mirror of
https://github.com/rspeer/wordfreq.git
synced 2024-12-23 09:21:37 +00:00
Merge pull request #26 from LuminosoInsight/greek-and-turkish
Add SUBTLEX, support Turkish, expand Greek
Former-commit-id: acbb25e6f6
This commit is contained in:
commit
66f1afe4d7
2
.gitignore
vendored
2
.gitignore
vendored
@ -7,3 +7,5 @@ pip-log.txt
|
||||
.coverage
|
||||
*~
|
||||
wordfreq-data.tar.gz
|
||||
.idea
|
||||
build.dot
|
||||
|
101
README.md
101
README.md
@ -26,7 +26,7 @@ install them on Ubuntu:
|
||||
## Usage
|
||||
|
||||
wordfreq provides access to estimates of the frequency with which a word is
|
||||
used, in 15 languages (see *Supported languages* below). It loads
|
||||
used, in 16 languages (see *Supported languages* below). It loads
|
||||
efficiently-packed data structures that contain all words that appear at least
|
||||
once per million words.
|
||||
|
||||
@ -118,34 +118,38 @@ of word usage on different topics at different levels of formality. The sources
|
||||
- **GBooks**: Google Books Ngrams 2013
|
||||
- **LeedsIC**: The Leeds Internet Corpus
|
||||
- **OpenSub**: OpenSubtitles
|
||||
- **SUBTLEX**: The SUBTLEX word frequency lists
|
||||
- **Twitter**: Messages sampled from Twitter's public stream
|
||||
- **Wikipedia**: The full text of Wikipedia in 2015
|
||||
|
||||
The following 12 languages are well-supported, using at least 3 different sources
|
||||
of word frequencies:
|
||||
The following 14 languages are well-supported, with reasonable tokenization and
|
||||
at least 3 different sources of word frequencies:
|
||||
|
||||
Language Code GBooks LeedsIC OpenSub Twitter Wikipedia
|
||||
──────────────────┼──────────────────────────────────────────
|
||||
Arabic ar │ - Yes Yes Yes Yes
|
||||
German de │ - Yes Yes Yes[1] Yes
|
||||
English en │ Yes Yes Yes Yes Yes
|
||||
Spanish es │ - Yes Yes Yes Yes
|
||||
French fr │ - Yes Yes Yes Yes
|
||||
Indonesian id │ - - Yes Yes Yes
|
||||
Italian it │ - Yes Yes Yes Yes
|
||||
Japanese ja │ - Yes - Yes Yes
|
||||
Malay ms │ - - Yes Yes Yes
|
||||
Dutch nl │ - - Yes Yes Yes
|
||||
Portuguese pt │ - Yes Yes Yes Yes
|
||||
Russian ru │ - Yes Yes Yes Yes
|
||||
Language Code GBooks SUBTLEX LeedsIC OpenSub Twitter Wikipedia
|
||||
──────────────────┼──────────────────────────────────────────────────
|
||||
Arabic ar │ - - Yes Yes Yes Yes
|
||||
German de │ - Yes Yes - Yes[1] Yes
|
||||
Greek el │ - - Yes Yes Yes Yes
|
||||
English en │ Yes Yes Yes Yes Yes Yes
|
||||
Spanish es │ - - Yes Yes Yes Yes
|
||||
French fr │ - - Yes Yes Yes Yes
|
||||
Indonesian id │ - - - Yes Yes Yes
|
||||
Italian it │ - - Yes Yes Yes Yes
|
||||
Japanese ja │ - - Yes - Yes Yes
|
||||
Malay ms │ - - - Yes Yes Yes
|
||||
Dutch nl │ - Yes - Yes Yes Yes
|
||||
Portuguese pt │ - - Yes Yes Yes Yes
|
||||
Russian ru │ - - Yes Yes Yes Yes
|
||||
Turkish tr │ - - - Yes Yes Yes
|
||||
|
||||
These 3 languages are only marginally supported so far:
|
||||
These languages are only marginally supported so far. We have too few data
|
||||
sources so far in Korean (feel free to suggest some), and we are lacking
|
||||
tokenization support for Chinese.
