mirror of
https://github.com/rspeer/wordfreq.git
synced 2024-12-23 17:31:41 +00:00
update the README for Chinese
This commit is contained in:
parent
2327f2e4d6
commit
d576e3294b
72
README.md
72
README.md
@ -111,47 +111,50 @@ limiting the selection to words that can be typed in ASCII.
|
||||
|
||||
## Sources and supported languages
|
||||
|
||||
We compiled word frequencies from five different sources, providing us examples
|
||||
of word usage on different topics at different levels of formality. The sources
|
||||
(and the abbreviations we'll use for them) are:
|
||||
We compiled word frequencies from seven different sources, providing us
|
||||
examples of word usage on different topics at different levels of formality.
|
||||
The sources (and the abbreviations we'll use for them) are:
|
||||
|
||||
- **GBooks**: Google Books Ngrams 2013
|
||||
- **LeedsIC**: The Leeds Internet Corpus
|
||||
- **SUBTLEX**: The SUBTLEX word frequency lists
|
||||
- **OpenSub**: Data derived from OpenSubtitles but not from SUBTLEX
|
||||
- **Twitter**: Messages sampled from Twitter's public stream
|
||||
- **Wikipedia**: The full text of Wikipedia in 2015
|
||||
- **Wpedia**: The full text of Wikipedia in 2015
|
||||
- **Other**: We get additional English frequencies from Google Books Syntactic
|
||||
Ngrams 2013, and Chinese frequencies from the frequency dictionary that
|
||||
comes with the Jieba tokenizer.
|
||||
|
||||
The following 12 languages are well-supported, with reasonable tokenization and
|
||||
|
||||
The following 17 languages are well-supported, with reasonable tokenization and
|
||||
at least 3 different sources of word frequencies:
|
||||
|
||||
Language Code GBooks SUBTLEX OpenSub LeedsIC Twitter Wikipedia
|
||||
──────────────────┼──────────────────────────────────────────────────
|
||||
Arabic ar │ - - Yes Yes Yes Yes
|
||||
German de │ - Yes - Yes Yes[1] Yes
|
||||
Greek el │ - - Yes Yes Yes Yes
|
||||
English en │ Yes Yes Yes Yes Yes Yes
|
||||
Spanish es │ - - Yes Yes Yes Yes
|
||||
French fr │ - - Yes Yes Yes Yes
|
||||
Indonesian id │ - - Yes - Yes Yes
|
||||
Italian it │ - - Yes Yes Yes Yes
|
||||
Japanese ja │ - - - Yes Yes Yes
|
||||
Malay ms │ - - Yes - Yes Yes
|
||||
Dutch nl │ - Yes Yes - Yes Yes
|
||||
Polish pl │ - - Yes - Yes Yes
|
||||
Portuguese pt │ - - Yes Yes Yes Yes
|
||||
Russian ru │ - - Yes Yes Yes Yes
|
||||
Swedish sv │ - - Yes - Yes Yes
|
||||
Turkish tr │ - - Yes - Yes Yes
|
||||
Language Code SUBTLEX OpenSub LeedsIC Twitter Wpedia Other
|
||||
──────────────────┼─────────────────────────────────────────────────────
|
||||
Arabic ar │ - Yes Yes Yes Yes -
|
||||
German de │ Yes - Yes Yes[1] Yes -
|
||||
Greek el │ - Yes Yes Yes Yes -
|
||||
English en │ Yes Yes Yes Yes Yes Google Books
|
||||
Spanish es │ - Yes Yes Yes Yes -
|
||||
French fr │ - Yes Yes Yes Yes -
|
||||
Indonesian id │ - Yes - Yes Yes -
|
||||
Italian it │ - Yes Yes Yes Yes -
|
||||
Japanese ja │ - - Yes Yes Yes -
|
||||
Malay ms │ - Yes - Yes Yes -
|
||||
Dutch nl │ Yes Yes - Yes Yes -
|
||||
Polish pl │ - Yes - Yes Yes -
|
||||
Portuguese pt │ - Yes Yes Yes Yes -
|
||||
Russian ru │ - Yes Yes Yes Yes -
|
||||
Swedish sv │ - Yes - Yes Yes -
|
||||
Turkish tr │ - Yes - Yes Yes -
|
||||
Chinese zh │ Yes Yes Yes - - Jieba
|
||||
|
||||
These languages are only marginally supported so far. We have too few data
|
||||
sources so far in Korean (feel free to suggest some), and we are lacking
|
||||
tokenization support for Chinese.
|
||||
|
||||
Language Code GBooks SUBTLEX LeedsIC OpenSub Twitter Wikipedia
|
||||
──────────────────┼──────────────────────────────────────────────────
|
||||
Korean ko │ - - - - Yes Yes
|
||||
Chinese zh │ - Yes Yes Yes - -
|
||||
Additionally, Korean is marginally supported. You can look up frequencies in
|
||||
it, but we have too few data sources for it so far:
|
||||
|
||||
Language Code SUBTLEX LeedsIC OpenSub Twitter Wpedia
|
||||
──────────────────┼───────────────────────────────────────
|
||||
Korean ko │ - - - Yes Yes
|
||||
|
||||
[1] We've counted the frequencies from tweets in German, such as they are, but
|
||||
you should be aware that German is not a frequently-used language on Twitter.
|
||||
@ -172,7 +175,8 @@ There are language-specific exceptions:
|
||||
- In Japanese, instead of using the regex library, it uses the external library
|
||||
`mecab-python3`. This is an optional dependency of wordfreq, and compiling
|
||||
it requires the `libmecab-dev` system package to be installed.
|
||||
- It does not yet attempt to tokenize Chinese ideograms.
|
||||
- In Chinese, it uses the external Python library `jieba`, another optional
|
||||
dependency.
|
||||
|
||||
[uax29]: http://unicode.org/reports/tr29/
|
||||
|
||||
@ -184,7 +188,9 @@ also try to deal gracefully when you query it with texts that actually break
|
||||
into multiple tokens:
|
||||
|
||||
>>> word_frequency('New York', 'en')
|
||||
0.0002632772081925718
|
||||
0.0002315934248950231
|
||||
>>> word_frequency('北京地铁', 'zh') # "Beijing Subway"
|
||||
2.342123813395707e-05
|
||||
|
||||
The word frequencies are combined with the half-harmonic-mean function in order
|
||||
to provide an estimate of what their combined frequency would be.
|
||||
|
Loading…
Reference in New Issue
Block a user