mirror of
https://github.com/rspeer/wordfreq.git
synced 2024-12-23 09:21:37 +00:00
fix regex's inconsistent word breaking around apostrophes
This commit is contained in:
parent
3b7382d770
commit
96e7792a4a
@ -8,6 +8,7 @@ def test_apostrophes():
|
||||
assert tokenize("langues d'oïl", 'fr') == ['langues', "d", 'oïl']
|
||||
assert tokenize("langues d'oïl", 'fr', include_punctuation=True) == ['langues', "d'", 'oïl']
|
||||
assert tokenize("l'heure", 'fr') == ['l', 'heure']
|
||||
assert tokenize("l'ànima", 'ca') == ['l', 'ànima']
|
||||
assert tokenize("l'heure", 'fr', include_punctuation=True) == ["l'", 'heure']
|
||||
assert tokenize("L'Hôpital", 'fr', include_punctuation=True) == ["l'", 'hôpital']
|
||||
assert tokenize("aujourd'hui", 'fr') == ["aujourd'hui"]
|
||||
|
@ -3,7 +3,11 @@ import unicodedata
|
||||
import logging
|
||||
import langcodes
|
||||
|
||||
from .language_info import get_language_info, SPACELESS_SCRIPTS, EXTRA_JAPANESE_CHARACTERS
|
||||
from .language_info import (
|
||||
get_language_info,
|
||||
SPACELESS_SCRIPTS,
|
||||
EXTRA_JAPANESE_CHARACTERS,
|
||||
)
|
||||
from .preprocess import preprocess_text, smash_numbers
|
||||
|
||||
# Placeholders for CJK functions that we'll import on demand
|
||||
@ -17,13 +21,20 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
def _make_spaceless_expr():
|
||||
scripts = sorted(SPACELESS_SCRIPTS)
|
||||
pieces = [r'\p{IsIdeo}'] + [r'\p{Script=%s}' % script_code for script_code in scripts]
|
||||
pieces = [r'\p{IsIdeo}'] + [
|
||||
r'\p{Script=%s}' % script_code for script_code in scripts
|
||||
]
|
||||
return ''.join(pieces) + EXTRA_JAPANESE_CHARACTERS
|
||||
|
||||
|
||||
SPACELESS_EXPR = _make_spaceless_expr()
|
||||
|
||||
TOKEN_RE = regex.compile(r"""
|
||||
# All vowels that might appear at the start of a word in French or Catalan,
|
||||
# plus 'h' which would be silent and imply a following vowel sound.
|
||||
INITIAL_VOWEL_EXPR = '[AEHIOUÁÉÍÓÚÀÈÌÒÙÂÊÎÔÛaehiouáéíóúàèìòùâêîôû]'
|
||||
|
||||
TOKEN_RE = regex.compile(
|
||||
r"""
|
||||
# Case 1: a special case for non-spaced languages
|
||||
# -----------------------------------------------
|
||||
|
||||
@ -78,24 +89,32 @@ TOKEN_RE = regex.compile(r"""
|
||||
|
||||
(?=[\w\p{So}])
