an idiosyncratic language to let Make calculate
which files depend on which other files...
...you just tell Ninja which files depend on which other files.
The Ninja documentation suggests using your favorite scripting language to
create the dependency list, so that's what we've done in `ninja.py`.
Dependencies in Ninja refer to build rules. These do need to be written by hand
in Ninja's own format, but the task is simpler. In this project, the build
rules are defined in `rules.ninja`. They'll be concatenated with the
Python-generated dependency definitions to form the complete build file,
`build.ninja`, which is the default file that Ninja looks at when you run
`ninja`.
So a lot of the interesting work in this package is done in `rules.ninja`.
This file defines shorthand names for long commands. As a simple example,
the rule named `format_twitter` applies the command
python -m wordfreq_builder.cli.format_twitter $in $out
to the dependency file `$in` and the output file `$out`.
The specific rules are described by the comments in `rules.ninja`.
## Data sources
### Leeds Internet Corpus
Also known as the "Web as Corpus" project, this is a University of Leeds
project that collected wordlists in assorted languages by crawling the Web.
The results are messy, but they're something. We've been using them for quite
a while.
These files can be downloaded from the [Leeds corpus page][leeds].
The original files are in `data/source-lists/leeds`, and they're processed
by the `convert_leeds` rule in `rules.ninja`.
[leeds]: http://corpus.leeds.ac.uk/list.html
### Twitter
The file `data/raw-input/twitter/all-2014.txt` contains about 72 million tweets
collected by the `ftfy.streamtester` package in 2014.
It's not possible to distribute the text of tweets. However, this process could
be reproduced by running `ftfy.streamtester`, part of the [ftfy][] package, for
a couple of weeks.
[ftfy]: https://github.com/LuminosoInsight/python-ftfy
### Google Books
We use English word frequencies from [Google Books Syntactic Ngrams][gbsn].
We pretty much ignore the syntactic information, and only use this version
because it's cleaner. The data comes in the form of 99 gzipped text files in
`data/raw-input/google-books`.
[gbsn]: http://commondatastorage.googleapis.com/books/syntactic-ngrams/index.html
### OpenSubtitles
[Some guy](https://invokeit.wordpress.com/frequency-word-lists/) made word
frequency lists out of the subtitle text on OpenSubtitles. This data was
used to make Wiktionary word frequency lists at one point, but it's been
updated significantly since the version Wiktionary got.
The wordlists are in `data/source-lists/opensubtitles`.
In order to fit into the wordfreq pipeline, we renamed lists with different variants
of the same language code, to distinguish them fully according to BCP 47. Then we
concatenated the different variants into a single list, as follows:
* `zh_tw.txt` was renamed to `zh-Hant.txt`
* `zh_cn.txt` was renamed to `zh-Hans.txt`
* `zh.txt` was renamed to `zh-Hani.txt`
* `zh-Hant.txt`, `zh-Hans.txt`, and `zh-Hani.txt` were concatenated into `zh.txt`
* `pt.txt` was renamed to `pt-PT.txt`
* `pt_br.txt` was renamed to `pt-BR.txt`
* `pt-BR.txt` and `pt-PT.txt` were concatenated into `pt.txt`
We also edited the English data to re-add "'t" to words that had obviously lost
it, such as "didn" in the place of "didn't". We applied this to words that
became much less common words in the process, which means this wordlist no
longer represents the words 'don' and 'won', as we assume most of their
frequency comes from "don't" and "won't". Words that turned into similarly
common words, however, were left alone: this list doesn't represent "can't"
because the word was left as "can".

BIN
wordfreq_builder/build.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.3 MiB