|
||||
|
||||
Language Code GBooks LeedsIC OpenSub Twitter Wikipedia
|
||||
──────────────────┼──────────────────────────────────────────
|
||||
Greek el │ - Yes Yes - -
|
||||
Korean ko │ - - - Yes Yes
|
||||
Chinese zh │ - Yes Yes - -
|
||||
Language Code GBooks SUBTLEX LeedsIC OpenSub Twitter Wikipedia
|
||||
──────────────────┼──────────────────────────────────────────────────
|
||||
Korean ko │ - - - - Yes Yes
|
||||
Chinese zh │ - Yes Yes Yes - -
|
||||
|
||||
[1] We've counted the frequencies from tweets in German, such as they are, but
|
||||
you should be aware that German is not a frequently-used language on Twitter.
|
||||
@ -219,7 +223,58 @@ sources:
|
||||
|
||||
- Wikipedia, the free encyclopedia (http://www.wikipedia.org)
|
||||
|
||||
It contains data from various SUBTLEX word lists: SUBTLEX-US, SUBTLEX-UK, and
|
||||
SUBTLEX-CH, created by Marc Brysbaert et al. and available at
|
||||
http://crr.ugent.be/programs-data/subtitle-frequencies.
|
||||
|
||||
I (Robyn Speer) have
|
||||
obtained permission by e-mail from Marc Brysbaert to distribute these wordlists
|
||||
in wordfreq, to be used for any purpose, not just for academic use, under these
|
||||
conditions:
|
||||
|
||||
- Wordfreq and code derived from it must credit the SUBTLEX authors.
|
||||
- It must remain clear that SUBTLEX is freely available data.
|
||||
|
||||
These terms are similar to the Creative Commons Attribution-ShareAlike license.
|
||||
|
||||
Some additional data was collected by a custom application that watches the
|
||||
streaming Twitter API, in accordance with Twitter's Developer Agreement &
|
||||
Policy. This software gives statistics about words that are commonly used on
|
||||
Twitter; it does not display or republish any Twitter content.
|
||||
|
||||
## Citations to work that wordfreq is built on
|
||||
|
||||
- Brysbaert, M. & New, B. (2009). Moving beyond Kucera and Francis: A Critical
|
||||
Evaluation of Current Word Frequency Norms and the Introduction of a New and
|
||||
Improved Word Frequency Measure for American English. Behavior Research
|
||||
Methods, 41 (4), 977-990.
|
||||
http://sites.google.com/site/borisnew/pub/BrysbaertNew2009.pdf
|
||||
|
||||
- Brysbaert, M., Buchmeier, M., Conrad, M., Jacobs, A. M., Bölte, J., & Böhl, A.
|
||||
(2015). The word frequency effect. Experimental Psychology.
|
||||
http://econtent.hogrefe.com/doi/abs/10.1027/1618-3169/a000123?journalCode=zea
|
||||
|
||||
- Cai, Q., & Brysbaert, M. (2010). SUBTLEX-CH: Chinese word and character
|
||||
frequencies based on film subtitles. PLoS One, 5(6), e10729.
|
||||
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0010729
|
||||
|
||||
- Dave, H. (2011). Frequency word lists.
|
||||
https://invokeit.wordpress.com/frequency-word-lists/
|
||||
|
||||
- Davis, M. (2012). Unicode text segmentation. Unicode Standard Annex, 29.
|
||||
http://unicode.org/reports/tr29/
|
||||
|
||||
- Keuleers, E., Brysbaert, M. & New, B. (2010). SUBTLEX-NL: A new frequency
|
||||
measure for Dutch words based on film subtitles. Behavior Research Methods,
|
||||
42(3), 643-650.
|
||||
http://crr.ugent.be/papers/SUBTLEX-NL_BRM.pdf
|
||||
|
||||
- Kudo, T. (2005). Mecab: Yet another part-of-speech and morphological
|
||||
analyzer.
|
||||
http://mecab.sourceforge.net/
|
||||
|
||||
- van Heuven, W. J., Mandera, P., Keuleers, E., & Brysbaert, M. (2014).
|
||||
SUBTLEX-UK: A new and improved word frequency database for British English.
|
||||
The Quarterly Journal of Experimental Psychology, 67(6), 1176-1190.
|
||||
http://www.tandfonline.com/doi/pdf/10.1080/17470218.2013.850521
|
||||
|
||||
|
@ -1,30 +1,39 @@
|
||||
""" This file generates a graph of the dependencies for the ninja build."""
