2013-06-28 08:31:09 +00:00
- - -
2022-07-31 22:31:57 +00:00
language : C
2013-08-16 16:44:22 +00:00
filename : learnc . c
contributors :
2022-10-10 16:57:35 +00:00
- [ " Adam Bard " , " http://adambard.com/ " ]
- [ " Árpád Goretity " , " http://twitter.com/H2CO3_iOS " ]
- [ " Jakub Trzebiatowski " , " http://cbs.stgn.pl " ]
- [ " Marco Scannadinari " , " https://marcoms.github.io " ]
- [ " Zachary Ferguson " , " https://github.io/zfergus2 " ]
- [ " himanshu " , " https://github.com/himanshu81494 " ]
- [ " Joshua Li " , " https://github.com/JoshuaRLi " ]
- [ " Dragos B. Chirila " , " https://github.com/dchirila " ]
- [ " Heitor P. de Bittencourt " , " https://github.com/heitorPB/ " ]
2013-06-28 08:31:09 +00:00
- - -
2013-08-15 10:30:22 +00:00
Ah , C . Still * * the * * language of modern high - performance computing .
2013-06-28 08:31:09 +00:00
C is the lowest - level language most programmers will ever use , but
it more than makes up for it with raw speed . Just be aware of its manual
memory management and C will take you as far as you need to go .
2017-09-13 05:32:41 +00:00
> * * About compiler flags * *
2018-09-04 15:24:42 +00:00
>
2017-09-13 05:32:41 +00:00
> By default , gcc and clang are pretty quiet about compilation warnings and
2018-01-04 05:15:28 +00:00
> errors , which can be very useful information . Explicitly using stricter
> compiler flags is recommended . Here are some recommended defaults :
2017-09-13 05:32:41 +00:00
>
2018-01-04 05:06:44 +00:00
> ` - Wall - Wextra - Werror - O2 - std = c99 - pedantic `
2018-01-04 05:15:28 +00:00
>
> For information on what these flags do as well as other flags , consult the man page for your C compiler ( e . g . ` man 1 gcc ` ) or just search online .
2017-09-13 05:32:41 +00:00
2013-06-28 08:31:09 +00:00
` ` ` c
2013-08-15 10:30:22 +00:00
// Single-line comments start with // - only available in C99 and later.
2013-06-30 03:19:14 +00:00
2015-08-29 10:58:03 +00:00
/*
2013-08-15 10:30:22 +00:00
Multi - line comments look like this . They work in C89 as well .
2015-08-29 10:58:03 +00:00
*/
2013-06-28 08:31:09 +00:00
2014-10-18 01:57:18 +00:00
/*
Multi - line comments don ' t nest /* Be careful */ // comment ends on this line...
*/ // ...not this one!
2014-12-08 12:27:06 +00:00
// Constants: #define <keyword>
2015-10-09 14:48:21 +00:00
// Constants are written in all-caps out of convention, not requirement
2013-11-24 21:01:24 +00:00
# define DAYS_IN_YEAR 365
2013-08-31 15:51:48 +00:00
2014-12-08 12:27:06 +00:00
// Enumeration constants are also ways to declare constants.
// All statements must end with a semicolon
2021-08-24 19:57:49 +00:00
enum days { SUN , MON , TUE , WED , THU , FRI , SAT } ;
// SUN gets 0, MON gets 1, TUE gets 2, etc.
// Enumeration values can also be specified
enum days { SUN = 1 , MON , TUE , WED = 99 , THU , FRI , SAT } ;
2014-07-17 19:37:52 +00:00
// MON gets 2 automatically, TUE gets 3, etc.
2021-08-24 19:57:49 +00:00
// WED get 99, THU gets 100, FRI gets 101, etc.
2013-09-01 01:51:11 +00:00
2013-06-28 08:31:09 +00:00
// Import headers with #include
# include <stdlib.h>
# include <stdio.h>
2013-06-30 03:19:14 +00:00
# include <string.h>
2013-06-28 08:31:09 +00:00
2021-08-24 19:57:49 +00:00
// File names between <angle brackets> tell the compiler to look in your system
// libraries for the headers.
// For your own headers, use double quotes instead of angle brackets, and
// provide the path:
# include "my_header.h" // local file
# include "../my_lib/my_lib_header.h" //relative path
2013-08-15 10:36:29 +00:00
2013-06-28 08:31:09 +00:00
// Declare function signatures in advance in a .h file, or at the top of
// your .c file.
2014-07-17 08:46:24 +00:00
void function_1 ( ) ;
2013-11-24 04:40:52 +00:00
int function_2 ( void ) ;
2013-06-28 08:31:09 +00:00
2021-08-24 19:57:49 +00:00
// At a minimum, you must declare a 'function prototype' before its use in any function.
// Normally, prototypes are placed at the top of a file before any function definition.
2014-07-17 19:37:52 +00:00
int add_two_ints ( int x1 , int x2 ) ; // function prototype
2015-10-14 15:11:36 +00:00
// although `int add_two_ints(int, int);` is also valid (no need to name the args),
// it is recommended to name arguments in the prototype as well for easier inspection
2013-09-21 03:13:10 +00:00
2021-08-24 19:57:49 +00:00
// Function prototypes are not necessary if the function definition comes before
// any other function that calls that function. However, it's standard practice to
// always add the function prototype to a header file (*.h) and then #include that
// file at the top. This prevents any issues where a function might be called
// before the compiler knows of its existence, while also giving the developer a
// clean header file to share with the rest of the project.
// Your program's entry point is a function called "main". The return type can
// be anything, however most operating systems expect a return type of `int` for
// error code processing.
2015-08-29 10:58:03 +00:00
int main ( void ) {
2015-10-09 14:48:21 +00:00
// your program
}
// The command line arguments used to run your program are also passed to main
// argc being the number of arguments - your program's name counts as 1
// argv is an array of character arrays - containing the arguments themselves
// argv[0] = name of your program, argv[1] = first argument, etc.
int main ( int argc , char * * argv )
{
2014-07-17 08:46:24 +00:00
// print output using printf, for "print formatted"
// %d is an integer, \n is a newline
printf ( " %d \n " , 0 ) ; // => Prints 0
2022-10-10 16:57:35 +00:00
// take input using scanf
// '&' is used to define the location
// where we want to store the input value
int input ;
scanf ( " %d " , & input ) ;
2014-07-17 08:46:24 +00:00
///////////////////////////////////////
// Types
///////////////////////////////////////
2015-10-28 22:45:31 +00:00
2020-02-22 01:46:28 +00:00
// Compilers that are not C99-compliant require that variables MUST be
2020-02-22 01:41:29 +00:00
// declared at the top of the current block scope.
