mirror of
https://github.com/rspeer/wordfreq.git
synced 2024-12-27 02:48:51 +00:00
118 lines
3.6 KiB
Python
118 lines
3.6 KiB
Python
from wordfreq import (
|
|
word_frequency, available_languages, cB_to_freq, iter_wordlist,
|
|
top_n_list, random_words, random_ascii_words, tokenize
|
|
)
|
|
from nose.tools import (
|
|
eq_, assert_almost_equal, assert_greater, assert_less, raises
|
|
)
|
|
|
|
|
|
def test_freq_examples():
|
|
# Stopwords are most common in the correct language
|
|
assert_greater(word_frequency('the', 'en'),
|
|
word_frequency('de', 'en'))
|
|
|
|
assert_greater(word_frequency('de', 'es'),
|
|
word_frequency('the', 'es'))
|
|
|
|
|
|
def test_languages():
|
|
# Make sure the number of available languages doesn't decrease
|
|
avail = available_languages()
|
|
assert_greater(len(avail), 14)
|
|
|
|
# Laughter is the universal language
|
|
for lang in avail:
|
|
if lang != 'zh': # we don't have enough Chinese data yet
|
|
assert_greater(word_frequency('lol', lang), 0)
|
|
|
|
# Make up a weirdly verbose language code and make sure
|
|
# we still get it
|
|
new_lang_code = '%s-001-x-fake-extension' % lang.upper()
|
|
assert_greater(word_frequency('lol', new_lang_code), 0)
|
|
|
|
|
|
def test_defaults():
|
|
eq_(word_frequency('esquivalience', 'en'), 0)
|
|
eq_(word_frequency('esquivalience', 'en', default=1e-6), 1e-6)
|
|
|
|
|
|
def test_most_common_words():
|
|
# If something causes the most common words in well-supported languages to
|
|
# change, we should know.
|
|
|
|
def get_most_common(lang):
|
|
"""
|
|
Return the single most common word in the language.
|
|
"""
|
|
return top_n_list(lang, 1)[0]
|
|
|
|
eq_(get_most_common('ar'), 'في')
|
|
eq_(get_most_common('de'), 'die')
|
|
eq_(get_most_common('en'), 'the')
|
|
eq_(get_most_common('es'), 'de')
|
|
eq_(get_most_common('fr'), 'de')
|
|
eq_(get_most_common('it'), 'di')
|
|
eq_(get_most_common('ja'), 'の')
|
|
eq_(get_most_common('nl'), 'de')
|
|
eq_(get_most_common('pt'), 'de')
|
|
eq_(get_most_common('ru'), 'в')
|
|
eq_(get_most_common('zh'), '的')
|
|
|
|
|
|
def test_language_matching():
|
|
freq = word_frequency('的', 'zh')
|
|
eq_(word_frequency('的', 'zh-TW'), freq)
|
|
eq_(word_frequency('的', 'zh-CN'), freq)
|
|
eq_(word_frequency('的', 'zh-Hant'), freq)
|
|
eq_(word_frequency('的', 'zh-Hans'), freq)
|
|
eq_(word_frequency('的', 'yue-HK'), freq)
|
|
eq_(word_frequency('的', 'cmn'), freq)
|
|
|
|
|
|
def test_cB_conversion():
|
|
eq_(cB_to_freq(0), 1.)
|
|
assert_almost_equal(cB_to_freq(-100), 0.1)
|
|
assert_almost_equal(cB_to_freq(-600), 1e-6)
|
|
|
|
|
|
@raises(ValueError)
|
|
def test_failed_cB_conversion():
|
|
cB_to_freq(1)
|
|
|
|
|
|
def test_tokenization():
|
|
# We preserve apostrophes within words, so "can't" is a single word in the
|
|
# data, while the fake word "plan't" can't be found.
|
|
eq_(tokenize("can't", 'en'), ["can't"])
|
|
eq_(tokenize("plan't", 'en'), ["plan't"])
|
|
|
|
eq_(tokenize('😂test', 'en'), ['😂', 'test'])
|
|
|
|
# We do split at other punctuation, causing the word-combining rule to
|
|
# apply.
|
|
eq_(tokenize("can.t", 'en'), ['can', 't'])
|
|
|
|
def test_phrase_freq():
|
|
plant = word_frequency("plan.t", 'en')
|
|
assert_greater(plant, 0)
|
|
assert_less(plant, word_frequency('plan', 'en'))
|
|
assert_less(plant, word_frequency('t', 'en'))
|
|
|
|
|
|
def test_not_really_random():
|
|
# If your xkcd-style password comes out like this, maybe you shouldn't
|
|
# use it
|
|
eq_(random_words(nwords=4, lang='en', bits_per_word=0),
|
|
'the the the the')
|
|
|
|
# This not only tests random_ascii_words, it makes sure we didn't end
|
|
# up with 'eos' as a very common Japanese word
|
|
eq_(random_ascii_words(nwords=4, lang='ja', bits_per_word=0),
|
|
'rt rt rt rt')
|
|
|
|
|
|
@raises(ValueError)
|
|
def test_not_enough_ascii():
|
|
random_ascii_words(lang='zh')
|