|
||||
|
||||
# The start of the token must not be a letter followed by «'h». If it is,
|
||||
# we should use Case 3 to match up to the apostrophe, then match a new token
|
||||
# starting with «h». This rule lets us break «l'heure» into two tokens, just
|
||||
# like we would do for «l'arc».
|
||||
# The start of the token must not consist of 1-2 letters, an apostrophe,
|
||||
# and a vowel or 'h'. This is a sequence that occurs particularly in French
|
||||
# phrases such as "l'arc", "d'heure", or "qu'un". In these cases we want
|
||||
# the sequence up to the apostrophe to be considered as a separate token,
|
||||
# even though apostrophes are not usually word separators (the word "won't"
|
||||
# does not separate into "won" and "t").
|
||||
#
|
||||
# This would be taken care of by optional rule "WB5a" in Unicode TR29,
|
||||
# "Unicode Text Segmentation". That optional rule was applied in `regex`
|
||||
# before June 2018, but no longer is, so we have to do it ourselves.
|
||||
|
||||
(?!\w'[Hh])
|
||||
(?!\w\w?'<VOWEL>)
|
||||
|
||||
# The entire token is made of graphemes (\X). Matching by graphemes means
|
||||
# that we don't have to specially account for marks or ZWJ sequences. We use
|
||||
# a non-greedy match so that we can control where the match ends in the
|
||||
# that we don't have to specially account for marks or ZWJ sequences. We
|
||||
# use a non-greedy match so that we can control where the match ends in the
|
||||
# following expression.
|
||||
#
|
||||
# If we were matching by codepoints (.) instead of graphemes (\X), then
|
||||
# detecting boundaries would be more difficult. Here's a fact that's subtle
|
||||
# and poorly documented: a position that's between codepoints, but in the
|
||||
# middle of a grapheme, does not match as a word break (\b), but also does
|
||||
# not match as not-a-word-break (\B). The word boundary algorithm simply
|
||||
# doesn't apply in such a position.
|
||||
# detecting boundaries would be more difficult. Here's a fact about the
|
||||
# regex module that's subtle and poorly documented: a position that's
|
||||
# between codepoints, but in the middle of a grapheme, does not match as a
|
||||
# word break (\b), but also does not match as not-a-word-break (\B). The
|
||||
# word boundary algorithm simply doesn't apply in such a position. It is
|
||||
# unclear whether this is intentional.
|
||||
|
||||
\X+?
|
||||
|
||||
# The token ends when it encounters a word break (\b). We use the
|
||||
@ -120,25 +139,39 @@ TOKEN_RE = regex.compile(r"""
|
||||
# here. That's surprising, but it's also what we want, because we don't want
|
||||
# any kind of spaces in the middle of our tokens.
|
||||
|
||||
# Case 4: Fix French
|
||||
# ------------------
|
||||
# This allows us to match the articles in French, Catalan, and related
|
||||
# languages, such as «l'», that we may have excluded from being part of
|
||||
# the token in Case 2.
|
||||
# Case 4: Match French apostrophes
|
||||
# --------------------------------
|
||||
# This allows us to match the particles in French, Catalan, and related
|
||||
# languages, such as «l'» and «qu'», that we may have excluded from being
|
||||
# part of the token in Case 3.
|
||||
|
||||
\w'
|
||||
""".replace('<SPACELESS>', SPACELESS_EXPR), regex.V1 | regex.WORD | regex.VERBOSE)
|
||||
\w\w?'
|
||||
""".replace(
|
||||
'<SPACELESS>', SPACELESS_EXPR
|
||||
).replace(
|
||||
'<VOWEL>', INITIAL_VOWEL_EXPR
|
||||
),
|
||||
regex.V1 | regex.WORD | regex.VERBOSE,
|
||||
)
|
||||
|
||||
TOKEN_RE_WITH_PUNCTUATION = regex.compile(r"""
|
||||
TOKEN_RE_WITH_PUNCTUATION = regex.compile(
|
||||
r"""