// Compilers that ARE C99-compliant allow declarations near the point where
// the value is used.
// For the sake of the tutorial, variables are declared dynamically under
// C99-compliant standards.
2014-07-17 08:46:24 +00:00
2021-08-24 19:57:49 +00:00
// ints are usually 4 bytes (use the `sizeof` operator to check)
2014-07-17 08:46:24 +00:00
int x_int = 0 ;
2021-08-24 19:57:49 +00:00
// shorts are usually 2 bytes (use the `sizeof` operator to check)
2014-07-17 08:46:24 +00:00
short x_short = 0 ;
2022-10-10 16:57:35 +00:00
// chars are defined as the smallest addressable unit for a processor.
2021-08-24 19:57:49 +00:00
// This is usually 1 byte, but for some systems it can be more (ex. for TMS320 from TI it's 2 bytes).
2014-07-17 08:46:24 +00:00
char x_char = 0 ;
char y_char = ' y ' ; // Char literals are quoted with ''
// longs are often 4 to 8 bytes; long longs are guaranteed to be at least
2018-03-25 15:04:53 +00:00
// 8 bytes
2014-07-17 08:46:24 +00:00
long x_long = 0 ;
2014-07-17 19:37:52 +00:00
long long x_long_long = 0 ;
2014-07-17 08:46:24 +00:00
// floats are usually 32-bit floating point numbers
2014-10-18 01:57:18 +00:00
float x_float = 0.0f ; // 'f' suffix here denotes floating point literal
2014-07-17 08:46:24 +00:00
// doubles are usually 64-bit floating-point numbers
2014-10-18 01:57:18 +00:00
double x_double = 0.0 ; // real numbers without any suffix are doubles
2014-07-17 08:46:24 +00:00
2015-01-30 21:42:35 +00:00
// integer types may be unsigned (greater than or equal to zero)
2014-07-17 08:46:24 +00:00
unsigned short ux_short ;
unsigned int ux_int ;
unsigned long long ux_long_long ;
2014-07-17 19:37:52 +00:00
// chars inside single quotes are integers in machine's character set.
' 0 ' ; // => 48 in the ASCII character set.
' A ' ; // => 65 in the ASCII character set.
2014-07-17 08:46:24 +00:00
// sizeof(T) gives you the size of a variable with type T in bytes
// sizeof(obj) yields the size of the expression (variable, literal, etc.).
printf ( " %zu \n " , sizeof ( int ) ) ; // => 4 (on most machines with 4-byte words)
// If the argument of the `sizeof` operator is an expression, then its argument
// is not evaluated (except VLAs (see below)).
// The value it yields in this case is a compile-time constant.
int a = 1 ;
2014-07-17 19:37:52 +00:00
// size_t is an unsigned integer type of at least 2 bytes used to represent
2014-07-17 08:46:24 +00:00
// the size of an object.
size_t size = sizeof ( a + + ) ; // a++ is not evaluated
printf ( " sizeof(a++) = %zu where a = %d \n " , size , a ) ;
// prints "sizeof(a++) = 4 where a = 1" (on a 32-bit architecture)
// Arrays must be initialized with a concrete size.
char my_char_array [ 20 ] ; // This array occupies 1 * 20 = 20 bytes
int my_int_array [ 20 ] ; // This array occupies 4 * 20 = 80 bytes
// (assuming 4-byte words)
2022-01-03 16:44:49 +00:00
// You can initialize an array of twenty ints that all equal 0 thusly:
int my_array [ 20 ] = { 0 } ;
2018-09-04 15:24:42 +00:00
// where the "{0}" part is called an "array initializer".
2022-01-03 16:44:49 +00:00
// All elements (if any) past the ones in the initializer are initialized to 0:
int my_array [ 5 ] = { 1 , 2 } ;
2022-10-10 16:57:35 +00:00
// So my_array now has five elements, all but the first two of which are 0:
2022-01-03 16:44:49 +00:00
// [1, 2, 0, 0, 0]
2022-10-10 16:57:35 +00:00
// NOTE that you get away without explicitly declaring the size
2022-01-03 16:44:49 +00:00
// of the array IF you initialize the array on the same line:
int my_array [ ] = { 0 } ;
2022-10-10 16:57:35 +00:00
// NOTE that, when not declaring the size, the size of the array is the number
2022-01-03 16:44:49 +00:00
// of elements in the initializer. With "{0}", my_array is now of size one: [0]
// To evaluate the size of the array at run-time, divide its byte size by the
// byte size of its element type:
2018-09-04 15:24:42 +00:00
size_t my_array_size = sizeof ( my_array ) / sizeof ( my_array [ 0 ] ) ;
2022-10-10 16:57:35 +00:00
// WARNING You should evaluate the size *before* you begin passing the array
// to functions (see later discussion) because arrays get "downgraded" to
// raw pointers when they are passed to functions (so the statement above
2022-01-03 16:44:49 +00:00
// will produce the wrong result inside the function).
2014-07-17 08:46:24 +00:00
// Indexing an array is like other languages -- or,
// rather, other languages are like C
my_array [ 0 ] ; // => 0
// Arrays are mutable; it's just memory!
my_array [ 1 ] = 2 ;
printf ( " %d \n " , my_array [ 1 ] ) ; // => 2
// In C99 (and as an optional feature in C11), variable-length arrays (VLAs)
// can be declared as well. The size of such an array need not be a compile
// time constant:
printf ( " Enter the array size: " ) ; // ask the user for an array size
2016-03-22 15:15:26 +00:00
int array_size ;
fscanf ( stdin , " %d " , & array_size ) ;
int var_length_array [ array_size ] ; // declare the VLA
2014-07-17 08:46:24 +00:00
printf ( " sizeof array = %zu \n " , sizeof var_length_array ) ;
2015-10-26 23:38:36 +00:00
// Example:
2014-07-17 08:46:24 +00:00
// > Enter the array size: 10
// > sizeof array = 40
// Strings are just arrays of chars terminated by a NULL (0x00) byte,
// represented in strings as the special character '\0'.