|
||||
|
||||
import sys
|
||||
import re
|
||||
|
||||
|
||||
def ninja_to_dot():
|
||||
def last_component(path):
|
||||
return path.split('/')[-1]
|
||||
def simplified_filename(path):
|
||||
component = path.split('/')[-1]
|
||||
return re.sub(
|
||||
r'[0-9]+-of', 'NN-of',
|
||||
re.sub(r'part[0-9]+', 'partNN', component)
|
||||
)
|
||||
|
||||
print("digraph G {")
|
||||
print('rankdir="LR";')
|
||||
seen_edges = set()
|
||||
for line in sys.stdin:
|
||||
line = line.rstrip()
|
||||
if line.startswith('build'):
|
||||
# the output file is the first argument; strip off the colon that
|
||||
# comes from ninja syntax
|
||||
output_text, input_text = line.split(':')
|
||||
outfiles = [last_component(part) for part in output_text.split(' ')[1:]]
|
||||
outfiles = [simplified_filename(part) for part in output_text.split(' ')[1:]]
|
||||
inputs = input_text.strip().split(' ')
|
||||
infiles = [last_component(part) for part in inputs[1:]]
|
||||
infiles = [simplified_filename(part) for part in inputs[1:]]
|
||||
operation = inputs[0]
|
||||
for infile in infiles:
|
||||
if infile == '|':
|
||||
# external dependencies start here; let's not graph those
|
||||
break
|
||||
for outfile in outfiles:
|
||||
print('"%s" -> "%s" [label="%s"]' % (infile, outfile, operation))
|
||||
edge = '"%s" -> "%s" [label="%s"]' % (infile, outfile, operation)
|
||||
if edge not in seen_edges:
|
||||
seen_edges.add(edge)
|
||||
print(edge)
|
||||
print("}")
|
||||
|
||||
|
||||
|
@ -19,7 +19,7 @@ def test_freq_examples():
|
||||
def test_languages():
|
||||
# Make sure the number of available languages doesn't decrease
|
||||
avail = available_languages()
|
||||
assert_greater(len(avail), 14)
|
||||
assert_greater(len(avail), 15)
|
||||
|
||||
# Laughter is the universal language
|
||||
for lang in avail:
|
||||
@ -36,7 +36,7 @@ def test_languages():
|
||||
|
||||
def test_twitter():
|
||||
avail = available_languages('twitter')
|
||||
assert_greater(len(avail), 12)
|
||||
assert_greater(len(avail), 14)
|
||||
|
||||
for lang in avail:
|
||||
assert_greater(word_frequency('rt', lang, 'twitter'),
|
||||
@ -68,6 +68,7 @@ def test_most_common_words():
|
||||
eq_(get_most_common('nl'), 'de')
|
||||
eq_(get_most_common('pt'), 'de')
|
||||
eq_(get_most_common('ru'), 'в')
|
||||
eq_(get_most_common('tr'), 'bir')
|
||||
eq_(get_most_common('zh'), '的')
|
||||
|
||||
|
||||
@ -111,6 +112,8 @@ def test_tokenization():
|
||||
def test_casefolding():
|
||||
eq_(tokenize('WEISS', 'de'), ['weiss'])
|
||||
eq_(tokenize('weiß', 'de'), ['weiss'])
|
||||
eq_(tokenize('İstanbul', 'tr'), ['istanbul'])
|
||||
eq_(tokenize('SIKISINCA', 'tr'), ['sıkısınca'])
|
||||
|
||||
|
||||
def test_phrase_freq():
|
||||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
wordfreq/data/combined_tr.msgpack.gz
Normal file
BIN
wordfreq/data/combined_tr.msgpack.gz
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
wordfreq/data/twitter_el.msgpack.gz
Normal file
BIN
wordfreq/data/twitter_el.msgpack.gz
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
wordfreq/data/twitter_tr.msgpack.gz
Normal file
BIN
wordfreq/data/twitter_tr.msgpack.gz
Normal file
Binary file not shown.
