mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-12-23 17:41:41 +00:00
Merge
This commit is contained in:
commit
06265eba7a
@ -53,10 +53,10 @@ else
|
||||
echo "And this is not"
|
||||
fi
|
||||
|
||||
# And the usual while loop:
|
||||
# while loop:
|
||||
while [true]
|
||||
do
|
||||
echo "put loop content here..."
|
||||
echo "loop body here..."
|
||||
break
|
||||
done
|
||||
|
||||
|
@ -39,7 +39,7 @@ Multi-line comments look like this. They work in C89 as well.
|
||||
|
||||
//print formatting:
|
||||
"%d" // integer
|
||||
"%3d" // minimum length of 3 digits for integer (right justifies text)
|
||||
"%3d" // integer with minimum of length 3 digits (right justifies text)
|
||||
"%s" // string
|
||||
"%f" // float
|
||||
"%ld" // long
|
||||
@ -51,7 +51,7 @@ Multi-line comments look like this. They work in C89 as well.
|
||||
"%o" // octal
|
||||
"%%" // prints %
|
||||
|
||||
// Constants: use #define keyword, no semicolon at end.
|
||||
// Constants: #define <keyword> (no semicolon at end)
|
||||
#define DAYS_IN_YEAR = 365
|
||||
|
||||
//enumeration constants are also ways to declare constants.
|
||||
@ -62,7 +62,6 @@ enum days {SUN = 1, MON, TUE, WED, THU, FRI, SAT};
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <ctype.h>
|
||||
|
||||
// (File names between <angle brackets> are headers from the C standard library.)
|
||||
// For your own headers, use double quotes instead of angle brackets:
|
||||
@ -111,7 +110,7 @@ int main() {
|
||||
unsigned int ux_int;
|
||||
unsigned long long ux_long_long;
|
||||
|
||||
// chars inside single quotes '*' are integers in your character set.
|
||||
// chars inside single quotes are integers in machine's character set.
|
||||
'0' //==> 48 on the ASCII character set.
|
||||
'A' //==> 65 on the ASCII character set.
|
||||
|
||||
@ -226,20 +225,14 @@ int main() {
|
||||
0 || 1; // => 1 (Logical or)
|
||||
0 || 0; // => 0
|
||||
|
||||
//Conditional expression ( ?: )
|
||||
//Conditional expression ( ? : )
|
||||
int a, b, z;
|
||||
z = (a > b) ? a : b; // z = max(a, b);
|
||||
z = (a > b) ? a : b; // "if a > b return a, else return b."
|
||||
|
||||
//Increment and decrement operators:
|
||||
int j = 0;
|
||||
char s[];
|
||||
int w = 0;
|
||||
j++; //difference between postfix and prefix explained below
|
||||
++j; // in string example.
|
||||
j--;
|
||||
--j;
|
||||
s[j++]; //returns value of j to s THEN increments value of j.
|
||||
s[++j]; //increments value of j THEN returns value of j to s.
|
||||
// same with j-- and --j
|
||||
|
||||
// Bitwise operators!
|
||||
~0x0F; // => 0xF0 (bitwise negation, "1's complement")
|
||||
@ -267,12 +260,6 @@ int main() {
|
||||
printf("I print\n");
|
||||
}
|
||||
|
||||
// Notes:
|
||||
// Loops MUST always have a body. If no body is needed, do this:
|
||||
for (i = 0; i <= 5; i++) {
|
||||
; // use semicolon to act as the body (null statement)
|
||||
}
|
||||
|
||||
// While loops exist
|
||||
int ii = 0;
|
||||
while (ii < 10) { //ANY value not zero is true.
|
||||
@ -297,6 +284,12 @@ int main() {
|
||||
|
||||
printf("\n");
|
||||
|
||||
// *****NOTES*****:
|
||||
// Loops MUST always have a body. If no body is needed, do:
|
||||
for (i = 0; i <= 5; i++) {
|
||||
; // use semicolon to act as the body (null statement)
|
||||
}
|
||||
|
||||
// branching with multiple choices: switch()
|
||||
switch (some_integral_expression) {
|
||||
case 0: // labels need to be integral *constant* epxressions
|
||||
@ -449,17 +442,19 @@ int add_two_ints(int x1, int x2)
|
||||
}
|
||||
|
||||
// Must declare a 'function prototype' before main() when creating functions
|
||||
// in file.