// (We don't have to include the NULL byte in string literals; the compiler
// inserts it at the end of the array for us.)
char a_string [ 20 ] = " This is a string " ;
printf ( " %s \n " , a_string ) ; // %s formats a string
printf ( " %d \n " , a_string [ 16 ] ) ; // => 0
// i.e., byte #17 is 0 (as are 18, 19, and 20)
// If we have characters between single quotes, that's a character literal.
// It's of type `int`, and *not* `char` (for historical reasons).
int cha = ' a ' ; // fine
char chb = ' a ' ; // fine too (implicit conversion from int to char)
2015-08-29 10:58:03 +00:00
// Multi-dimensional arrays:
2014-07-17 08:46:24 +00:00
int multi_array [ 2 ] [ 5 ] = {
{ 1 , 2 , 3 , 4 , 5 } ,
{ 6 , 7 , 8 , 9 , 0 }
} ;
2015-08-29 10:58:03 +00:00
// access elements:
2014-07-17 08:46:24 +00:00
int array_int = multi_array [ 0 ] [ 2 ] ; // => 3
///////////////////////////////////////
// Operators
///////////////////////////////////////
// Shorthands for multiple declarations:
2014-07-17 19:37:52 +00:00
int i1 = 1 , i2 = 2 ;
2014-07-17 08:46:24 +00:00
float f1 = 1.0 , f2 = 2.0 ;
int b , c ;
b = c = 0 ;
// Arithmetic is straightforward
i1 + i2 ; // => 3
i2 - i1 ; // => 1
i2 * i1 ; // => 2
i1 / i2 ; // => 0 (0.5, but truncated towards 0)
2014-09-06 01:47:18 +00:00
// You need to cast at least one integer to float to get a floating-point result
2015-08-29 10:44:41 +00:00
( float ) i1 / i2 ; // => 0.5f
i1 / ( double ) i2 ; // => 0.5 // Same with double
2014-07-17 08:46:24 +00:00
f1 / f2 ; // => 0.5, plus or minus epsilon
2022-10-10 16:57:35 +00:00
2021-08-24 19:57:49 +00:00
// Floating-point numbers are defined by IEEE 754, thus cannot store perfectly
2022-10-10 16:57:35 +00:00
// exact values. For instance, the following does not produce expected results
2022-12-10 15:05:34 +00:00
// because 0.1 might actually be 0.099999999999 inside the computer, and 0.3
2022-10-10 16:57:35 +00:00
// might be stored as 0.300000000001.
2021-01-30 14:25:22 +00:00
( 0.1 + 0.1 + 0.1 ) ! = 0.3 ; // => 1 (true)
2021-08-24 19:57:49 +00:00
// and it is NOT associative due to reasons mentioned above.
2021-01-30 14:25:22 +00:00
1 + ( 1e123 - 1e123 ) ! = ( 1 + 1e123 ) - 1e123 ; // => 1 (true)
// this notation is scientific notations for numbers: 1e123 = 1*10^123
2014-07-17 08:46:24 +00:00
2021-08-24 19:57:49 +00:00
// It is important to note that most all systems have used IEEE 754 to
// represent floating points. Even python, used for scientific computing,
// eventually calls C which uses IEEE 754. It is mentioned this way not to
// indicate that this is a poor implementation, but instead as a warning
// that when doing floating point comparisons, a little bit of error (epsilon)
2022-10-10 16:57:35 +00:00
// needs to be considered.
2021-08-24 19:57:49 +00:00
2021-01-30 14:25:22 +00:00
// Modulo is there as well, but be careful if arguments are negative
2021-01-31 12:56:45 +00:00
11 % 3 ; // => 2 as 11 = 2 + 3*x (x=3)
( - 11 ) % 3 ; // => -2, as one would expect
11 % ( - 3 ) ; // => 2 and not -2, and it's quite counter intuitive
2014-07-17 08:46:24 +00:00
// Comparison operators are probably familiar, but
2016-10-30 23:35:31 +00:00
// there is no Boolean type in C. We use ints instead.
2021-08-24 19:57:49 +00:00
// (C99 introduced the _Bool type provided in stdbool.h)
2014-07-17 19:37:52 +00:00
// 0 is false, anything else is true. (The comparison
2014-07-17 08:46:24 +00:00
// operators always yield 0 or 1.)
3 = = 2 ; // => 0 (false)
3 ! = 2 ; // => 1 (true)
2021-01-30 14:25:22 +00:00
3 > 2 ; // => 1
3 < 2 ; // => 0
2014-07-17 08:46:24 +00:00
2 < = 2 ; // => 1
2 > = 2 ; // => 1
2021-01-30 14:25:22 +00:00
// C is not Python - comparisons do NOT chain.
2014-09-06 01:47:18 +00:00
// Warning: The line below will compile, but it means `(0 < a) < 2`.
// This expression is always true, because (0 < a) could be either 1 or 0.
// In this case it's 1, because (0 < 1).
int between_0_and_2 = 0 < a < 2 ;
// Instead use:
2014-07-17 08:46:24 +00:00
int between_0_and_2 = 0 < a & & a < 2 ;
// Logic works on ints
! 3 ; // => 0 (Logical not)
! 0 ; // => 1
1 & & 1 ; // => 1 (Logical and)
0 & & 1 ; // => 0
0 | | 1 ; // => 1 (Logical or)
0 | | 0 ; // => 0
2015-10-15 00:44:42 +00:00
// Conditional ternary expression ( ? : )
2014-07-17 08:46:24 +00:00
int e = 5 ;
int f = 10 ;
int z ;
2014-09-27 19:38:30 +00:00
z = ( e > f ) ? e : f ; // => 10 "if e > f return e, else return f."
2014-07-17 08:46:24 +00:00
2015-08-29 10:58:03 +00:00
// Increment and decrement operators:
2014-07-17 08:46:24 +00:00
int j = 0 ;
2016-09-13 12:14:28 +00:00
int s = j + + ; // Return j THEN increase j. (s = 0, j = 1)
s = + + j ; // Increase j THEN return j. (s = 2, j = 2)
2014-07-17 08:46:24 +00:00
// same with j-- and --j
// Bitwise operators!