@ -65,6 +65,15 @@ def simple_tokenize(text):
|
||||
return [token.strip("'").casefold() for token in TOKEN_RE.findall(text)]
|
||||
|
||||
|
||||
def turkish_tokenize(text):
|
||||
"""
|
||||
Like `simple_tokenize`, but modifies i's so that they case-fold correctly
|
||||
in Turkish.
|
||||
"""
|
||||
text = unicodedata.normalize('NFC', text).replace('İ', 'i').replace('I', 'ı')
|
||||
return [token.strip("'").casefold() for token in TOKEN_RE.findall(text)]
|
||||
|
||||
|
||||
def remove_arabic_marks(text):
|
||||
"""
|
||||
Remove decorations from Arabic words:
|
||||
@ -90,6 +99,8 @@ def tokenize(text, lang):
|
||||
- Chinese or Japanese texts that aren't identified as the appropriate
|
||||
language will only split on punctuation and script boundaries, giving
|
||||
you untokenized globs of characters that probably represent many words.
|
||||
- Turkish will use a different case-folding procedure, so that capital
|
||||
I and İ map to ı and i respectively.
|
||||
- All other languages will be tokenized using a regex that mostly
|
||||
implements the Word Segmentation section of Unicode Annex #29.
|
||||
See `simple_tokenize` for details.
|
||||
@ -107,6 +118,9 @@ def tokenize(text, lang):
|
||||
from wordfreq.mecab import mecab_tokenize
|
||||
return mecab_tokenize(text)
|
||||
|
||||
if lang == 'tr':
|
||||
return turkish_tokenize(text)
|
||||
|
||||
if lang == 'ar':
|
||||
text = remove_arabic_marks(unicodedata.normalize('NFKC', text))
|
||||
|
||||
|
@ -161,3 +161,34 @@ longer represents the words 'don' and 'won', as we assume most of their
|
||||
frequency comes from "don't" and "won't". Words that turned into similarly
|
||||
common words, however, were left alone: this list doesn't represent "can't"
|
||||
because the word was left as "can".
|
||||
|
||||
### SUBTLEX
|
||||
|
||||
Marc Brysbaert gave us permission by e-mail to use the SUBTLEX word lists in
|
||||
wordfreq and derived works without the "academic use" restriction, under the
|
||||
following reasonable conditions:
|
||||
|
||||
- Wordfreq and code derived from it must credit the SUBTLEX authors.
|
||||
(See the citations in the top-level `README.md` file.)
|
||||
- It must remain clear that SUBTLEX is freely available data.
|
||||
|
||||
`data/source-lists/subtlex` contains the following files:
|
||||
|
||||
- `subtlex.de.txt`, which was downloaded as [SUBTLEX-DE raw file.xlsx][subtlex-de],
|
||||
and exported from Excel format to tab-separated UTF-8 using LibreOffice
|
||||
- `subtlex.en-US.txt`, which was downloaded as [subtlexus5.zip][subtlex-us],
|
||||
extracted, and converted from ISO-8859-1 to UTF-8
|
||||
- `subtlex.en-GB.txt`, which was downloaded as
|
||||
[SUBTLEX-UK\_all.xlsx][subtlex-uk], and exported from Excel format to
|
||||
tab-separated UTF-8 using LibreOffice
|
||||
- `subtlex.nl.txt`, which was downloaded as
|
||||
[SUBTLEX-NL.cd-above2.txt.zip][subtlex-nl] and extracted
|
||||
- `subtlex.zh.txt`, which was downloaded as
|
||||
[subtlexch131210.zip][subtlex-ch] and extracted
|
||||
|
||||
[subtlex-de]: http://crr.ugent.be/SUBTLEX-DE/SUBTLEX-DE%20raw%20file.xlsx
|
||||
[subtlex-us]: http://www.ugent.be/pp/experimentele-psychologie/en/research/documents/subtlexus/subtlexus5.zip
|
||||
[subtlex-uk]: http://crr.ugent.be/papers/SUBTLEX-UK_all.xlsx
|
||||
[subtlex-nl]: http://crr.ugent.be/subtlex-nl/SUBTLEX-NL.cd-above2.txt.zip
|
||||
[subtlex-ch]: http://www.ugent.be/pp/experimentele-psychologie/en/research/documents/subtlexch/subtlexch131210.zip
|
||||
|
||||
|
BIN
wordfreq_builder/build.png
Normal file
BIN
wordfreq_builder/build.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 1.9 MiB |