View File

@ -0,0 +1,80 @@
# This defines the rules on how to build parts of the wordfreq lists, using the
# Ninja build system:
#
# http://martine.github.io/ninja/manual.html
#
# Ninja is available in the 'ninja-build' Ubuntu package. It's like make with
# better parallelism and the ability for build steps to produce multiple
# outputs. The tradeoff is that its rule syntax isn't full of magic for
# expanding wildcards and finding dependencies, so in general you have to
# write the dependencies using a script.
#
# This file will become the header of the larger build.ninja file, which also
# contains the programatically-defined dependency graph.
# Variables
DATA = ./data
# How to build the build.ninja file itself. (Use the Makefile to get it the
# first time.)
rule build_deps
command = python -m wordfreq_builder.cli.build_deps $in > $out
# Splits the single file $in into $slices parts, whose names will be
# $prefix plus a two-digit numeric suffix.
rule split
command = mkdir -p $$(dirname $prefix) && split -d -n r/$slices $in $prefix
# wiki2text is a tool I wrote using Nim 0.11, which extracts plain text from
# Wikipedia dumps obtained from dumps.wikimedia.org. The code is at
# https://github.com/rspeer/wiki2text.
rule wiki2text
command = mkdir -p $$(dirname $out) && bunzip2 -c $in | wiki2text > $out
# To tokenize Japanese, we run it through Mecab and take the first column.
# We don't have a plan for tokenizing Chinese yet.
rule tokenize_japanese
command = mkdir -p $$(dirname $out) && mecab -b 1048576 < $in | cut -f 1 | grep -v "EOS" > $out
# Tokenizing text from Twitter requires us to language-detect and tokenize
# in the same step.
rule tokenize_twitter
command = mkdir -p $$(dirname $prefix) && python -m wordfreq_builder.cli.tokenize_twitter $in $prefix
# To convert the Leeds corpus, look for space-separated lines that start with
# an integer and a decimal. The integer is the rank, which we discard. The
# decimal is the frequency, and the remaining text is the term. Use sed -n
# with /p to output only lines where the match was successful.
#
# Grep out the term "EOS", an indication that Leeds used MeCab and didn't
# strip out the EOS lines.
rule convert_leeds
command = mkdir -p $$(dirname $out) && sed -rn 's/([0-9]+) ([0-9.]+) (.*)/\3,\2/p' < $in | grep -v 'EOS,' > $out
# To convert the OpenSubtitles frequency data, simply replace spaces with
# commas.
rule convert_opensubtitles
command = mkdir -p $$(dirname $out) && tr ' ' ',' < $in > $out
# Convert and clean up the Google Books Syntactic N-grams data. Concatenate all
# the input files, keep only the single words and their counts, and only keep
# lines with counts of 100 or more.
#
# (These will still be repeated as the word appears in different grammatical
# roles, information that the source data provides that we're discarding. The
# source data was already filtered to only show words in roles with at least
# two-digit counts of occurences.)
rule convert_google_syntactic_ngrams
command = mkdir -p $$(dirname $out) && zcat $in | cut -f 1,3 | grep -v '[,"]' | sed -rn 's/(.*)\s(...+)/\1,\2/p' > $out
rule count
command = mkdir -p $$(dirname $out) && python -m wordfreq_builder.cli.count_tokens $in $out
rule merge
command = mkdir -p $$(dirname $out) && python -m wordfreq_builder.cli.combine_lists -o $out $in
rule freqs2cB
command = mkdir -p $$(dirname $out) && python -m wordfreq_builder.cli.freqs_to_cB $in $out
rule cat
command = cat $in > $out

20
wordfreq_builder/setup.py Executable file
View File

@ -0,0 +1,20 @@
from setuptools import setup
setup(
name="wordfreq_builder",
version='0.1',
maintainer='Luminoso Technologies, Inc.',
maintainer_email='info@luminoso.com',
url='http://github.com/LuminosoInsight/wordfreq_builder',
platforms=["any"],
description="Turns raw data into word frequency lists",
packages=['wordfreq_builder'],
install_requires=['msgpack-python', 'pycld2'],
entry_points={
'console_scripts': [
'wordfreq-pretokenize-twitter = wordfreq_builder.cli.pretokenize_twitter:main',
'wordfreq-format-twitter = wordfreq_builder.cli.format_twitter:main',
'wordfreq-build-deps = wordfreq_builder.cli.build_deps:main'
]
}
)

View File

@ -0,0 +1,15 @@
from wordfreq_builder.ninja import make_ninja_deps
import argparse
def main():
parser = argparse.ArgumentParser()
parser.add_argument('in_filename', help='filename of rules file')
args = parser.parse_args()
# Make the complete ninja file and write it to standard out
make_ninja_deps(args.in_filename)
if __name__ == '__main__':
main()