2015-03-30 07:08:30 +00:00
~ 0x0F ; // => 0xFFFFFFF0 (bitwise negation, "1's complement", example result for 32-bit int)
2014-07-17 08:46:24 +00:00
0x0F & 0xF0 ; // => 0x00 (bitwise AND)
0x0F | 0xF0 ; // => 0xFF (bitwise OR)
0x04 ^ 0x0F ; // => 0x0B (bitwise XOR)
0x01 < < 1 ; // => 0x02 (bitwise left shift (by 1))
0x02 > > 1 ; // => 0x01 (bitwise right shift (by 1))
// Be careful when shifting signed integers - the following are undefined:
2015-03-30 07:08:30 +00:00
// - shifting into the sign bit of a signed integer (int a = 1 << 31)
2014-07-17 08:46:24 +00:00
// - left-shifting a negative number (int a = -1 << 2)
// - shifting by an offset which is >= the width of the type of the LHS:
// int a = 1 << 32; // UB if int is 32 bits wide
///////////////////////////////////////
// Control Structures
///////////////////////////////////////
if ( 0 ) {
printf ( " I am never run \n " ) ;
} else if ( 0 ) {
printf ( " I am also never run \n " ) ;
} else {
printf ( " I print \n " ) ;
}
// While loops exist
int ii = 0 ;
2017-05-23 08:37:46 +00:00
while ( ii < 10 ) { //ANY value less than ten is true.
2014-07-17 08:46:24 +00:00
printf ( " %d, " , ii + + ) ; // ii++ increments ii AFTER using its current value.
} // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
printf ( " \n " ) ;
int kk = 0 ;
do {
printf ( " %d, " , kk ) ;
} while ( + + kk < 10 ) ; // ++kk increments kk BEFORE using its current value.
// => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
printf ( " \n " ) ;
// For loops too
int jj ;
for ( jj = 0 ; jj < 10 ; jj + + ) {
printf ( " %d, " , jj ) ;
} // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
printf ( " \n " ) ;
// *****NOTES*****:
// Loops and Functions MUST have a body. If no body is needed:
int i ;
for ( i = 0 ; i < = 5 ; i + + ) {
; // use semicolon to act as the body (null statement)
}
2015-10-15 00:44:42 +00:00
// Or
for ( i = 0 ; i < = 5 ; i + + ) ;
2014-07-17 08:46:24 +00:00
// branching with multiple choices: switch()
switch ( a ) {
2017-09-13 05:32:41 +00:00
case 0 : // labels need to be integral *constant* expressions (such as enums)
2014-07-17 19:37:52 +00:00
printf ( " Hey, 'a' equals 0! \n " ) ;
2014-07-17 08:46:24 +00:00
break ; // if you don't break, control flow falls over labels
case 1 :
2014-07-17 19:37:52 +00:00
printf ( " Huh, 'a' equals 1! \n " ) ;
2014-07-17 08:46:24 +00:00
break ;
2015-10-28 22:45:31 +00:00
// Be careful - without a "break", execution continues until the
// next "break" is reached.
case 3 :
case 4 :
printf ( " Look at that.. 'a' is either 3, or 4 \n " ) ;
break ;
2014-07-17 08:46:24 +00:00
default :
// if `some_integral_expression` didn't match any of the labels
2015-12-24 19:24:09 +00:00
fputs ( " Error! \n " , stderr ) ;
2014-07-17 08:46:24 +00:00
exit ( - 1 ) ;
break ;
}
2015-10-09 15:29:05 +00:00
/*
2021-01-30 14:25:22 +00:00
Using " goto " in C
2015-10-09 15:29:05 +00:00
*/
2015-10-08 10:01:40 +00:00
typedef enum { false , true } bool ;
2017-09-13 05:43:55 +00:00
// for C don't have bool as data type before C99 :(
2015-10-08 10:01:40 +00:00
bool disaster = false ;
int i , j ;
2021-01-30 14:25:22 +00:00
for ( i = 0 ; i < 100 ; + + i )
for ( j = 0 ; j < 100 ; + + j )
2015-10-08 10:01:40 +00:00
{
if ( ( i + j ) > = 150 )
disaster = true ;
if ( disaster )
2021-01-30 14:25:22 +00:00
goto error ; // exit both for loops
2015-10-08 10:01:40 +00:00
}
2021-01-30 14:25:22 +00:00
error : // this is a label that you can "jump" to with "goto error;"
2017-08-23 08:14:39 +00:00
printf ( " Error occurred at i = %d & j = %d. \n " , i , j ) ;
2015-10-09 15:29:05 +00:00
/*
2021-01-30 14:25:22 +00:00
https : //ideone.com/GuPhd6
this will print out " Error occurred at i = 51 & j = 99. "
2015-10-09 15:29:05 +00:00
*/
2021-01-31 12:56:45 +00:00
/*
it is generally considered bad practice to do so , except if
2022-10-10 16:57:35 +00:00
you really know what you are doing . See
2021-01-31 12:56:45 +00:00
https : //en.wikipedia.org/wiki/Spaghetti_code#Meaning
*/
2015-10-28 22:45:31 +00:00
2014-07-17 08:46:24 +00:00
///////////////////////////////////////
// Typecasting
///////////////////////////////////////
2013-08-16 16:44:22 +00:00
2014-07-17 08:46:24 +00:00
// Every value in C has a type, but you can cast one value into another type
// if you want (with some constraints).
2013-08-16 16:44:22 +00:00
2014-07-17 08:46:24 +00:00
int x_hex = 0x01 ; // You can assign vars with hex literals
2021-08-24 19:57:49 +00:00
// binary is not in the standard, but allowed by some
2022-10-10 16:57:35 +00:00
// compilers (x_bin = 0b0010010110)
2013-08-16 16:44:22 +00:00
2014-07-17 08:46:24 +00:00
// Casting between types will attempt to preserve their numeric values
printf ( " %d \n " , x_hex ) ; // => Prints 1
printf ( " %d \n " , ( short ) x_hex ) ; // => Prints 1
printf ( " %d \n " , ( char ) x_hex ) ; // => Prints 1
2013-08-16 16:44:22 +00:00
2021-08-24 19:57:49 +00:00
// If you assign a value greater than a types max val, it will rollover
// without warning.
2014-07-17 08:46:24 +00:00
printf ( " %d \n " , ( unsigned char ) 257 ) ; // => 1 (Max char = 255 if char is 8 bits long)
2013-08-16 16:44:22 +00:00
2014-07-17 08:46:24 +00:00
// For determining the max value of a `char`, a `signed char` and an `unsigned char`,
// respectively, use the CHAR_MAX, SCHAR_MAX and UCHAR_MAX macros from <limits.h>
2013-08-16 16:44:22 +00:00
2014-07-17 08:46:24 +00:00
// Integral types can be cast to floating-point types, and vice-versa.