|
||||
void getInt(char c); // function prototype
|
||||
int main() {
|
||||
int main() { // main function
|
||||
return 0;
|
||||
}
|
||||
void getInt(char w) { //parameter name does not need to match function prototype
|
||||
;
|
||||
}
|
||||
//if function takes no parameters, do: int getInt(void); for function prototype
|
||||
// and for the function declaration: int getInt(void) {}
|
||||
// this is to keep compatibility with older versions of C.
|
||||
|
||||
//if function takes no parameters, do:
|
||||
int getInt(void); for function prototype
|
||||
// and for the function declaration:
|
||||
int getInt(void) {}
|
||||
// (this is to keep compatibility with older versions of C).
|
||||
|
||||
/*
|
||||
Functions are call by value. So when a function is called, the arguments passed
|
||||
@ -485,11 +480,13 @@ void str_reverse(char *str_in)
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////////////
|
||||
// Built in functions:
|
||||
/////////////////////////////////////
|
||||
// from stdio.h:
|
||||
int c = getchar(); //reads character from input. If input = hi, only h is read.
|
||||
// getchar() can be stored into int or char. I am using int because
|
||||
// char is not large enough to store EOF used below.
|
||||
// getchar()
|
||||
int c = getchar(); //reads character from input.
|
||||
// If input = hi, 'h' is returned then next call, 'i' returned.
|
||||
while ((c = getchar()) != EOF) { // EOF constant "end of file".
|
||||
// Linux: CTRL+D, Windows: CTRL+X
|
||||
// must have () around getchar() as != is run before =.
|
||||
|
641
c.html.markdown.orig
Normal file
641
c.html.markdown.orig
Normal file
@ -0,0 +1,641 @@
|
||||
---
|
||||
language: c
|
||||
filename: learnc.c
|
||||
contributors:
|
||||
- ["Adam Bard", "http://adambard.com/"]
|
||||
- ["Árpád Goretity", "http://twitter.com/H2CO3_iOS"]
|
||||
|
||||
---
|
||||
|
||||
Ah, C. Still **the** language of modern high-performance computing.
|
||||
|
||||
C is the lowest-level language most programmers will ever use, but
|
||||
it more than makes up for it with raw speed. Just be aware of its manual
|
||||
memory management and C will take you as far as you need to go.
|
||||
|
||||
```c
|
||||
// Single-line comments start with // - only available in C99 and later.
|
||||
|
||||
/*
|
||||
Multi-line comments look like this. They work in C89 as well.
|
||||
*/
|
||||
|
||||
//Special characters:
|
||||
'\a' // alert (bell) character
|
||||
'\n' // newline character
|
||||
'\t' // tab character (left justifies text)
|
||||
'\v' // vertical tab
|
||||
'\f' // new page (formfeed)
|
||||
'\r' // carriage return
|
||||
'\b' // backspace character
|
||||
'\0' // null character. Usually put at end of strings in C lang.
|
||||
// hello\n\0. \0 used by convention to mark end of string.
|
||||
'\\' // backspace
|
||||
'\?' // question mark
|
||||
'\'' // single quote
|
||||
'\"' // double quote
|
||||
'\xhh' // hexadecimal number. Example: '\xb' = vertical tab character
|
||||
'\ooo' // octal number. Example: '\013' = vertical tab character
|
||||
|
||||
//print formatting:
|
||||
"%d" // integer
|
||||
"%3d" // integer with minimum of length 3 digits (right justifies text)
|
||||
"%s" // string
|
||||
"%f" // float
|
||||
"%ld" // long
|
||||
"%3.2f" // minimum 3 digits left and 2 digits right decimal float
|
||||
"%7.4s" // (can do with strings too)
|
||||
"%c" // char
|
||||
"%p" // pointer
|
||||
"%x" // hexidecimal
|
||||
"%o" // octal
|
||||
"%%" // prints %
|
||||
|
||||
// Constants: #define <keyword> (no semicolon at end)
|
||||
#define DAYS_IN_YEAR = 365
|
||||
|
||||
//enumeration constants are also ways to declare constants.
|
||||
enum days {SUN = 1, MON, TUE, WED, THU, FRI, SAT};
|
||||
// MON gets 2 automatically, TUE gets 3, etc.