View File

@ -0,0 +1,19 @@
from wordfreq_builder.word_counts import read_freqs, merge_freqs, write_wordlist
import argparse
def merge_lists(input_names, output_name):
freq_dicts = []
for input_name in input_names:
freq_dicts.append(read_freqs(input_name, cutoff=2))
merged = merge_freqs(freq_dicts)
write_wordlist(merged, output_name)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-o', '--output', help='filename to write the output to', default='combined-counts.csv')
parser.add_argument('inputs', help='names of input files to merge', nargs='+')
args = parser.parse_args()
merge_lists(args.inputs, args.output)

View File

@ -0,0 +1,16 @@
from wordfreq_builder.word_counts import count_tokens, write_wordlist
import argparse
def handle_counts(filename_in, filename_out):
counts = count_tokens(filename_in)
write_wordlist(counts, filename_out)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('filename_in', help='name of input file containing tokens')
parser.add_argument('filename_out', help='name of output file')
args = parser.parse_args()
handle_counts(args.filename_in, args.filename_out)

View File

@ -0,0 +1,11 @@
from wordfreq_builder.word_counts import freqs_to_cBpack
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('filename_in', help='name of input file containing tokens')
parser.add_argument('filename_out', help='name of output file')
args = parser.parse_args()
freqs_to_cBpack(args.filename_in, args.filename_out)

View File

@ -0,0 +1,19 @@
from wordfreq_builder.tokenizers import cld2_surface_tokenizer, tokenize_file
import argparse
def tokenize_twitter(in_filename, out_prefix):
tokenize_file(in_filename, out_prefix,
tokenizer=cld2_surface_tokenizer)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('filename', help='filename of input file containing one tweet per line')
parser.add_argument('outprefix', help='prefix of output filenames')
args = parser.parse_args()
tokenize_twitter(args.filename, args.outprefix)
if __name__ == '__main__':
main()

View File

@ -0,0 +1,87 @@
import os
CONFIG = {
'version': '1.0b',
# data_dir is a relative or absolute path to where the wordlist data
# is stored
'data_dir': 'data',
'sources': {
# A list of language codes (possibly un-standardized) that we'll
# look up in filenames for these various data sources.
'twitter': [
'ar', 'de', 'en', 'es', 'fr', 'id', 'it', 'ja', 'ko', 'ms', 'nl',
'pt', 'ru',
# can be added later: 'th', 'tr'
],
'wikipedia': [
'ar', 'de', 'en', 'es', 'fr', 'id', 'it', 'ja', 'ko', 'ms', 'nl',
'pt', 'ru'
# many more can be added
],
'opensubtitles': [
# All languages where the most common word in OpenSubtitles
# appears at least 5000 times
'ar', 'bg', 'bs', 'ca', 'cs', 'da', 'de', 'el', 'en', 'es', 'et',
'fa', 'fi', 'fr', 'he', 'hr', 'hu', 'id', 'is', 'it', 'lt', 'lv',
'mk', 'ms', 'nb', 'nl', 'pl', 'pt', 'ro', 'ru', 'sk', 'sl', 'sq',
'sr', 'sv', 'tr', 'uk', 'zh'
],
'leeds': [
'ar', 'de', 'el', 'en', 'es', 'fr', 'it', 'ja', 'pt', 'ru', 'zh'
],
'google-books': [
'en',
# Using the 2012 data, we could get French, German, Italian,
# Russian, Spanish, and (Simplified) Chinese.
]
},
'wordlist_paths': {
'twitter': 'generated/twitter/tweets-2014.{lang}.{ext}',
'wikipedia': 'generated/wikipedia/wikipedia_{lang}.{ext}',
'opensubtitles': 'generated/opensubtitles/opensubtitles_{lang}.{ext}',
'leeds': 'generated/leeds/leeds_internet_{lang}.{ext}',
'google-books': 'generated/google-books/google_books_{lang}.{ext}',
'combined': 'generated/combined/combined_{lang}.{ext}',
'combined-dist': 'dist/combined_{lang}.{ext}',
'twitter-dist': 'dist/twitter_{lang}.{ext}'
},
'min_sources': 2
}
def data_filename(filename):
"""
Convert a relative filename to a path inside the configured data_dir.
"""
return os.path.join(CONFIG['data_dir'], filename)
def wordlist_filename(source, language, extension='txt'):
"""
Get the path where a particular built wordlist should go, parameterized by
its language and its file extension.
"""
path = CONFIG['wordlist_paths'][source].format(
lang=language, ext=extension
)
return data_filename(path)
def source_names(language):
"""
Get the names of data sources that supply data for the given language.
"""
return sorted(key for key in CONFIG['sources']
if language in CONFIG['sources'][key])
def all_languages():
"""
Get all languages that should have their data built, which is those that
are supported by at least `min_sources` sources.
"""
languages = set()
for langlist in CONFIG['sources'].values():
languages |= set(langlist)
return [lang for lang in sorted(languages)
if len(source_names(lang)) >= CONFIG['min_sources']]

