Merge pull request #11 from LuminosoInsight/split-emoji

wordfreq now splits emoji from text

Former-commit-id: 6c76942da2
This commit is contained in:
Robyn Speer 2015-06-26 12:12:51 -04:00
commit 96b75dcf2b
5 changed files with 143 additions and 11 deletions

View File

@ -1,2 +1,3 @@
recursive-include wordfreq/data *.gz
include README.md
recursive-include wordfreq/data *.txt

View File

@ -1,6 +1,6 @@
from wordfreq import (
word_frequency, available_languages, cB_to_freq, iter_wordlist,
top_n_list, random_words, random_ascii_words
top_n_list, random_words, random_ascii_words, tokenize
)
from nose.tools import (
eq_, assert_almost_equal, assert_greater, assert_less, raises
@ -84,12 +84,16 @@ def test_failed_cB_conversion():
def test_tokenization():
# We preserve apostrophes within words, so "can't" is a single word in the
# data, while the fake word "plan't" can't be found.
assert_greater(word_frequency("can't", 'en'), 0)
eq_(word_frequency("plan't", 'en'), 0)
eq_(tokenize("can't", 'en'), ["can't"])
eq_(tokenize("plan't", 'en'), ["plan't"])
eq_(tokenize('😂test', 'en'), ['😂', 'test'])
# We do split at other punctuation, causing the word-combining rule to
# apply.
assert_greater(word_frequency("can.t", 'en'), 0)
eq_(tokenize("can.t", 'en'), ['can', 't'])
def test_phrase_freq():
plant = word_frequency("plan.t", 'en')
assert_greater(plant, 0)
assert_less(plant, word_frequency('plan', 'en'))

View File

@ -1,6 +1,9 @@
from pkg_resources import resource_filename
from functools import lru_cache
import unicodedata
from ftfy import chardata
import langcodes
import itertools
import msgpack
import re
import gzip
@ -9,14 +12,128 @@ import random
import logging
logger = logging.getLogger(__name__)
NON_PUNCT_RANGE = '[0-9A-Za-zª²³¹º\xc0-\u1fff\u2070-\u2fff\u301f-\ufeff---\uff66-\U0002ffff]'
NON_PUNCT_RE = re.compile(NON_PUNCT_RANGE)
TOKEN_RE = re.compile("{0}+(?:'{0}+)*".format(NON_PUNCT_RANGE))
DATA_PATH = pathlib.Path(resource_filename('wordfreq', 'data'))
CACHE_SIZE = 100000
def _emoji_char_class():
"""
Build a regex for emoji substitution. First we create a regex character set
(like "[a-cv-z]") matching characters we consider emoji (see the docstring
of _replace_problem_text()). The final regex matches one such character
followed by any number of spaces and identical characters.
"""
ranges = []
for i, c in enumerate(chardata.CHAR_CLASS_STRING):
if c == '3' and i >= 0x2600 and i != 0xfffd:
if ranges and i == ranges[-1][1] + 1:
ranges[-1][1] = i
else:
ranges.append([i, i])
return '[%s]' % ''.join(chr(a) + '-' + chr(b) for a, b in ranges)
EMOJI_RANGE = _emoji_char_class()
def _non_punct_class():
"""
Builds a regex that matches anything that is not a one of the following
classes:
- P: punctuation
- S: symbols
- Z: separators
- C: control characters
This will classify symbols, including emoji, as punctuation; callers that
want to treat emoji separately should filter them out first.
"""
non_punct_file = DATA_PATH / 'non_punct.txt'
try:
with non_punct_file.open() as file:
return file.read()
except FileNotFoundError:
out = func_to_regex(lambda c: unicodedata.category(c)[0] not in 'PSZC')
with non_punct_file.open(mode='w') as file:
file.write(out)
return out
def _combining_mark_class():
"""
Builds a regex that matches anything that is a combining mark
"""
_combining_mark_file = DATA_PATH / 'combining_mark.txt'
try:
with _combining_mark_file.open() as file:
return file.read()
except FileNotFoundError:
out = func_to_regex(lambda c: unicodedata.category(c)[0] == 'M')
with _combining_mark_file.open(mode='w') as file:
file.write(out)
return out
def func_to_ranges(accept):
"""
Converts a function that accepts a single unicode character into a list of
ranges. Unassigned unicode are automatically accepted.
"""
ranges = []
start = None
for x in range(0x110000):
cat = unicodedata.category(chr(x))
if cat == 'Cn' or accept(chr(x)):
if start is None:
start = x
else:
if start is not None:
ranges.append((start, x-1))
start = None
if start is not None:
ranges.append((start, x))
return ranges
unassigned_ranges = None
def func_to_regex(accept):
"""
Converts a function that accepts a single unicode character into a regex.
Unassigned unicode characters are treated like their neighbors.
"""
ranges = []
start = None
for x in range(0x110000):
cat = unicodedata.category(chr(x))
if cat == 'Cn' or accept(chr(x)):
if start is None:
start = x
else:
if start is not None:
ranges.append((start, x-1))
start = None
if start is not None:
ranges.append((start, x))
global unassigned_ranges
if unassigned_ranges is None:
unassigned_ranges = set(func_to_ranges(lambda _: False))
ranges = [range for range in ranges if range not in unassigned_ranges]
return '[%s]' % ''.join("%s-%s" % (chr(start), chr(end))
for start, end in ranges)
COMBINING_MARK_RE = re.compile(_combining_mark_class())
NON_PUNCT_RANGE = _non_punct_class()
TOKEN_RE = re.compile("{0}|{1}+(?:'{1}+)*".format(EMOJI_RANGE, NON_PUNCT_RANGE))
def simple_tokenize(text):
"""
@ -34,21 +151,29 @@ def simple_tokenize(text):
"""
return [token.lower() for token in TOKEN_RE.findall(text)]
mecab_tokenize = None
def tokenize(text, lang):
"""
Tokenize this text in a way that's straightforward but appropriate for
the language.
So far, this means that Japanese is handled by mecab_tokenize, and
everything else is handled by simple_tokenize.
everything else is handled by simple_tokenize. Additionally, Arabic commas
and combining marks are removed.
Strings that are looked up in wordfreq will be run through this function
first, so that they can be expected to match the data.
"""
if lang == 'ja':
from wordfreq.mecab import mecab_tokenize
global mecab_tokenize
if mecab_tokenize is None:
from wordfreq.mecab import mecab_tokenize
return mecab_tokenize(text)
elif lang == 'ar':
tokens = simple_tokenize(text)
tokens = [token.replace('ـ', '') for token in tokens] # remove tatweel
tokens = [COMBINING_MARK_RE.sub('', token) for token in tokens]
return [token for token in tokens if token] # remove empty strings
else:
return simple_tokenize(text)