|
||||
|
||||
// Import headers with #include
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
// (File names between <angle brackets> are headers from the C standard library.)
|
||||
// For your own headers, use double quotes instead of angle brackets:
|
||||
#include "my_header.h"
|
||||
|
||||
// Declare function signatures in advance in a .h file, or at the top of
|
||||
// your .c file.
|
||||
void function_1();
|
||||
void function_2();
|
||||
|
||||
// Your program's entry point is a function called
|
||||
// main with an integer return type.
|
||||
int main() {
|
||||
// print output using printf, for "print formatted"
|
||||
// %d is an integer, \n is a newline
|
||||
printf("%d\n", 0); // => Prints 0
|
||||
// All statements must end with a semicolon
|
||||
|
||||
///////////////////////////////////////
|
||||
// Types
|
||||
///////////////////////////////////////
|
||||
|
||||
// ints are usually 4 bytes
|
||||
int x_int = 0;
|
||||
|
||||
// shorts are usually 2 bytes
|
||||
short x_short = 0;
|
||||
|
||||
// chars are guaranteed to be 1 byte
|
||||
char x_char = 0;
|
||||
char y_char = 'y'; // Char literals are quoted with ''
|
||||
|
||||
// longs are often 4 to 8 bytes; long longs are guaranteed to be at least
|
||||
// 64 bits
|
||||
long x_long = 0;
|
||||
long long x_long_long = 0;
|
||||
|
||||
// floats are usually 32-bit floating point numbers
|
||||
float x_float = 0.0;
|
||||
|
||||
// doubles are usually 64-bit floating-point numbers
|
||||
double x_double = 0.0;
|
||||
|
||||
// Integral types may be unsigned.
|
||||
unsigned short ux_short;
|
||||
unsigned int ux_int;
|
||||
unsigned long long ux_long_long;
|
||||
|
||||
// chars inside single quotes are integers in machine's character set.
|
||||
'0' //==> 48 on the ASCII character set.
|
||||
'A' //==> 65 on the ASCII character set.
|
||||
|
||||
// sizeof(T) gives you the size of a variable with type T in bytes
|
||||
// sizeof(obj) yields the size of the expression (variable, literal, etc.).
|
||||
printf("%zu\n", sizeof(int)); // => 4 (on most machines with 4-byte words)
|
||||
|
||||
|
||||
// If the argument of the `sizeof` operator an expression, then its argument
|
||||
// is not evaluated (except VLAs (see below)).
|
||||
// The value it yields in this case is a compile-time constant.
|
||||
int a = 1;
|
||||
size_t size = sizeof(a++); // a++ is not evaluated
|
||||
printf("sizeof(a++) = %zu where a = %d\n", size, a);
|
||||
// prints "sizeof(a++) = 4 where a = 1" (on a 32-bit architecture)
|
||||
|
||||
// Arrays must be initialized with a concrete size.
|
||||
char my_char_array[20]; // This array occupies 1 * 20 = 20 bytes
|
||||
int my_int_array[20]; // This array occupies 4 * 20 = 80 bytes
|
||||
// (assuming 4-byte words)
|
||||
|
||||
|
||||
// You can initialize an array to 0 thusly:
|
||||
char my_array[20] = {0};
|
||||
|
||||
// Indexing an array is like other languages -- or,
|
||||
// rather, other languages are like C
|
||||
my_array[0]; // => 0
|
||||
|
||||
// Arrays are mutable; it's just memory!
|
||||
my_array[1] = 2;
|
||||
printf("%d\n", my_array[1]); // => 2
|
||||
|
||||
// In C99 (and as an optional feature in C11), variable-length arrays (VLAs)
|
||||
// can be declared as well. The size of such an array need not be a compile
|
||||
// time constant:
|
||||
printf("Enter the array size: "); // ask the user for an array size
|
||||
char buf[0x100];
|
||||
fgets(buf, sizeof buf, stdin);
|
||||
|
||||
// strtoul parses a string to an unsigned integer
|
||||
size_t size = strtoul(buf, NULL, 10);
|
||||
int var_length_array[size]; // declare the VLA
|
||||
printf("sizeof array = %zu\n", sizeof var_length_array);
|
||||
|
||||
// A possible outcome of this program may be:
|
||||
// > Enter the array size: 10
|
||||
// > sizeof array = 40
|
||||
|
||||
// Strings are just arrays of chars terminated by a NUL (0x00) byte,
|
||||
// represented in strings as the special character '\0'.