View File

@ -0,0 +1,231 @@
from wordfreq_builder.config import (
CONFIG, data_filename, wordlist_filename, all_languages, source_names
)
import sys
import pathlib
HEADER = """# This file is automatically generated. Do not edit it.
# You can regenerate it using the 'wordfreq-build-deps' command.
"""
TMPDIR = data_filename('tmp')
# Set this to True to rebuild the Twitter tokenization (which takes days)
TOKENIZE_TWITTER = True
def add_dep(lines, rule, input, output, extra=None, params=None):
if isinstance(output, list):
output = ' '.join(output)
if isinstance(input, list):
input = ' '.join(input)
if extra:
if isinstance(extra, list):
extra = ' '.join(extra)
extrastr = ' | ' + extra
else:
extrastr = ''
build_rule = "build {output}: {rule} {input}{extra}".format(
output=output, rule=rule, input=input, extra=extrastr
)
lines.append(build_rule)
if params:
for key, val in params.items():
lines.append(" {key} = {val}".format(key=key, val=val))
lines.append("")
def make_ninja_deps(rules_filename, out=sys.stdout):
"""
Output a complete Ninja file describing how to build the wordfreq data.
"""
print(HEADER, file=out)
# Copy in the rules section
with open(rules_filename, encoding='utf-8') as rulesfile:
print(rulesfile.read(), file=out)
lines = []
# The first dependency is to make sure the build file is up to date.
add_dep(lines, 'build_deps', 'rules.ninja', 'build.ninja',
extra='wordfreq_builder/ninja.py')
if TOKENIZE_TWITTER:
lines.extend(
twitter_deps(
data_filename('raw-input/twitter/all-2014.txt'),
slice_prefix=data_filename('slices/twitter/tweets-2014'),
combined_prefix=data_filename('generated/twitter/tweets-2014'),
slices=40,
languages=CONFIG['sources']['twitter']
)
)
lines.extend(
wikipedia_deps(
data_filename('raw-input/wikipedia'),
CONFIG['sources']['wikipedia']
)
)
lines.extend(
google_books_deps(
data_filename('raw-input/google-books')
)
)
lines.extend(
leeds_deps(
data_filename('source-lists/leeds'),
CONFIG['sources']['leeds']
)
)
lines.extend(
opensubtitles_deps(
data_filename('source-lists/opensubtitles'),
CONFIG['sources']['opensubtitles']
)
)
lines.extend(combine_lists(all_languages()))
print('\n'.join(lines), file=out)
def wikipedia_deps(dirname_in, languages):
lines = []
path_in = pathlib.Path(dirname_in)
for language in languages:
# Find the most recent file for this language
# Skip over files that do not exist
input_file = max(path_in.glob(
'{}wiki*.bz2'.format(language)
))
plain_text_file = wordlist_filename('wikipedia', language, 'txt')
count_file = wordlist_filename('wikipedia', language, 'counts.txt')
add_dep(lines, 'wiki2text', input_file, plain_text_file)
if language == 'ja':
mecab_token_file = wordlist_filename('wikipedia', language, 'mecab-tokens.txt')
add_dep(lines, 'tokenize_japanese', plain_text_file, mecab_token_file)
add_dep(lines, 'count', mecab_token_file, count_file)
else:
add_dep(lines, 'count', plain_text_file, count_file)
return lines
def google_books_deps(dirname_in):
# Get English data from the split-up files of the Google Syntactic N-grams
# 2013 corpus.
lines = []
# Yes, the files are numbered 00 through 98 of 99. This is not an
# off-by-one error. Not on my part, anyway.
input_files = [
'{}/nodes.{:>02d}-of-99.gz'.format(dirname_in, i)