2018-09-12 18:48:37 +00:00
printf ( " %f \n " , ( double ) 100 ) ; // %f always formats a double...
printf ( " %f \n " , ( float ) 100 ) ; // ...even with a float.
2014-07-17 08:46:24 +00:00
printf ( " %d \n " , ( char ) 100.0 ) ;
2013-08-16 16:44:22 +00:00
2014-07-17 08:46:24 +00:00
///////////////////////////////////////
// Pointers
///////////////////////////////////////
2013-08-16 16:44:22 +00:00
2014-07-17 08:46:24 +00:00
// A pointer is a variable declared to store a memory address. Its declaration will
2014-07-17 19:37:52 +00:00
// also tell you the type of data it points to. You can retrieve the memory address
2014-07-17 08:46:24 +00:00
// of your variables, then mess with them.
2013-08-16 16:44:22 +00:00
2014-07-17 08:46:24 +00:00
int x = 0 ;
printf ( " %p \n " , ( void * ) & x ) ; // Use & to retrieve the address of a variable
// (%p formats an object pointer of type void *)
// => Prints some address in memory;
2013-08-16 16:44:22 +00:00
2014-07-17 08:46:24 +00:00
// Pointers start with * in their declaration
int * px , not_a_pointer ; // px is a pointer to an int
px = & x ; // Stores the address of x in px
printf ( " %p \n " , ( void * ) px ) ; // => Prints some address in memory
printf ( " %zu, %zu \n " , sizeof ( px ) , sizeof ( not_a_pointer ) ) ;
// => Prints "8, 4" on a typical 64-bit system
2013-08-16 16:44:22 +00:00
2014-07-17 08:46:24 +00:00
// To retrieve the value at the address a pointer is pointing to,
// put * in front to dereference it.
// Note: yes, it may be confusing that '*' is used for _both_ declaring a
// pointer and dereferencing it.
printf ( " %d \n " , * px ) ; // => Prints 0, the value of x
2013-08-16 16:44:22 +00:00
2014-07-17 08:46:24 +00:00
// You can also change the value the pointer is pointing to.
// We'll have to wrap the dereference in parenthesis because
// ++ has a higher precedence than *.
( * px ) + + ; // Increment the value px is pointing to by 1
printf ( " %d \n " , * px ) ; // => Prints 1
printf ( " %d \n " , x ) ; // => Prints 1
2013-08-16 16:44:22 +00:00
2014-07-17 08:46:24 +00:00
// Arrays are a good way to allocate a contiguous block of memory
int x_array [ 20 ] ; //declares array of size 20 (cannot change size)
int xx ;
for ( xx = 0 ; xx < 20 ; xx + + ) {
x_array [ xx ] = 20 - xx ;
} // Initialize x_array to 20, 19, 18,... 2, 1
2013-08-16 16:44:22 +00:00
2015-08-29 10:58:03 +00:00
// Declare a pointer of type int and initialize it to point to x_array
2014-07-17 08:46:24 +00:00
int * x_ptr = x_array ;
2014-07-17 19:37:52 +00:00
// x_ptr now points to the first element in the array (the integer 20).
2014-07-17 08:46:24 +00:00
// This works because arrays often decay into pointers to their first element.
// For example, when an array is passed to a function or is assigned to a pointer,
// it decays into (implicitly converted to) a pointer.
// Exceptions: when the array is the argument of the `&` (address-of) operator:
int arr [ 10 ] ;
int ( * ptr_to_arr ) [ 10 ] = & arr ; // &arr is NOT of type `int *`!
// It's of type "pointer to array" (of ten `int`s).
// or when the array is a string literal used for initializing a char array:
char otherarr [ ] = " foobarbazquirk " ;
// or when it's the argument of the `sizeof` or `alignof` operator:
int arraythethird [ 10 ] ;
int * ptr = arraythethird ; // equivalent with int *ptr = &arr[0];
2018-09-04 15:24:42 +00:00
printf ( " %zu, %zu \n " , sizeof ( arraythethird ) , sizeof ( ptr ) ) ;
2015-01-08 22:21:39 +00:00
// probably prints "40, 4" or "40, 8"
2014-07-17 08:46:24 +00:00
// Pointers are incremented and decremented based on their type
// (this is called pointer arithmetic)
printf ( " %d \n " , * ( x_ptr + 1 ) ) ; // => Prints 19
printf ( " %d \n " , x_array [ 1 ] ) ; // => Prints 19
// You can also dynamically allocate contiguous blocks of memory with the
// standard library function malloc, which takes one argument of type size_t
// representing the number of bytes to allocate (usually from the heap, although this
// may not be true on e.g. embedded systems - the C standard says nothing about it).
int * my_ptr = malloc ( sizeof ( * my_ptr ) * 20 ) ;
for ( xx = 0 ; xx < 20 ; xx + + ) {
* ( my_ptr + xx ) = 20 - xx ; // my_ptr[xx] = 20-xx
} // Initialize memory to 20, 19, 18, 17... 2, 1 (as ints)
2018-09-04 15:24:42 +00:00
2017-09-13 05:32:41 +00:00
// Be careful passing user-provided values to malloc! If you want
// to be safe, you can use calloc instead (which, unlike malloc, also zeros out the memory)
int * my_other_ptr = calloc ( 20 , sizeof ( int ) ) ;
2015-10-28 22:45:31 +00:00
2015-10-15 21:34:53 +00:00
// Note that there is no standard way to get the length of a
// dynamically allocated array in C. Because of this, if your arrays are
// going to be passed around your program a lot, you need another variable
// to keep track of the number of elements (size) of an array. See the
// functions section for more info.
2017-09-13 05:32:41 +00:00
size_t size = 10 ;
int * my_arr = calloc ( size , sizeof ( int ) ) ;
2015-10-15 21:34:53 +00:00
// Add an element to the array
2016-08-17 19:25:32 +00:00
size + + ;
my_arr = realloc ( my_arr , sizeof ( int ) * size ) ;
2017-09-13 05:32:41 +00:00
if ( my_arr = = NULL ) {
//Remember to check for realloc failure!
return
}
2015-10-15 21:34:53 +00:00
my_arr [ 10 ] = 5 ;
2013-08-16 16:44:22 +00:00
2015-08-29 10:58:03 +00:00
// Dereferencing memory that you haven't allocated gives
// "unpredictable results" - the program is said to invoke "undefined behavior"
2014-07-17 08:46:24 +00:00
printf ( " %d \n " , * ( my_ptr + 21 ) ) ; // => Prints who-knows-what? It may even crash.