|
||||
// (We don't have to include the NUL byte in string literals; the compiler
|
||||
// inserts it at the end of the array for us.)
|
||||
char a_string[20] = "This is a string";
|
||||
printf("%s\n", a_string); // %s formats a string
|
||||
|
||||
printf("%d\n", a_string[16]); // => 0
|
||||
// i.e., byte #17 is 0 (as are 18, 19, and 20)
|
||||
|
||||
// If we have characters between single quotes, that's a character literal.
|
||||
// It's of type `int`, and *not* `char` (for historical reasons).
|
||||
int cha = 'a'; // fine
|
||||
char chb = 'a'; // fine too (implicit conversion from int to char)
|
||||
|
||||
///////////////////////////////////////
|
||||
// Operators
|
||||
///////////////////////////////////////
|
||||
|
||||
int i1 = 1, i2 = 2; // Shorthand for multiple declaration
|
||||
float f1 = 1.0, f2 = 2.0;
|
||||
|
||||
//more shorthands:
|
||||
int a, b, c;
|
||||
a = b = c = 0;
|
||||
|
||||
// Arithmetic is straightforward
|
||||
i1 + i2; // => 3
|
||||
i2 - i1; // => 1
|
||||
i2 * i1; // => 2
|
||||
i1 / i2; // => 0 (0.5, but truncated towards 0)
|
||||
|
||||
f1 / f2; // => 0.5, plus or minus epsilon
|
||||
// Floating-point numbers and calculations are not exact
|
||||
|
||||
// Modulo is there as well
|
||||
11 % 3; // => 2
|
||||
|
||||
// Comparison operators are probably familiar, but
|
||||
// there is no boolean type in c. We use ints instead.
|
||||
// (Or _Bool or bool in C99.)
|
||||
// 0 is false, anything else is true. (The comparison
|
||||
// operators always yield 0 or 1.)
|
||||
3 == 2; // => 0 (false)
|
||||
3 != 2; // => 1 (true)
|
||||
3 > 2; // => 1
|
||||
3 < 2; // => 0
|
||||
2 <= 2; // => 1
|
||||
2 >= 2; // => 1
|
||||
|
||||
// C is not Python - comparisons don't chain.
|
||||
int a = 1;
|
||||
// WRONG:
|
||||
int between_0_and_2 = 0 < a < 2;
|
||||
// Correct:
|
||||
int between_0_and_2 = 0 < a && a < 2;
|
||||
|
||||
// Logic works on ints
|
||||
!3; // => 0 (Logical not)
|
||||
!0; // => 1
|
||||
1 && 1; // => 1 (Logical and)
|
||||
0 && 1; // => 0
|
||||
0 || 1; // => 1 (Logical or)
|
||||
0 || 0; // => 0
|
||||
|
||||
//Conditional expression ( ? : )
|
||||
int a, b, z;
|
||||
z = (a > b) ? a : b; // "if a > b return a, else return b."
|
||||
|
||||
//Increment and decrement operators:
|
||||
s[j++]; //returns value of j to s THEN increments value of j.
|
||||
s[++j]; //increments value of j THEN returns value of j to s.
|
||||
// same with j-- and --j
|
||||
|
||||
// Bitwise operators!
|
||||
~0x0F; // => 0xF0 (bitwise negation, "1's complement")
|
||||
0x0F & 0xF0; // => 0x00 (bitwise AND)
|
||||
0x0F | 0xF0; // => 0xFF (bitwise OR)
|
||||
0x04 ^ 0x0F; // => 0x0B (bitwise XOR)
|
||||
0x01 << 1; // => 0x02 (bitwise left shift (by 1))
|
||||
0x02 >> 1; // => 0x01 (bitwise right shift (by 1))
|
||||
|
||||
// Be careful when shifting signed integers - the following are undefined:
|
||||
// - shifting into the sign bit of a signed integer (int a = 1 << 32)
|
||||
// - left-shifting a negative number (int a = -1 << 2)
|
||||
// - shifting by an offset which is >= the width of the type of the LHS:
|
||||
// int a = 1 << 32; // UB if int is 32 bits wide
|
||||
|
||||
///////////////////////////////////////
|
||||
// Control Structures
|
||||
///////////////////////////////////////
|
||||
|
||||
if (0) {
|
||||
printf("I am never run\n");
|
||||
} else if (0) {
|
||||
printf("I am also never run\n");
|
||||
} else {
|
||||
printf("I print\n");
|
||||
}
|
||||
|
||||
// While loops exist
|
||||
int ii = 0;
|
||||
while (ii < 10) { //ANY value not zero is true.