for i in range(99)
]
output_file = wordlist_filename('google-books', 'en', 'counts.txt')
add_dep(lines, 'convert_google_syntactic_ngrams', input_files, output_file)
return lines
def twitter_deps(input_filename, slice_prefix,
combined_prefix, slices, languages):
lines = []
slice_files = ['{prefix}.part{num:0>2d}'.format(prefix=slice_prefix, num=num)
for num in range(slices)]
# split the input into slices
add_dep(lines,
'split', input_filename, slice_files,
params={'prefix': '{}.part'.format(slice_prefix),
'slices': slices})
for slicenum in range(slices):
slice_file = slice_files[slicenum]
language_outputs = [
'{prefix}.{lang}.txt'.format(prefix=slice_file, lang=language)
for language in languages
]
add_dep(lines, 'tokenize_twitter', slice_file, language_outputs,
params={'prefix': slice_file})
for language in languages:
combined_output = wordlist_filename('twitter', language, 'tokens.txt')
language_inputs = [
'{prefix}.{lang}.txt'.format(prefix=slice_files[slicenum], lang=language)
for slicenum in range(slices)
]
add_dep(lines, 'cat', language_inputs, combined_output)
count_file = wordlist_filename('twitter', language, 'counts.txt')
if language == 'ja':
mecab_token_file = wordlist_filename('twitter', language, 'mecab-tokens.txt')
add_dep(lines, 'tokenize_japanese', combined_output, mecab_token_file)
add_dep(lines, 'count', mecab_token_file, count_file, extra='wordfreq_builder/tokenizers.py')
else:
add_dep(lines, 'count', combined_output, count_file, extra='wordfreq_builder/tokenizers.py')
return lines
def leeds_deps(dirname_in, languages):
lines = []
for language in languages:
input_file = '{prefix}/internet-{lang}-forms.num'.format(
prefix=dirname_in, lang=language
)
reformatted_file = wordlist_filename('leeds', language, 'counts.txt')
add_dep(lines, 'convert_leeds', input_file, reformatted_file)
return lines
def opensubtitles_deps(dirname_in, languages):
lines = []
for language in languages:
input_file = '{prefix}/{lang}.txt'.format(
prefix=dirname_in, lang=language
)
reformatted_file = wordlist_filename('opensubtitles', language, 'counts.txt')
add_dep(lines, 'convert_opensubtitles', input_file, reformatted_file)
return lines
def combine_lists(languages):
lines = []
for language in languages:
sources = source_names(language)
input_files = [
wordlist_filename(source, language, 'counts.txt')
for source in sources
]
output_file = wordlist_filename('combined', language)
add_dep(lines, 'merge', input_files, output_file,
extra='wordfreq_builder/word_counts.py')
output_cBpack = wordlist_filename('combined-dist', language, 'msgpack.gz')
add_dep(lines, 'freqs2cB', output_file, output_cBpack,
extra='wordfreq_builder/word_counts.py')
lines.append('default {}'.format(output_cBpack))
# Write standalone lists for Twitter frequency
if language in CONFIG['sources']['twitter']:
input_file = wordlist_filename('twitter', language, 'counts.txt')
output_cBpack = wordlist_filename('twitter-dist', language, 'msgpack.gz')
add_dep(lines, 'freqs2cB', input_file, output_cBpack,
extra='wordfreq_builder/word_counts.py')
lines.append('default {}'.format(output_cBpack))
return lines
def main():
make_ninja_deps('rules.ninja')
if __name__ == '__main__':
main()

