from wordfreq import ( word_frequency, available_languages, dB_to_freq, iter_wordlist, top_n_list, random_words, random_ascii_words ) from nose.tools import ( eq_, assert_almost_equal, assert_greater, assert_less, raises ) def test_freq_examples(): # Stopwords are most common in the correct language assert_greater(word_frequency('the', 'en'), word_frequency('de', 'en')) assert_greater(word_frequency('de', 'es'), word_frequency('the', 'es')) def test_languages(): # Make sure the number of available languages doesn't decrease avail = available_languages() assert_greater(len(avail), 14) # Laughter is the universal language for lang in avail: if lang != 'zh': # we don't have enough Chinese data yet assert_greater(word_frequency('lol', lang), 0) # Make up a weirdly verbose language code and make sure # we still get it new_lang_code = '%s-001-x-fake-extension' % lang.upper() assert_greater(word_frequency('lol', new_lang_code), 0) def test_defaults(): eq_(word_frequency('esquivalience', 'en'), 0) eq_(word_frequency('esquivalience', 'en', default=1e-6), 1e-6) def test_most_common_words(): # If something causes the most common words in well-supported languages to # change, we should know. def get_most_common(lang): """ Return the single most common word in the language. """ return top_n_list(lang, 1)[0] eq_(get_most_common('ar'), 'في') eq_(get_most_common('de'), 'der') eq_(get_most_common('en'), 'the') eq_(get_most_common('es'), 'de') eq_(get_most_common('fr'), 'de') eq_(get_most_common('it'), 'di') eq_(get_most_common('ja'), 'の') eq_(get_most_common('nl'), 'de') eq_(get_most_common('pt'), 'de') eq_(get_most_common('ru'), 'в') eq_(get_most_common('zh'), '的') def test_language_matching(): freq = word_frequency('的', 'zh') eq_(word_frequency('的', 'zh-TW'), freq) eq_(word_frequency('的', 'zh-CN'), freq) eq_(word_frequency('的', 'zh-Hant'), freq) eq_(word_frequency('的', 'zh-Hans'), freq) eq_(word_frequency('的', 'yue-HK'), freq) eq_(word_frequency('的', 'cmn'), freq) def test_dB_conversion(): eq_(dB_to_freq(0), 1.) assert_almost_equal(dB_to_freq(-10), 0.1) assert_almost_equal(dB_to_freq(-60), 1e-6) @raises(ValueError) def test_failed_dB_conversion(): dB_to_freq(1) def test_tokenization(): # We preserve apostrophes within words, so "can't" is a single word in the # data, while the fake word "plan't" can't be found. assert_greater(word_frequency("can't", 'en'), 0) eq_(word_frequency("plan't", 'en'), 0) # We do split at other punctuation, causing the word-combining rule to # apply. assert_greater(word_frequency("can.t", 'en'), 0) plant = word_frequency("plan.t", 'en') assert_greater(plant, 0) assert_less(plant, word_frequency('plan', 'en')) assert_less(plant, word_frequency('t', 'en')) def test_not_really_random(): # If your xkcd-style password comes out like this, maybe you shouldn't # use it eq_(random_words(nwords=4, lang='en', bits_per_word=0), 'the the the the') # This not only tests random_ascii_words, it makes sure we didn't end # up with 'eos' as a very common Japanese word eq_(random_ascii_words(nwords=4, lang='ja', bits_per_word=0), 'rt rt rt rt') @raises(ValueError) def test_not_enough_ascii(): random_ascii_words(lang='zh')