|
||||
printf("%d, ", ii++); // ii++ increments ii AFTER using it's current value.
|
||||
} // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
|
||||
|
||||
printf("\n");
|
||||
|
||||
int kk = 0;
|
||||
do {
|
||||
printf("%d, ", kk);
|
||||
} while (++kk < 10); // ++kk increments kk BEFORE using it's current value.
|
||||
// => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
|
||||
|
||||
printf("\n");
|
||||
|
||||
// For loops too
|
||||
int jj;
|
||||
for (jj=0; jj < 10; jj++) {
|
||||
printf("%d, ", jj);
|
||||
} // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
|
||||
|
||||
printf("\n");
|
||||
|
||||
// *****NOTES*****:
|
||||
// Loops MUST always have a body. If no body is needed, do:
|
||||
for (i = 0; i <= 5; i++) {
|
||||
; // use semicolon to act as the body (null statement)
|
||||
}
|
||||
|
||||
// branching with multiple choices: switch()
|
||||
switch (some_integral_expression) {
|
||||
case 0: // labels need to be integral *constant* epxressions
|
||||
do_stuff();
|
||||
break; // if you don't break, control flow falls over labels
|
||||
case 1:
|
||||
do_something_else();
|
||||
break;
|
||||
default:
|
||||
// if `some_integral_expression` didn't match any of the labels
|
||||
fputs("error!\n", stderr);
|
||||
exit(-1);
|
||||
break;
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////////////
|
||||
// Typecasting
|
||||
///////////////////////////////////////
|
||||
|
||||
// Every value in C has a type, but you can cast one value into another type
|
||||
// if you want (with some constraints).
|
||||
|
||||
int x_hex = 0x01; // You can assign vars with hex literals
|
||||
|
||||
// Casting between types will attempt to preserve their numeric values
|
||||
printf("%d\n", x_hex); // => Prints 1
|
||||
printf("%d\n", (short) x_hex); // => Prints 1
|
||||
printf("%d\n", (char) x_hex); // => Prints 1
|
||||
|
||||
// Types will overflow without warning
|
||||
printf("%d\n", (unsigned char) 257); // => 1 (Max char = 255 if char is 8 bits long)
|
||||
|
||||
// For determining the max value of a `char`, a `signed char` and an `unisigned char`,
|
||||
// respectively, use the CHAR_MAX, SCHAR_MAX and UCHAR_MAX macros from <limits.h>
|
||||
|
||||
// Integral types can be cast to floating-point types, and vice-versa.
|
||||
printf("%f\n", (float)100); // %f formats a float
|
||||
printf("%lf\n", (double)100); // %lf formats a double
|
||||
printf("%d\n", (char)100.0);
|
||||
|
||||
///////////////////////////////////////
|
||||
// Pointers
|
||||
///////////////////////////////////////
|
||||
|
||||
// A pointer is a variable declared to store a memory address. Its declaration will
|
||||
// also tell you the type of data it points to. You can retrieve the memory address
|
||||
// of your variables, then mess with them.
|
||||
|
||||
int x = 0;
|
||||
printf("%p\n", (void *)&x); // Use & to retrieve the address of a variable
|
||||
// (%p formats an object pointer of type void *)
|
||||
// => Prints some address in memory;
|
||||
|
||||
|
||||
// Pointers start with * in their declaration
|
||||
int *px, not_a_pointer; // px is a pointer to an int
|
||||
px = &x; // Stores the address of x in px
|
||||
printf("%p\n", (void *)px); // => Prints some address in memory
|
||||
printf("%zu, %zu\n", sizeof(px), sizeof(not_a_pointer));
|
||||
// => Prints "8, 4" on a typical 64-bit system
|
||||
|
||||
// To retreive the value at the address a pointer is pointing to,
|
||||
// put * in front to de-reference it.