@ -1 +0,0 @@
|
||||
ef54b21e931c530f5b75c1cd87c5841cc4691e43
|
@ -56,6 +56,12 @@ rule convert_leeds
|
||||
rule convert_opensubtitles
|
||||
command = tr ' ' ',' < $in > $out
|
||||
|
||||
# To convert SUBTLEX, we take the 1st and Nth columns, strip the header,
|
||||
# run it through ftfy, convert tabs to commas and spurious CSV formatting to
|
||||
# and remove lines with unfixable half-mojibake.
|
||||
rule convert_subtlex
|
||||
command = cut -f $textcol,$freqcol $in | tail -n +$startrow | ftfy | tr ' ",' ', ' | grep -v 'â,' > $out
|
||||
|
||||
# Convert and clean up the Google Books Syntactic N-grams data. Concatenate all
|
||||
# the input files, keep only the single words and their counts, and only keep
|
||||
# lines with counts of 100 or more.
|
||||
@ -71,7 +77,10 @@ rule count
|
||||
command = python -m wordfreq_builder.cli.count_tokens $in $out
|
||||
|
||||
rule merge
|
||||
command = python -m wordfreq_builder.cli.combine_lists -o $out $in
|
||||
command = python -m wordfreq_builder.cli.merge_freqs -o $out -c $cutoff $in
|
||||
|
||||
rule merge_counts
|
||||
command = python -m wordfreq_builder.cli.merge_counts -o $out $in
|
||||
|
||||
rule freqs2cB
|
||||
command = python -m wordfreq_builder.cli.freqs_to_cB $lang $in $out
|
||||
|
@ -1,12 +1,13 @@
|
||||
from wordfreq_builder.word_counts import read_freqs, merge_freqs, write_wordlist
|
||||
from wordfreq_builder.word_counts import read_values, merge_counts, write_wordlist
|
||||
import argparse
|
||||
|
||||
|
||||
def merge_lists(input_names, output_name):
|
||||
freq_dicts = []
|
||||
count_dicts = []
|
||||
for input_name in input_names:
|
||||
freq_dicts.append(read_freqs(input_name, cutoff=2))
|
||||
merged = merge_freqs(freq_dicts)
|
||||
values, total = read_values(input_name, cutoff=0)
|
||||
count_dicts.append(values)
|
||||
merged = merge_counts(count_dicts)
|
||||
write_wordlist(merged, output_name)
|
||||
|
||||
|
20
wordfreq_builder/wordfreq_builder/cli/merge_freqs.py
Normal file
20
wordfreq_builder/wordfreq_builder/cli/merge_freqs.py
Normal file
@ -0,0 +1,20 @@
|
||||
from wordfreq_builder.word_counts import read_freqs, merge_freqs, write_wordlist
|
||||
import argparse
|
||||
|
||||
|
||||
def merge_lists(input_names, output_name, cutoff):
|
||||
freq_dicts = []
|
||||
for input_name in input_names:
|
||||
freq_dicts.append(read_freqs(input_name, cutoff=cutoff))
|
||||
merged = merge_freqs(freq_dicts)
|
||||
write_wordlist(merged, output_name)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-o', '--output', help='filename to write the output to', default='combined-freqs.csv')
|
||||
parser.add_argument('-c', '--cutoff', type=int, help='stop after seeing a count below this', default=2)
|
||||
parser.add_argument('inputs', help='names of input files to merge', nargs='+')
|
||||
args = parser.parse_args()
|
||||
merge_lists(args.inputs, args.output, args.cutoff)