|
||||
# This expression is similar to the expression above. It adds a case between
|
||||
# 2 and 3 that matches any sequence of punctuation characters.
|
||||
|
||||
[<SPACELESS>]+ | # Case 1
|
||||
@s \b | # Case 2
|
||||
[\p{punct}]+ | # punctuation
|
||||
(?=[\w\p{So}]) (?!\w'[Hh]) \X+? (?: @s? (?!w) | \b) | # Case 3
|
||||
\w' # Case 4
|
||||
""".replace('<SPACELESS>', SPACELESS_EXPR), regex.V1 | regex.WORD | regex.VERBOSE)
|
||||
(?=[\w\p{So}]) (?!\w\w?'<VOWEL>)
|
||||
\X+? (?: @s? (?!w) | \b) | # Case 3
|
||||
\w\w?' # Case 4
|
||||
""".replace(
|
||||
'<SPACELESS>', SPACELESS_EXPR
|
||||
).replace(
|
||||
'<VOWEL>', INITIAL_VOWEL_EXPR
|
||||
),
|
||||
regex.V1 | regex.WORD | regex.VERBOSE,
|
||||
)
|
||||
|
||||
|
||||
# Just identify punctuation, for cases where the tokenizer is separate
|
||||
@ -180,10 +213,7 @@ def simple_tokenize(text, include_punctuation=False):
|
||||
for token in TOKEN_RE_WITH_PUNCTUATION.findall(text)
|
||||
]
|
||||
else:
|
||||
return [
|
||||
token.strip("'").casefold()
|
||||
for token in TOKEN_RE.findall(text)
|
||||
]
|
||||
return [token.strip("'").casefold() for token in TOKEN_RE.findall(text)]
|
||||
|
||||
|
||||
def tokenize(text, lang, include_punctuation=False, external_wordlist=False):
|
||||
@ -228,6 +258,7 @@ def tokenize(text, lang, include_punctuation=False, external_wordlist=False):
|
||||
|
||||
if info['tokenizer'] == 'mecab':
|
||||
from wordfreq.mecab import mecab_tokenize as _mecab_tokenize
|
||||
|
||||
# Get just the language code out of the Language object, so we can
|
||||
# use it to select a MeCab dictionary
|
||||
tokens = _mecab_tokenize(text, language.language)
|
||||
@ -235,6 +266,7 @@ def tokenize(text, lang, include_punctuation=False, external_wordlist=False):
|
||||
tokens = [token for token in tokens if not PUNCT_RE.match(token)]
|
||||
elif info['tokenizer'] == 'jieba':
|
||||
from wordfreq.chinese import jieba_tokenize as _jieba_tokenize
|
||||
|
||||
tokens = _jieba_tokenize(text, external_wordlist=external_wordlist)
|
||||
if not include_punctuation:
|
||||
tokens = [token for token in tokens if not PUNCT_RE.match(token)]
|
||||
@ -245,8 +277,9 @@ def tokenize(text, lang, include_punctuation=False, external_wordlist=False):
|
||||
if info['tokenizer'] != 'regex' and lang not in _WARNED_LANGUAGES:
|
||||
logger.warning(
|
||||
"The language '{}' is in the '{}' script, which we don't "
|
||||
"have a tokenizer for. The results will be bad."
|
||||
.format(lang, info['script'])
|
||||
"have a tokenizer for. The results will be bad.".format(
|
||||
lang, info['script']
|
||||
)
|
||||
)
|
||||
_WARNED_LANGUAGES.add(lang)
|
||||
tokens = simple_tokenize(text, include_punctuation=include_punctuation)
|
||||
@ -254,7 +287,9 @@ def tokenize(text, lang, include_punctuation=False, external_wordlist=False):
|
||||
return tokens
|
||||
|
||||
|
||||
def lossy_tokenize(text, lang, include_punctuation=False, external_wordlist=False):
|
||||
def lossy_tokenize(
|
||||
text, lang, include_punctuation=False, external_wordlist=False
|
||||
):
|
||||
"""
|
||||
Get a list of tokens for this text, with largely the same results and
|
||||
options as `tokenize`, but aggressively normalize some text in a lossy way
|
||||
@ -279,6 +314,7 @@ def lossy_tokenize(text, lang, include_punctuation=False, external_wordlist=Fals
|
||||
|
||||
if info['lookup_transliteration'] == 'zh-Hans':
|
||||
from wordfreq.chinese import simplify_chinese as _simplify_chinese
|
||||
|
||||
tokens = [_simplify_chinese(token) for token in tokens]
|
||||
|
||||
return [smash_numbers(token) for token in tokens]
|
||||
|
Loading…
Reference in New Issue
Block a user