|
||||
// Note: yes, it may be confusing that '*' is used for _both_ declaring a
|
||||
// pointer and dereferencing it.
|
||||
printf("%d\n", *px); // => Prints 0, the value of x
|
||||
|
||||
// You can also change the value the pointer is pointing to.
|
||||
// We'll have to wrap the de-reference in parenthesis because
|
||||
// ++ has a higher precedence than *.
|
||||
(*px)++; // Increment the value px is pointing to by 1
|
||||
printf("%d\n", *px); // => Prints 1
|
||||
printf("%d\n", x); // => Prints 1
|
||||
|
||||
// Arrays are a good way to allocate a contiguous block of memory
|
||||
int x_array[20]; //declares array of size 20 (cannot change size)
|
||||
int xx;
|
||||
for (xx = 0; xx < 20; xx++) {
|
||||
x_array[xx] = 20 - xx;
|
||||
} // Initialize x_array to 20, 19, 18,... 2, 1
|
||||
|
||||
// Declare a pointer of type int and initialize it to point to x_array
|
||||
int* x_ptr = x_array;
|
||||
// x_ptr now points to the first element in the array (the integer 20).
|
||||
// This works because arrays often decay into pointers to their first element.
|
||||
// For example, when an array is passed to a function or is assigned to a pointer,
|
||||
// it decays into (implicitly converted to) a pointer.
|
||||
// Exceptions: when the array is the argument of the `&` (address-od) operator:
|
||||
int arr[10];
|
||||
int (*ptr_to_arr)[10] = &arr; // &arr is NOT of type `int *`!
|
||||
// It's of type "pointer to array" (of ten `int`s).
|
||||
// or when the array is a string literal used for initializing a char array:
|
||||
char arr[] = "foobarbazquirk";
|
||||
// or when it's the argument of the `sizeof` or `alignof` operator:
|
||||
int arr[10];
|
||||
int *ptr = arr; // equivalent with int *ptr = &arr[0];
|
||||
printf("%zu %zu\n", sizeof arr, sizeof ptr); // probably prints "40, 4" or "40, 8"
|
||||
|
||||
|
||||
// Pointers are incremented and decremented based on their type
|
||||
// (this is called pointer arithmetic)
|
||||
printf("%d\n", *(x_ptr + 1)); // => Prints 19
|
||||
printf("%d\n", x_array[1]); // => Prints 19
|
||||
|
||||
// You can also dynamically allocate contiguous blocks of memory with the
|
||||
// standard library function malloc, which takes one argument of type size_t
|
||||
// representing the number of bytes to allocate (usually from the heap, although this
|
||||
// may not be true on e. g. embedded systems - the C standard says nothing about it).
|
||||
int *my_ptr = malloc(sizeof(*my_ptr) * 20);
|
||||
for (xx = 0; xx < 20; xx++) {
|
||||
*(my_ptr + xx) = 20 - xx; // my_ptr[xx] = 20-xx
|
||||
} // Initialize memory to 20, 19, 18, 17... 2, 1 (as ints)
|
||||
|
||||
// Dereferencing memory that you haven't allocated gives
|
||||
// "unpredictable results" - the program is said to invoke "undefined behavior"
|
||||
printf("%d\n", *(my_ptr + 21)); // => Prints who-knows-what? It may even crash.
|
||||
|
||||
// When you're done with a malloc'd block of memory, you need to free it,
|
||||
// or else no one else can use it until your program terminates
|
||||
// (this is called a "memory leak"):
|
||||
free(my_ptr);
|
||||
|
||||
// Strings are arrays of char, but they are usually represented as a
|
||||
// pointer-to-char (which is a pointer to the first element of the array).
|
||||
// It's good practice to use `const char *' when referring to a string literal,
|
||||
// since string literals shall not be modified (i. e. "foo"[0] = 'a' is ILLEGAL.)