|
||||
|
@ -8,20 +8,25 @@ CONFIG = {
|
||||
'sources': {
|
||||
# A list of language codes (possibly un-standardized) that we'll
|
||||
# look up in filenames for these various data sources.
|
||||
#
|
||||
# Consider adding:
|
||||
# 'th' when we get tokenization for it
|
||||
# 'hi' when we stop messing up its tokenization
|
||||
# 'tl' because it's probably ready right now
|
||||
# 'pl' because we have 3 sources for it
|
||||
'twitter': [
|
||||
'ar', 'de', 'en', 'es', 'fr', 'id', 'it', 'ja', 'ko', 'ms', 'nl',
|
||||
'pt', 'ru',
|
||||
# can be added later: 'th', 'tr'
|
||||
'ar', 'de', 'el', 'en', 'es', 'fr', 'id', 'it', 'ja', 'ko', 'ms', 'nl',
|
||||
'pt', 'ru', 'tr'
|
||||
],
|
||||
'wikipedia': [
|
||||
'ar', 'de', 'en', 'es', 'fr', 'id', 'it', 'ja', 'ko', 'ms', 'nl',
|
||||
'pt', 'ru'
|
||||
# many more can be added
|
||||
'ar', 'de', 'en', 'el', 'es', 'fr', 'id', 'it', 'ja', 'ko', 'ms', 'nl',
|
||||
'pt', 'ru', 'tr'
|
||||
],
|
||||
'opensubtitles': [
|
||||
# All languages where the most common word in OpenSubtitles
|
||||
# appears at least 5000 times
|
||||
'ar', 'bg', 'bs', 'ca', 'cs', 'da', 'de', 'el', 'en', 'es', 'et',
|
||||
# This list includes languages where the most common word in
|
||||
# OpenSubtitles appears at least 5000 times. However, we exclude
|
||||
# German, where SUBTLEX has done better processing of the same data.
|
||||
'ar', 'bg', 'bs', 'ca', 'cs', 'da', 'el', 'en', 'es', 'et',
|
||||
'fa', 'fi', 'fr', 'he', 'hr', 'hu', 'id', 'is', 'it', 'lt', 'lv',
|
||||
'mk', 'ms', 'nb', 'nl', 'pl', 'pt', 'ro', 'ru', 'sk', 'sl', 'sq',
|
||||
'sr', 'sv', 'tr', 'uk', 'zh'
|
||||
@ -33,14 +38,19 @@ CONFIG = {
|
||||
'en',
|
||||
# Using the 2012 data, we could get French, German, Italian,
|
||||
# Russian, Spanish, and (Simplified) Chinese.
|
||||
]
|
||||
],
|
||||
'subtlex-en': ['en'],
|
||||
'subtlex-other': ['de', 'nl', 'zh'],
|
||||
},
|
||||
# Subtlex languages that need to be pre-processed
|
||||
'wordlist_paths': {
|
||||
'twitter': 'generated/twitter/tweets-2014.{lang}.{ext}',
|
||||
'wikipedia': 'generated/wikipedia/wikipedia_{lang}.{ext}',
|
||||
'opensubtitles': 'generated/opensubtitles/opensubtitles_{lang}.{ext}',
|
||||
'leeds': 'generated/leeds/leeds_internet_{lang}.{ext}',
|
||||
'google-books': 'generated/google-books/google_books_{lang}.{ext}',
|
||||
'subtlex-en': 'generated/subtlex/subtlex_{lang}.{ext}',
|
||||
'subtlex-other': 'generated/subtlex/subtlex_{lang}.{ext}',
|
||||
'combined': 'generated/combined/combined_{lang}.{ext}',
|
||||
'combined-dist': 'dist/combined_{lang}.{ext}',
|
||||
'twitter-dist': 'dist/twitter_{lang}.{ext}'
|
||||
|
@ -5,7 +5,8 @@ import sys
|
||||
import pathlib
|
||||
|
||||
HEADER = """# This file is automatically generated. Do not edit it.