2014-07-17 19:37:52 +00:00
// When you're done with a malloc'd block of memory, you need to free it,
2014-07-17 08:46:24 +00:00
// or else no one else can use it until your program terminates
// (this is called a "memory leak"):
free ( my_ptr ) ;
// Strings are arrays of char, but they are usually represented as a
// pointer-to-char (which is a pointer to the first element of the array).
// It's good practice to use `const char *' when referring to a string literal,
// since string literals shall not be modified (i.e. "foo"[0] = 'a' is ILLEGAL.)
const char * my_str = " This is my very own string literal " ;
printf ( " %c \n " , * my_str ) ; // => 'T'
// This is not the case if the string is an array
// (potentially initialized with a string literal)
// that resides in writable memory, as in:
char foo [ ] = " foo " ;
foo [ 0 ] = ' a ' ; // this is legal, foo now contains "aoo"
function_1 ( ) ;
2013-06-28 08:31:09 +00:00
} // end main function
///////////////////////////////////////
// Functions
///////////////////////////////////////
// Function declaration syntax:
// <return type> <function name>(<args>)
2013-08-15 10:30:22 +00:00
int add_two_ints ( int x1 , int x2 )
{
2014-07-17 08:46:24 +00:00
return x1 + x2 ; // Use return to return a value
2013-06-28 08:31:09 +00:00
}
/*
2014-07-17 19:37:52 +00:00
Functions are call by value . When a function is called , the arguments passed to
2015-12-24 19:24:09 +00:00
the function are copies of the original arguments ( except arrays ) . Anything you
2014-07-17 19:37:52 +00:00
do to the arguments in the function do not change the value of the original
argument where the function was called .
2013-08-31 22:04:47 +00:00
2022-01-03 16:44:49 +00:00
Use pointers if you need to edit the original argument values ( arrays are always
passed in as pointers ) .
2013-06-28 08:31:09 +00:00
Example : in - place string reversal
*/
// A void function returns no value
2013-08-15 10:30:22 +00:00
void str_reverse ( char * str_in )
{
2014-07-17 08:46:24 +00:00
char tmp ;
2018-09-04 15:24:42 +00:00
size_t ii = 0 ;
2014-07-17 08:46:24 +00:00
size_t len = strlen ( str_in ) ; // `strlen()` is part of the c standard library
2022-01-03 16:44:49 +00:00
// NOTE: length returned by `strlen` DOESN'T
// include the terminating NULL byte ('\0')
// in C99 and newer versions, you can directly declare loop control variables
// in the loop's parentheses. e.g., `for (size_t ii = 0; ...`
for ( ii = 0 ; ii < len / 2 ; ii + + ) {
2014-07-17 08:46:24 +00:00
tmp = str_in [ ii ] ;
str_in [ ii ] = str_in [ len - ii - 1 ] ; // ii-th char from end
str_in [ len - ii - 1 ] = tmp ;
}
2013-06-28 08:31:09 +00:00
}
2016-09-27 19:55:01 +00:00
//NOTE: string.h header file needs to be included to use strlen()
2013-06-28 08:31:09 +00:00
2014-02-14 09:22:38 +00:00
/*
char c [ ] = " This is a test. " ;
str_reverse ( c ) ;
printf ( " %s \n " , c ) ; // => ".tset a si sihT"
*/
2015-10-09 15:29:05 +00:00
/*
as we can return only one variable
to change values of more than one variables we use call by reference
*/
2015-10-08 09:14:10 +00:00
void swapTwoNumbers ( int * a , int * b )
{
2015-10-09 15:29:05 +00:00
int temp = * a ;
* a = * b ;
* b = temp ;
2015-10-08 09:14:10 +00:00
}
/*
int first = 10 ;
int second = 20 ;
printf ( " first: %d \n second: %d \n " , first , second ) ;
swapTwoNumbers ( & first , & second ) ;
printf ( " first: %d \n second: %d \n " , first , second ) ;
// values will be swapped
*/
2015-10-15 21:34:53 +00:00
2022-10-10 16:57:35 +00:00
// Return multiple values.
2021-08-24 19:57:49 +00:00
// C does not allow for returning multiple values with the return statement. If
// you would like to return multiple values, then the caller must pass in the
// variables where they would like the returned values to go. These variables must
// be passed in as pointers such that the function can modify them.
int return_multiple ( int * array_of_3 , int * ret1 , int * ret2 , int * ret3 )
{
if ( array_of_3 = = NULL )
return 0 ; //return error code (false)
//de-reference the pointer so we modify its value
2022-10-10 16:57:35 +00:00
* ret1 = array_of_3 [ 0 ] ;
* ret2 = array_of_3 [ 1 ] ;
* ret3 = array_of_3 [ 2 ] ;
2021-08-24 19:57:49 +00:00
return 1 ; //return error code (true)
}
2015-10-15 21:34:53 +00:00
/*
With regards to arrays , they will always be passed to functions
as pointers . Even if you statically allocate an array like ` arr [ 10 ] ` ,
it still gets passed as a pointer to the first element in any function calls .
Again , there is no standard way to get the size of a dynamically allocated
array in C .
*/
// Size must be passed!
// Otherwise, this function has no way of knowing how big the array is.
2017-09-13 05:32:41 +00:00
void printIntArray ( int * arr , size_t size ) {
2015-10-15 21:34:53 +00:00
int i ;
for ( i = 0 ; i < size ; i + + ) {
printf ( " arr[%d] is: %d \n " , i , arr [ i ] ) ;
}
}
2015-10-15 21:38:42 +00:00
/*
int my_arr [ ] = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } ;
int size = 10 ;
printIntArray ( my_arr , size ) ;
// will print "arr[0] is: 1" etc
*/
2015-10-15 21:34:53 +00:00
2017-09-13 05:32:41 +00:00
// if referring to external variables outside function, you should use the extern keyword.