View File

@ -0,0 +1,29 @@
import sys
def ninja_to_dot():
def last_component(path):
return path.split('/')[-1]
print("digraph G {")
print('rankdir="LR";')
for line in sys.stdin:
line = line.rstrip()
parts = line.split(' ')
if parts[0] == 'build':
# the output file is the first argument; strip off the colon that
# comes from ninja syntax
outfile = last_component(parts[1][:-1])
operation = parts[2]
infiles = [last_component(part) for part in parts[3:]]
for infile in infiles:
if infile == '|':
# external dependencies start here; let's not graph those
break
print('"%s" -> "%s" [label="%s"]' % (infile, outfile, operation))
print("}")
if __name__ == '__main__':
ninja_to_dot()

View File

@ -0,0 +1,51 @@
from wordfreq_builder.tokenizers import cld2_surface_tokenizer, cld2_detect_language
from nose.tools import eq_
def test_tokenizer_1():
text = '"This is a test," she said, "and I\'ll bet y\'all $3.50 that it won\'t fail."'
tokens = [
'this', 'is', 'a', 'test', 'she', 'said',
'and', "i'll", 'bet', "y'all", '3', '50', 'that',
'it', "won't", 'fail',
]
result = cld2_surface_tokenizer(text)
eq_(result[1], tokens)
eq_(result[0], 'en')
def test_tokenizer_2():
text = "i use punctuation informally...see?like this."
tokens = [
'i', 'use', 'punctuation', 'informally', 'see',
'like', 'this'
]
result = cld2_surface_tokenizer(text)
eq_(result[1], tokens)
eq_(result[0], 'en')
def test_tokenizer_3():
text = "@ExampleHandle This parser removes twitter handles!"
tokens = ['this', 'parser', 'removes', 'twitter', 'handles']
result = cld2_surface_tokenizer(text)
eq_(result[1], tokens)
eq_(result[0], 'en')
def test_tokenizer_4():
text = "This is a really boring example tco http://t.co/n15ASlkase"
tokens = ['this', 'is', 'a', 'really', 'boring', 'example', 'tco']
result = cld2_surface_tokenizer(text)
eq_(result[1], tokens)
eq_(result[0], 'en')
def test_language_recognizer_1():
text = "Il est le meilleur livre que je ai jamais lu"
result = cld2_detect_language(text)
eq_(result, 'fr')
def test_language_recognizer_2():
text = """A nuvem de Oort, também chamada de nuvem de Öpik-Oort,
é uma nuvem esférica de planetesimais voláteis que se acredita
localizar-se a cerca de 50 000 UA, ou quase um ano-luz, do Sol."""
result = cld2_detect_language(text)
eq_(result, 'pt')

View File

@ -0,0 +1,115 @@
from html.entities import name2codepoint
from wordfreq import tokenize, TOKEN_RE, NON_PUNCT_RANGE
import re
import pycld2
CLD2_BAD_CHAR_RANGE = "".join([
'[',
'\x00-\x08',
'\x0b',
'\x0e-\x1f',
'\x7f-\x9f',
'\ud800-\udfff',
'\ufdd0-\ufdef'] +
[chr(65534+65536*x+y) for x in range(17) for y in range(2)] +
[']'])
CLD2_BAD_CHARS_RE = re.compile(CLD2_BAD_CHAR_RANGE)
TWITTER_HANDLE_RE = re.compile('@{0}+'.format(NON_PUNCT_RANGE))
TCO_RE = re.compile('http(?:s)?://t.co/[a-zA-Z0-9]+'.format(NON_PUNCT_RANGE))
def cld2_surface_tokenizer(text):
"""
Uses CLD2 to detect the language and wordfreq tokenizer to create tokens
"""
text = remove_handles_and_urls(text)
lang = cld2_detect_language(text)
tokens = tokenize(text, lang)
return lang, tokens
def cld2_detect_language(text):
"""
Uses CLD2 to detect the language
"""
text = CLD2_BAD_CHARS_RE.sub('', text)
return pycld2.detect(text)[2][0][1]
def remove_handles_and_urls(text):
text = fix_entities(text)
text = TWITTER_HANDLE_RE.sub('', text)
text = TCO_RE.sub('', text)
return text
def last_tab(line):
"""
Read lines by keeping only the last tab-separated value.
"""
return line.split('\t')[-1].strip()
def lowercase_text_filter(token):
"""
If this looks like a token that we want to count, return it, lowercased.
If not, filter it out by returning None.
"""
if TOKEN_RE.search(token):
return token.lower()
else:
return None
def tokenize_file(in_filename, out_prefix, tokenizer, line_reader=last_tab):
"""
Process a file by running it through the given tokenizer, sorting the
results by the language of each line, and inserting newlines
to mark the token boundaries.
"""
out_files = {}
with open(in_filename, encoding='utf-8') as in_file:
for line in in_file:
text = line_reader(line)
language, tokens = tokenizer(text)
if language != 'un':
tokenized = '\n'.join(tokens)
out_filename = '%s.%s.txt' % (out_prefix, language)
if out_filename in out_files:
out_file = out_files[out_filename]
else:
out_file = open(out_filename, 'w', encoding='utf-8')
out_files[out_filename] = out_file
print(tokenized, file=out_file)
for out_file in out_files.values():
out_file.close()
ENTITY_RE = re.compile(r'& ?(amp|quot|lt|gt) ?;')
def fix_entities(text):
"""
Fix the few HTML entities that Twitter uses -- even if they've
already been tokenized.
"""
def replace_entity(match):
return chr(name2codepoint[match.group(1)])
return ENTITY_RE.sub(replace_entity, text)
def monolingual_tokenize_file(in_filename, out_filename, language,
tokenizer, line_reader=last_tab,
sample_proportion=1):
"""
Process a file by running it through the given tokenizer, only keeping
lines of the language we're asking for, and inserting newlines
to mark the token boundaries.
`line_reader` is applied to each line before it given to the tokenizer
Only the first line out of every `sample_proportion` lines are run through
then tokenizer.
"""
with open(in_filename, encoding='utf-8', errors='replace') as in_file:
with open(out_filename, 'w', encoding='utf-8') as out_file:
for i, line in enumerate(in_file):
if i % sample_proportion == 0:
text = line_reader(line)
tokens, line_language = tokenizer(text)
if line_language == language:
for token in tokens:
print(token, file=out_file)