View File

@ -0,0 +1 @@
[̀-ͯ҃-҉֐-ֽֿ-ֿׁ-ׂׄ-ׇׅ-׏ؐ-ًؚ-ٰٟ-ٰۖ-ۜ۟-ۤۧ-۪ۨ-ܑۭ-ܑܰ-݌ަ-ް߫-߳ࠖ-࠙ࠛ-ࠣࠥ-ࠧࠩ-࠯࡙-࡝ࢭ-ःऺ-़ा-ॏ॑-ॗॢ-ॣঀ-঄঺-়া-্৏-৛ৢ-৥ৼ-਄਺-੘ੰ-ੱੵ-઄઺-઼ા-૏ૢ-૥૲-଄଺-଼ା-୛ୢ-୥୸-ஂ஺-௏௑-௥௻-ఄా-౗ౢ-౥ಀ-಄಺-಼ಾ-ೝೢ-೥ೳ-ഄാ-്൏-ൟൢ-൥඀-඄෇-ෳั-ัิ-฾็-๎ັ-ັິ-ຼ໇-໏༘-༙༵-༵༷-༹༷-༹༾-༿཭-྄྆-྇ྍ-྽࿆-࿆ါ-ှၖ-ၙၞ-ၠၢ-ၤၧ-ၭၱ-ၴႂ-ႍႏ-ႏႚ-ႝ፛-፟ᜒ-ᜟᜲ-᜴ᝒ-᝟᝱-᝿឴-៓៝-៟᠋-᠍ᢩ-ᢩᤝ-᤿᦬-ᧀᧈ-᧏ᨗ-᨝ᩕ-᩿᪮-ᬄ᬴-᭄᭫-᭳᭽-ᮂᮡ-ᮭ᯦-᯻ᰤ-᰺᳈-᳔᳒-᳨᳭-᳭ᳲ-᳴᷀-᷿₻-⃿⳯-⳱⵱-⵿⷟-〪ⷿ-〯゗-゚꙯-꙲ꙴ-꙽Ꚙ-ꚟ꛰-꛱ꠂ-ꠂ꠆-꠆ꠋ-ꠋꠣ-ꠧ꡸-ꢁꢴ-꣍꣚-꣱ꤦ-꤭ꥇ-꥞꥽-ꦃ꦳-꧀ꨩ-꨿ꩃ-ꩃꩌ-꩏ꩻ-ꩿꪰ-ꪰꪲ-ꪴꪷ-ꪸꪾ-꪿꫁-꫁ꫫ-ꫯꫵ-꬀ꯣ-ꯪ꯬-꯯ﬞ-ﬞ﷾-️︚-𐇽︯-𐉿𐨁-𐨏𐨴-𐨿𐹿-𑀂𑀸-𑁆𑁰-𑂂𑂰-𑂺𑃺-𑄂𑄧-𑄵𑅄-𑆂𑆳-𑇀𑚫-𑚿𖽑-𖾒𝅥-𝅩𝅭-𝅲𝅻-𝆂𝆅-𝆋𝆪-𝆭𝉂-𝉄󠂀-󯿿]