2013-09-01 00:24:15 +00:00
int i = 0 ;
void testFunc ( ) {
2014-07-17 08:46:24 +00:00
extern int i ; //i here is now using external variable i
2013-09-01 00:24:15 +00:00
}
2015-08-29 10:58:03 +00:00
// make external variables private to source file with static:
2015-01-08 22:21:39 +00:00
static int j = 0 ; //other files using testFunc2() cannot access variable j
2014-07-17 08:46:24 +00:00
void testFunc2 ( ) {
extern int j ;
2013-11-24 20:17:32 +00:00
}
2018-10-09 17:40:17 +00:00
// The static keyword makes a variable inaccessible to code outside the
// compilation unit. (On almost all systems, a "compilation unit" is a .c
// file.) static can apply both to global (to the compilation unit) variables,
// functions, and function-local variables. When using static with
// function-local variables, the variable is effectively global and retains its
// value across function calls, but is only accessible within the function it
// is declared in. Additionally, static variables are initialized to 0 if not
// declared with some other starting value.
2013-11-24 20:25:30 +00:00
//**You may also declare functions as static to make them private**
2013-11-24 20:17:32 +00:00
2013-06-28 08:31:09 +00:00
///////////////////////////////////////
// User-defined types and structs
///////////////////////////////////////
// Typedefs can be used to create type aliases
typedef int my_type ;
my_type my_type_var = 0 ;
2013-08-16 16:44:22 +00:00
// Structs are just collections of data, the members are allocated sequentially,
// in the order they are written:
2013-06-28 08:31:09 +00:00
struct rectangle {
2014-07-17 08:46:24 +00:00
int width ;
int height ;
2013-06-28 08:31:09 +00:00
} ;
2013-08-16 16:44:22 +00:00
// It's not generally true that
// sizeof(struct rectangle) == sizeof(int) + sizeof(int)
// due to potential padding between the structure members (this is for alignment
// reasons). [1]
2013-06-28 08:31:09 +00:00
2013-08-15 10:30:22 +00:00
void function_1 ( )
{
2022-01-03 16:44:49 +00:00
struct rectangle my_rec = { 1 , 2 } ; // Fields can be initialized immediately
2013-06-28 08:31:09 +00:00
2014-07-17 08:46:24 +00:00
// Access struct members with .
my_rec . width = 10 ;
my_rec . height = 20 ;
2013-06-28 08:31:09 +00:00
2014-07-17 08:46:24 +00:00
// You can declare pointers to structs
struct rectangle * my_rec_ptr = & my_rec ;
2013-06-28 08:31:09 +00:00
2014-07-17 08:46:24 +00:00
// Use dereferencing to set struct pointer members...
( * my_rec_ptr ) . width = 30 ;
2013-06-28 08:31:09 +00:00
2014-07-17 08:46:24 +00:00
// ... or even better: prefer the -> shorthand for the sake of readability
my_rec_ptr - > height = 10 ; // Same as (*my_rec_ptr).height = 10;
2013-06-28 08:31:09 +00:00
}
// You can apply a typedef to a struct for convenience
typedef struct rectangle rect ;
2013-08-15 10:30:22 +00:00
int area ( rect r )
{
2014-07-17 08:46:24 +00:00
return r . width * r . height ;
2013-06-28 08:31:09 +00:00
}
2022-01-03 16:44:49 +00:00
// Typedefs can also be defined right during struct definition
typedef struct {
int width ;
int height ;
} rect ;
// Like before, doing this means one can type
rect r ;
// instead of having to type
struct rectangle r ;
2013-08-16 16:44:22 +00:00
// if you have large structs, you can pass them "by pointer" to avoid copying
// the whole struct:
2014-07-17 08:46:24 +00:00
int areaptr ( const rect * r )
2013-08-15 10:30:22 +00:00
{
2014-07-17 08:46:24 +00:00
return r - > width * r - > height ;
2013-08-15 10:30:22 +00:00
}
2013-07-04 14:42:36 +00:00
///////////////////////////////////////
2014-07-17 19:37:52 +00:00
// Function pointers
2013-07-04 14:42:36 +00:00
///////////////////////////////////////
/*
2014-06-28 01:53:25 +00:00
At run time , functions are located at known memory addresses . Function pointers are
2014-07-17 19:37:52 +00:00
much like any other pointer ( they just store a memory address ) , but can be used
2013-07-04 14:42:36 +00:00
to invoke functions directly , and to pass handlers ( or callback functions ) around .
However , definition syntax may be initially confusing .
Example : use str_reverse from a pointer
*/
2013-08-15 10:30:22 +00:00
void str_reverse_through_pointer ( char * str_in ) {
2014-07-17 19:37:52 +00:00
// Define a function pointer variable, named f.
2014-07-17 08:46:24 +00:00
void ( * f ) ( char * ) ; // Signature should exactly match the target function.
f = & str_reverse ; // Assign the address for the actual function (determined at run time)
// f = str_reverse; would work as well - functions decay into pointers, similar to arrays
( * f ) ( str_in ) ; // Just calling the function through the pointer
// f(str_in); // That's an alternative but equally valid syntax for calling it.
2013-07-04 14:42:36 +00:00
}
/*
As long as function signatures match , you can assign any function to the same pointer .
Function pointers are usually typedef ' d for simplicity and readability , as follows :
*/
typedef void ( * my_fnp_type ) ( char * ) ;
2013-08-15 10:12:19 +00:00
// Then used when declaring the actual pointer variable:
2013-07-04 14:42:36 +00:00
// ...
2014-07-17 19:37:52 +00:00
// my_fnp_type f;
2013-07-04 14:42:36 +00:00
2017-09-13 05:32:41 +00:00
2021-08-24 19:57:49 +00:00
/////////////////////////////
// Printing characters with printf()
/////////////////////////////
2013-09-21 03:05:08 +00:00
//Special characters:
2014-07-17 08:46:24 +00:00
/*
' \a ' ; // alert (bell) character
' \n ' ; // newline character
' \t ' ; // tab character (left justifies text)
' \v ' ; // vertical tab
' \f ' ; // new page (form feed)
' \r ' ; // carriage return
' \b ' ; // backspace character
2014-07-17 19:37:52 +00:00
' \0 ' ; // NULL character. Usually put at end of strings in C.
// hello\n\0. \0 used by convention to mark end of string.