|
||||
# You can regenerate it using the 'wordfreq-build-deps' command.
|
||||
# You can change its behavior by editing wordfreq_builder/ninja.py,
|
||||
# and regenerate it by running 'make'.
|
||||
"""
|
||||
TMPDIR = data_filename('tmp')
|
||||
|
||||
@ -76,6 +77,18 @@ def make_ninja_deps(rules_filename, out=sys.stdout):
|
||||
CONFIG['sources']['opensubtitles']
|
||||
)
|
||||
)
|
||||
lines.extend(
|
||||
subtlex_en_deps(
|
||||
data_filename('source-lists/subtlex'),
|
||||
CONFIG['sources']['subtlex-en']
|
||||
)
|
||||
)
|
||||
lines.extend(
|
||||
subtlex_other_deps(
|
||||
data_filename('source-lists/subtlex'),
|
||||
CONFIG['sources']['subtlex-other']
|
||||
)
|
||||
)
|
||||
lines.extend(combine_lists(all_languages()))
|
||||
|
||||
print('\n'.join(lines), file=out)
|
||||
@ -140,7 +153,8 @@ def twitter_deps(input_filename, slice_prefix, combined_prefix, slices,
|
||||
for language in languages
|
||||
]
|
||||
add_dep(lines, 'tokenize_twitter', slice_file, language_outputs,
|
||||
params={'prefix': slice_file})
|
||||
params={'prefix': slice_file},
|
||||
extra='wordfreq_builder/tokenizers.py')
|
||||
|
||||
for language in languages:
|
||||
combined_output = wordlist_filename('twitter', language, 'tokens.txt')
|
||||
@ -188,12 +202,69 @@ def opensubtitles_deps(dirname_in, languages):
|
||||
prefix=dirname_in, lang=language
|
||||
)
|
||||
reformatted_file = wordlist_filename(
|
||||
'opensubtitles', language, 'counts.txt')
|
||||
'opensubtitles', language, 'counts.txt'
|
||||
)
|
||||
add_dep(lines, 'convert_opensubtitles', input_file, reformatted_file)
|
||||
|
||||
return lines
|
||||
|
||||
|
||||
# Which columns of the SUBTLEX data files do the word and its frequency appear
|
||||
# in?
|
||||
SUBTLEX_COLUMN_MAP = {
|
||||
'de': (1, 3),
|
||||
'el': (2, 3),
|
||||
'en': (1, 2),
|
||||
'nl': (1, 2),
|
||||
'zh': (1, 5)
|
||||
}
|
||||
|
||||
|
||||
def subtlex_en_deps(dirname_in, languages):
|
||||
lines = []
|
||||
assert languages == ['en']
|
||||
regions = ['en-US', 'en-GB']
|
||||
processed_files = []
|
||||
for region in regions:
|
||||
input_file = '{prefix}/subtlex.{region}.txt'.format(
|
||||
prefix=dirname_in, region=region
|
||||
)
|
||||
textcol, freqcol = SUBTLEX_COLUMN_MAP['en']
|
||||
processed_file = wordlist_filename('subtlex-en', region, 'processed.txt')
|
||||
processed_files.append(processed_file)
|
||||
add_dep(
|
||||
lines, 'convert_subtlex', input_file, processed_file,
|
||||
params={'textcol': textcol, 'freqcol': freqcol, 'startrow': 2}
|
||||
)
|
||||
|
||||
output_file = wordlist_filename('subtlex-en', 'en', 'counts.txt')
|
||||
add_dep(lines, 'merge_counts', processed_files, output_file)
|
||||
|
||||
return lines
|
||||
|
||||
|
||||
def subtlex_other_deps(dirname_in, languages):
|
||||
lines = []
|
||||
for language in languages:
|
||||
input_file = '{prefix}/subtlex.{lang}.txt'.format(
|
||||
prefix=dirname_in, lang=language
|
||||
)
|
||||
processed_file = wordlist_filename('subtlex-other', language, 'processed.txt')
|
||||
output_file = wordlist_filename('subtlex-other', language, 'counts.txt')
|
||||
textcol, freqcol = SUBTLEX_COLUMN_MAP[language]
|
||||
|
||||
# Skip one header line by setting 'startrow' to 2 (because tail is 1-based).
|
||||
# I hope we don't need to configure this by language anymore.
|
||||
add_dep(
|
||||
lines, 'convert_subtlex', input_file, processed_file,
|
||||
params={'textcol': textcol, 'freqcol': freqcol, 'startrow': 2}
|
||||
)
|
||||
add_dep(
|
||||
lines, 'merge_counts', processed_file, output_file
|
||||
)
|
||||
return lines
|
||||
|
||||
|
||||
def combine_lists(languages):
|
||||
lines = []
|
||||
for language in languages:
|
||||
@ -204,7 +275,8 @@ def combine_lists(languages):
|
||||
]
|
||||
output_file = wordlist_filename('combined', language)
|
||||
add_dep(lines, 'merge', input_files, output_file,
|
||||
extra='wordfreq_builder/word_counts.py')
|
||||
extra='wordfreq_builder/word_counts.py',
|
||||
params={'cutoff': 2})
|
||||
|
||||
output_cBpack = wordlist_filename(
|
||||
'combined-dist', language, 'msgpack.gz')
|
||||
|
@ -13,7 +13,8 @@ CLD2_BAD_CHAR_RANGE = "[%s]" % "".join(
|
||||
'\ufdd0-\ufdef',
|
||||
'\N{HANGUL FILLER}',
|
||||
'\N{HANGUL CHOSEONG FILLER}',
|
||||
'\N{HANGUL JUNGSEONG FILLER}'
|
||||
'\N{HANGUL JUNGSEONG FILLER}',
|
||||
'<>'
|
||||
] +
|
||||
[chr(65534+65536*x+y) for x in range(17) for y in range(2)]
|
||||
)
|
||||
|
@ -32,9 +32,40 @@ def count_tokens(filename):
|
||||
return counts
|
||||
|
||||
|
||||
def read_values(filename, cutoff=0, lang=None):
|
||||
"""
|
||||
Read words and their frequency or count values from a CSV file. Returns
|
||||
a dictionary of values and the total of all values.