View File

@ -0,0 +1 @@
[0-9A-Za-zª-ª²-³µ-µ¹-º¼-¾À-ÖØ-öø-ˁˆ-ˑˠ-ˤˬ-ˬˮ-ˮ̀-ʹͶ-ͽΆ-ΆΈ-ϵϷ-ҁ҃-ՙՠ-ֈ֐-ֽֿ-ֿׁ-ׂׄ-ׇׅ-ײؐ-ؚؠ-٩ٮ-ۓە-ۜ۟-۪ۨ-ۼۿ-ۿܐ-ߵߺ-࠯࠿-࡝࡟-ॣ०-९ॱ-ৱ৴-৹ৼ-૯૲-୯ୱ-௲௻-౾ಀ-൸ൺ-ෳ෵-฾เ-๎๐-๙๜-ༀ༘-༙༠-༳༵-༵༷-༹༷-༹༾-྄྆-྽࿆-࿆࿛-၉ၐ-ႝႠ-ჺჼ-፟፩-ᎏ᎚-᏿ᐁ-ᙬᙯ-ᙿᚁ-ᚚ᚝-ᛪᛮ-᜴᜷-៓ៗ-ៗៜ-៿᠋-᠍᠏-᤿᥆-᧝ᨀ-᨝ᨠ-᪟ᪧ-ᪧ᪮-᭙᭫-᭳᭽-᯻ᰀ-᰺᱀-ᱽ᳈-᳔᳒-ᾼι-ιῂ-ῌῐ-῜ῠ-Ῥ῰-ῼ⁰-⁹ⁿ-₉₏-₟₻-⃿ℂ-ℂℇ-ℇℊ----ℤΩ-Ωℨ---ℹℼ-ℿⅅ-ⅉⅎ-ⅎ⅐-↏⑋-⒛⓪-⓿❶-➓⭚-ⳤⳫ-⳸⳽-⳽ⴀ-ⵯ⵱-ⷿⸯ-ⸯ々-〇〡-〯〱-〵〸-〼぀-゚ゝ-ゟァ-ヺー-㆏㆒-㆕ㆠ-ㆿ㇤-ㇿ㈟-㈩㉈-㉏㉑-㉟㊀-㊉㊱-㊿㐀-䶿一-꒏꓇-ꓽꔀ-ꘌꘐ-꙲ꙴ-꙽ꙿ-꛱ꜗ-ꜟꜢ-ꞈꞋ-ꠧ꠬-꠵꠺-ꡳ꡸-꣍꣐-ꣷꣻ-꤭ꤰ-꥞ꥠ-꧀꧎-꧝ꧠ-꩛ꩠ-ꩶꩺ-ꫝꫠ-ꫯꫲ-ꯪ꯬-퟿豈-ﬨשׁ-ﮱ﯂-ﴽ﵀-ﷻ﷾-️︚-︯﹬-﻾0---zヲ-￟￾-𐃿𐄃-𐄶𐅀-𐅸𐆊-𐆏𐇽-𐎞𐎠-𐏏𐏑-𐡖𐡘-𐤞𐤠-𐤾𐥀-𐩏𐩙-𐩾𐪀-𐬸𐭀-𑁆𑁎-𑂺𑃂-𑄿𑅄-𑇄𑇉-𒑯𒑴-𜿿𝅥-𝅩𝅭-𝅲𝅻-𝆂𝆅-𝆋𝆪-𝆭𝉂-𝉄𝍗-𝛀𝛂-𝛚𝛜-𝛺𝛼-𝜔𝜖-𝜴𝜶-𝝎𝝐-𝝮𝝰-𝞈𝞊-𝞨𝞪-𝟂𝟄-𞻯🃠-🄏🝴-󠀀󠂀-󯿿]