2014-07-17 08:46:24 +00:00
' \\ ' ; // backslash
' \? ' ; // question mark
' \' ' ; // single quote
' \" ' ; // double quote
' \ xhh ' ; // hexadecimal number. Example: '\xb' = vertical tab character
2014-09-04 02:46:50 +00:00
' \ 0 oo ' ; // octal number. Example: '\013' = vertical tab character
2013-09-21 03:05:08 +00:00
//print formatting:
2014-07-17 08:46:24 +00:00
" %d " ; // integer
" %3d " ; // integer with minimum of length 3 digits (right justifies text)
" %s " ; // string
" %f " ; // float
" %ld " ; // long
2014-07-17 19:37:52 +00:00
" %3.2f " ; // minimum 3 digits left and 2 digits right decimal float
2014-07-17 08:46:24 +00:00
" %7.4s " ; // (can do with strings too)
" %c " ; // char
2018-09-04 15:24:42 +00:00
" %p " ; // pointer. NOTE: need to (void *)-cast the pointer, before passing
// it as an argument to `printf`.
2014-07-17 08:46:24 +00:00
" %x " ; // hexadecimal
" %o " ; // octal
2014-07-17 19:37:52 +00:00
" %% " ; // prints %
2014-07-17 08:46:24 +00:00
*/
2016-03-03 06:11:52 +00:00
2013-09-01 18:17:26 +00:00
///////////////////////////////////////
// Order of Evaluation
///////////////////////////////////////
2021-01-31 12:56:45 +00:00
// From top to bottom, top has higher precedence
2013-09-01 18:17:26 +00:00
//---------------------------------------------------//
// Operators | Associativity //
//---------------------------------------------------//
// () [] -> . | left to right //
2021-01-31 12:56:45 +00:00
// ! ~ ++ -- + = *(type) sizeof | right to left //
2013-09-01 18:17:26 +00:00
// * / % | left to right //
// + - | left to right //
// << >> | left to right //
// < <= > >= | left to right //
// == != | left to right //
// & | left to right //
// ^ | left to right //
// | | left to right //
// && | left to right //
// || | left to right //
// ?: | right to left //
// = += -= *= /= %= &= ^= |= <<= >>= | right to left //
// , | left to right //
//---------------------------------------------------//
2015-10-15 01:59:42 +00:00
/******************************* Header Files **********************************
2015-10-13 15:05:20 +00:00
2016-10-30 23:35:31 +00:00
Header files are an important part of C as they allow for the connection of C
2016-02-18 20:02:55 +00:00
source files and can simplify code and definitions by separating them into
separate files .
2015-10-09 15:52:08 +00:00
2016-10-30 23:35:31 +00:00
Header files are syntactically similar to C source files but reside in " .h "
files . They can be included in your C source file by using the precompiler
2015-10-28 22:45:31 +00:00
command # include " example.h " , given that example . h exists in the same directory
2016-10-30 23:35:31 +00:00
as the C file .
2015-10-15 01:59:42 +00:00
*/
2015-10-09 15:52:08 +00:00
/* A safe guard to prevent the header from being defined too many times. This */
/* happens in the case of circle dependency, the contents of the header is */
/* already defined. */
# ifndef EXAMPLE_H /* if EXAMPLE_H is not yet defined. */
# define EXAMPLE_H /* Define the macro EXAMPLE_H. */
/* Other headers can be included in headers and therefore transitively */
/* included into files that include this header. */
# include <string.h>
2021-01-30 14:25:22 +00:00
/* Like for c source files, macros can be defined in headers */
/* and used in files that include this header file. */
2015-10-09 15:52:08 +00:00
# define EXAMPLE_NAME "Dennis Ritchie"
2017-09-13 05:42:18 +00:00
/* Function macros can also be defined. */
# define ADD(a, b) ((a) + (b))
/* Notice the parenthesis surrounding the arguments -- this is important to */
/* ensure that a and b don't get expanded in an unexpected way (e.g. consider */
/* MUL(x, y) (x * y); MUL(1 + 2, 3) would expand to (1 + 2 * 3), yielding an */
/* incorrect result) */
2015-10-09 15:52:08 +00:00
/* Structs and typedefs can be used for consistency between files. */
2017-09-13 05:32:41 +00:00
typedef struct Node
2015-10-09 15:52:08 +00:00
{
int val ;
2017-09-13 05:32:41 +00:00
struct Node * next ;
2015-10-09 15:52:08 +00:00
} Node ;
/* So can enumerations. */
enum traffic_light_state { GREEN , YELLOW , RED } ;
/* Function prototypes can also be defined here for use in multiple files, */
/* but it is bad practice to define the function in the header. Definitions */
2016-10-30 23:35:31 +00:00
/* should instead be put in a C file. */
2015-10-09 15:52:08 +00:00
Node createLinkedList ( int * vals , int len ) ;
2016-10-30 23:35:31 +00:00
/* Beyond the above elements, other definitions should be left to a C source */
2022-01-03 16:44:49 +00:00
/* file. Excessive includes or definitions should also not be contained in */
2016-10-30 23:35:31 +00:00
/* a header file but instead put into separate headers or a C file. */
2015-10-09 15:52:08 +00:00
# endif /* End of the if precompiler directive. */
` ` `
2022-10-10 16:57:35 +00:00
2013-06-28 08:31:09 +00:00
# # Further Reading
2024-04-08 14:08:01 +00:00
Best to find yourself a copy of [ K & R , aka " The C Programming Language " ] ( https : //en.wikipedia.org/wiki/The_C_Programming_Language). It is _the_ book about C, written by Dennis Ritchie, the creator of C, and Brian Kernighan. Be careful, though - it's ancient and it contains some
2013-08-15 10:30:22 +00:00
inaccuracies ( well , ideas that are not considered good anymore ) or now - changed practices .
2021-01-31 12:56:45 +00:00
Another good resource is [ Learn C The Hard Way ] ( http : //learncodethehardway.org/c/) (not free).
2013-08-15 10:30:22 +00:00
If you have a question , read the [ compl . lang . c Frequently Asked Questions ] ( http : //c-faq.com).
2013-06-28 08:31:09 +00:00
2013-08-15 10:30:22 +00:00
It ' s very important to use proper spacing , indentation and to be consistent with your coding style in general .
Readable code is better than clever code and fast code . For a good , sane coding style to adopt , see the
2017-02-12 18:33:22 +00:00
[ Linux kernel coding style ] ( https : //www.kernel.org/doc/Documentation/process/coding-style.rst).
2013-06-28 19:59:45 +00:00
2021-01-31 12:56:45 +00:00
[ 1 ] [ Why isn ' t sizeof for a struct equal to the sum of sizeof of each member ? ] ( https : //stackoverflow.com/questions/119123/why-isnt-sizeof-for-a-struct-equal-to-the-sum-of-sizeof-of-each-member)