View File

@ -0,0 +1,120 @@
from wordfreq import simple_tokenize
from collections import defaultdict
from operator import itemgetter
from ftfy import fix_text
import math
import csv
import msgpack
import gzip
def count_tokens(filename):
"""
Count tokens that appear in a file, running each line through our
simple tokenizer.
Unicode errors in the input data will become token boundaries.
"""
counts = defaultdict(int)
with open(filename, encoding='utf-8', errors='replace') as infile:
for line in infile:
for token in simple_tokenize(line.strip()):
counts[token] += 1
return counts
def read_freqs(filename, cutoff=0):
"""
Read words and their frequencies from a CSV file.
Only words with a frequency greater than `cutoff` are returned.
If `cutoff` is greater than 0, the csv file must be sorted by frequency
in descending order.
"""
raw_counts = defaultdict(float)
total = 0.
with open(filename, encoding='utf-8', newline='') as infile:
reader = csv.reader(infile)
for key, strval in reader:
val = float(strval)
if val < cutoff:
break
for token in simple_tokenize(key):
token = fix_text(token)
total += val
# Use += so that, if we give the reader concatenated files with
# duplicates, it does the right thing
raw_counts[token] += val
freqs = {key: raw_count / total
for (key, raw_count) in raw_counts.items()}
return freqs
def freqs_to_cBpack(in_filename, out_filename, cutoff=-600):
"""
Convert a csv file of words and their frequencies to a file in the
idiosyncratic 'cBpack' format.
Only words with a frequency greater than `cutoff` centibels will be
written to the new file.
"""
freq_cutoff = 10 ** (cutoff / 100.)
freqs = read_freqs(in_filename, freq_cutoff)
cBpack = []
for token, freq in freqs.items():
cB = round(math.log10(freq) * 100)
if cB >= cutoff:
neg_cB = -cB
while neg_cB >= len(cBpack):
cBpack.append([])
cBpack[neg_cB].append(token)
for sublist in cBpack:
sublist.sort()
# Write a "header" consisting of a dictionary at the start of the file
cBpack_data = [{'format': 'cB', 'version': 1}] + cBpack
with gzip.open(out_filename, 'wb') as outfile:
msgpack.dump(cBpack_data, outfile)
def merge_freqs(freq_dicts):
"""
Merge multiple dictionaries of frequencies, representing each word with
the word's average frequency over all sources.
"""
vocab = set()
for freq_dict in freq_dicts:
vocab |= set(freq_dict)
merged = defaultdict(float)
N = len(freq_dicts)
for term in vocab:
term_total = 0.
for freq_dict in freq_dicts:
term_total += freq_dict.get(term, 0.)
merged[term] = term_total / N
return merged
def write_wordlist(freqs, filename, cutoff=1e-8):
"""
Write a dictionary of either raw counts or frequencies to a file of
comma-separated values.
Keep the CSV format simple by explicitly skipping words containing
commas or quotation marks. We don't believe we want those in our tokens
anyway.
"""
with open(filename, 'w', encoding='utf-8', newline='\n') as outfile:
writer = csv.writer(outfile)
items = sorted(freqs.items(), key=itemgetter(1), reverse=True)
for word, freq in items:
if freq < cutoff:
break
if not ('"' in word or ',' in word):
writer.writerow([word, str(freq)])