wordfreq/tests/test.py
Joshua Chin 4b398fac65 updated minimum
Former-commit-id: 59c03e2411
2015-07-07 15:46:33 -04:00

151 lines
4.3 KiB
Python

from wordfreq import (
word_frequency, available_languages, cB_to_freq, iter_wordlist,
top_n_list, random_words, random_ascii_words, tokenize,
half_harmonic_mean
)
from nose.tools import (
eq_, assert_almost_equal, assert_greater, assert_less, raises
)
def test_freq_examples():
# Stopwords are most common in the correct language
assert_greater(word_frequency('the', 'en'),
word_frequency('de', 'en'))
assert_greater(word_frequency('de', 'es'),
word_frequency('the', 'es'))
def test_languages():
# Make sure the number of available languages doesn't decrease
avail = available_languages()
assert_greater(len(avail), 14)
# Laughter is the universal language
for lang in avail:
if lang not in {'zh', 'ja'}:
# we do not have enough Chinese data
# Japanese people do not lol
assert_greater(word_frequency('lol', lang), 0)
# Make up a weirdly verbose language code and make sure
# we still get it
new_lang_code = '%s-001-x-fake-extension' % lang.upper()
assert_greater(word_frequency('lol', new_lang_code), 0)
def test_twitter():
avail = available_languages('twitter')
assert_greater(len(avail), 12)
for lang in avail:
assert_greater(word_frequency('rt', lang, 'twitter'),
word_frequency('rt', lang, 'combined'))
def test_minimums():
eq_(word_frequency('esquivalience', 'en'), 0)
eq_(word_frequency('esquivalience', 'en', minimum=1e-6), 1e-6)
eq_(word_frequency('the', 'en', minimum=1), 1)
def test_most_common_words():
# If something causes the most common words in well-supported languages to
# change, we should know.
def get_most_common(lang):
"""
Return the single most common word in the language.
"""
return top_n_list(lang, 1)[0]
eq_(get_most_common('ar'), 'في')
eq_(get_most_common('de'), 'die')
eq_(get_most_common('en'), 'the')
eq_(get_most_common('es'), 'de')
eq_(get_most_common('fr'), 'de')
eq_(get_most_common('it'), 'di')
eq_(get_most_common('ja'), '')
eq_(get_most_common('nl'), 'de')
eq_(get_most_common('pt'), 'de')
eq_(get_most_common('ru'), 'в')
eq_(get_most_common('zh'), '')
def test_language_matching():
freq = word_frequency('', 'zh')
eq_(word_frequency('', 'zh-TW'), freq)
eq_(word_frequency('', 'zh-CN'), freq)
eq_(word_frequency('', 'zh-Hant'), freq)
eq_(word_frequency('', 'zh-Hans'), freq)
eq_(word_frequency('', 'yue-HK'), freq)
eq_(word_frequency('', 'cmn'), freq)
def test_cB_conversion():
eq_(cB_to_freq(0), 1.)
assert_almost_equal(cB_to_freq(-100), 0.1)
assert_almost_equal(cB_to_freq(-600), 1e-6)
@raises(ValueError)
def test_failed_cB_conversion():
cB_to_freq(1)
def test_tokenization():
# We preserve apostrophes within words, so "can't" is a single word in the
# data, while the fake word "plan't" can't be found.
eq_(tokenize("can't", 'en'), ["can't"])
eq_(tokenize('😂test', 'en'), ['😂', 'test'])
# We do split at other punctuation, causing the word-combining rule to
# apply.
eq_(tokenize("can.t", 'en'), ['can', 't'])
def test_casefolding():
eq_(tokenize('WEISS', 'de'), ['weiss'])
eq_(tokenize('weiß', 'de'), ['weiss'])
def test_phrase_freq():
plant = word_frequency("plan.t", 'en')
assert_greater(plant, 0)
assert_almost_equal(
plant,
half_harmonic_mean(
word_frequency('plan', 'en'),
word_frequency('t', 'en')
)
)
def test_not_really_random():
# If your xkcd-style password comes out like this, maybe you shouldn't
# use it
eq_(random_words(nwords=4, lang='en', bits_per_word=0),
'the the the the')
# This not only tests random_ascii_words, it makes sure we didn't end
# up with 'eos' as a very common Japanese word
eq_(random_ascii_words(nwords=4, lang='ja', bits_per_word=0),
'rt rt rt rt')
@raises(ValueError)
def test_not_enough_ascii():
random_ascii_words(lang='zh')
def test_ar():
eq_(
tokenize('متــــــــعب', 'ar'),
['متعب']
)
eq_(
tokenize('حَرَكَات', 'ar'),
['حركات']
)