|
||||
|
||||
Only words with a value greater than or equal to `cutoff` are returned.
|
||||
|
||||
If `cutoff` is greater than 0, the csv file must be sorted by value
|
||||
in descending order.
|
||||
|
||||
If lang is given, it will apply language specific preprocessing
|
||||
operations.
|
||||
"""
|
||||
values = defaultdict(float)
|
||||
total = 0.
|
||||
with open(filename, encoding='utf-8', newline='') as infile:
|
||||
for key, strval in csv.reader(infile):
|
||||
val = float(strval)
|
||||
key = fix_text(key)
|
||||
if val < cutoff:
|
||||
break
|
||||
tokens = tokenize(key, lang) if lang is not None else simple_tokenize(key)
|
||||
for token in tokens:
|
||||
# Use += so that, if we give the reader concatenated files with
|
||||
# duplicates, it does the right thing
|
||||
values[token] += val
|
||||
total += val
|
||||
return values, total
|
||||
|
||||
|
||||
def read_freqs(filename, cutoff=0, lang=None):
|
||||
"""
|
||||
Read words and their frequencies from a CSV file.
|
||||
Read words and their frequencies from a CSV file, normalizing the
|
||||
frequencies to add up to 1.
|
||||
|
||||
Only words with a frequency greater than or equal to `cutoff` are returned.
|
||||
|
||||
@ -44,24 +75,11 @@ def read_freqs(filename, cutoff=0, lang=None):
|
||||
If lang is given, read_freqs will apply language specific preprocessing
|
||||
operations.
|
||||
"""
|
||||
raw_counts = defaultdict(float)
|
||||
total = 0.
|
||||
with open(filename, encoding='utf-8', newline='') as infile:
|
||||
for key, strval in csv.reader(infile):
|
||||
val = float(strval)
|
||||
if val < cutoff:
|
||||
break
|
||||
tokens = tokenize(key, lang) if lang is not None else simple_tokenize(key)
|
||||
for token in tokens:
|
||||
# Use += so that, if we give the reader concatenated files with
|
||||
# duplicates, it does the right thing
|
||||
raw_counts[fix_text(token)] += val
|
||||
total += val
|
||||
values, total = read_values(filename, cutoff, lang)
|
||||
for word in values:
|
||||
values[word] /= total
|
||||
|
||||
for word in raw_counts:
|
||||
raw_counts[word] /= total
|
||||
|
||||
return raw_counts
|
||||
return values
|
||||
|
||||
|
||||
def freqs_to_cBpack(in_filename, out_filename, cutoff=-600, lang=None):
|
||||
@ -96,6 +114,17 @@ def freqs_to_cBpack(in_filename, out_filename, cutoff=-600, lang=None):
|
||||
msgpack.dump(cBpack_data, outfile)
|
||||
|
||||
|
||||
def merge_counts(count_dicts):
|
||||
"""
|
||||
Merge multiple dictionaries of counts by adding their entries.
|
||||
"""
|
||||
merged = defaultdict(int)
|
||||
for count_dict in count_dicts:
|
||||
for term, count in count_dict.items():
|
||||
merged[term] += count
|
||||
return merged
|
||||
|
||||
|
||||
def merge_freqs(freq_dicts):
|
||||
"""
|
||||
Merge multiple dictionaries of frequencies, representing each word with
|
||||
|
Loading…
Reference in New Issue
Block a user