|
||||
const char *my_str = "This is my very own string literal";
|
||||
printf("%c\n", *my_str); // => 'T'
|
||||
|
||||
// This is not the case if the string is an array
|
||||
// (potentially initialized with a string literal)
|
||||
// that resides in writable memory, as in:
|
||||
char foo[] = "foo";
|
||||
foo[0] = 'a'; // this is legal, foo now contains "aoo"
|
||||
|
||||
function_1();
|
||||
} // end main function
|
||||
|
||||
///////////////////////////////////////
|
||||
// Functions
|
||||
///////////////////////////////////////
|
||||
|
||||
// Function declaration syntax:
|
||||
// <return type> <function name>(<args>)
|
||||
|
||||
int add_two_ints(int x1, int x2)
|
||||
{
|
||||
return x1 + x2; // Use return to return a value
|
||||
}
|
||||
|
||||
<<<<<<< HEAD
|
||||
// Must declare a 'function prototype' before main() when creating functions
|
||||
// in file.
|
||||
=======
|
||||
// Must declare a 'funtion prototype' when creating functions before main()
|
||||
>>>>>>> f28d33fb187bc834e6e2956117039f9abe3b6d9b
|
||||
void getInt(char c); // function prototype
|
||||
int main() { // main function
|
||||
return 0;
|
||||
}
|
||||
void getInt(char w) { //parameter name does not need to match function prototype
|
||||
;
|
||||
}
|
||||
|
||||
//if function takes no parameters, do:
|
||||
int getInt(void); for function prototype
|
||||
// and for the function declaration:
|
||||
int getInt(void) {}
|
||||
// (this is to keep compatibility with older versions of C).
|
||||
|
||||
/*
|
||||
Functions are call by value. So when a function is called, the arguments passed
|
||||
to the function are copies of original arguments (except arrays). Anything you
|
||||
do to your arguments do not change the value of the actual argument where the
|
||||
function was called.
|
||||
|
||||
You can use pointers if you need to edit the original argument values.
|
||||
|
||||
Example: in-place string reversal
|
||||
*/
|
||||
|
||||
// A void function returns no value
|
||||
void str_reverse(char *str_in)
|
||||
{
|
||||
char tmp;
|
||||
int ii = 0;
|
||||
size_t len = strlen(str_in); // `strlen()` is part of the c standard library
|
||||
for (ii = 0; ii < len / 2; ii++) {
|
||||
tmp = str_in[ii];
|
||||
str_in[ii] = str_in[len - ii - 1]; // ii-th char from end
|
||||
str_in[len - ii - 1] = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////////////
|
||||
// Built in functions:
|
||||
/////////////////////////////////////
|
||||
// from stdio.h:
|
||||
// getchar()
|
||||
int c = getchar(); //reads character from input.
|
||||
// If input = hi, 'h' is returned then next call, 'i' returned.
|
||||
while ((c = getchar()) != EOF) { // EOF constant "end of file".
|
||||
// Linux: CTRL+D, Windows: CTRL+X
|
||||
// must have () around getchar() as != is run before =.
|
||||
putchar(c); //prints character (without newline at end)
|
||||
char c = getchar();
|
||||
}
|
||||
|
||||
//if referring to external variables outside function, must use extern keyword.
|
||||
int i = 0;
|
||||
void testFunc() {
|
||||
extern int i; //i here is now using external variable i
|
||||
}
|
||||
|
||||
/*
|
||||
char c[] = "This is a test.";
|
||||
str_reverse(c);
|
||||
printf("%s\n", c); // => ".tset a si sihT"
|
||||
*/
|
||||
|
||||
///////////////////////////////////////
|
||||
// User-defined types and structs
|
||||
///////////////////////////////////////
|
||||
|
||||
// Typedefs can be used to create type aliases
|
||||
typedef int my_type;
|
||||
my_type my_type_var = 0;
|
||||
|
||||
// Structs are just collections of data, the members are allocated sequentially,
|
||||
// in the order they are written:
|
||||
struct rectangle {
|
||||
int width;
|
||||
int height;
|
||||
};
|
||||
|
||||
// It's not generally true that
|
||||
// sizeof(struct rectangle) == sizeof(int) + sizeof(int)
|
||||
// due to potential padding between the structure members (this is for alignment
|
||||
// reasons). [1]
|
||||
|
||||
void function_1()
|
||||
{
|
||||
struct rectangle my_rec;
|
||||
|
||||
// Access struct members with .
|
||||
my_rec.width = 10;
|
||||
my_rec.height = 20;
|
||||
|
||||
// You can declare pointers to structs
|
||||
struct rectangle *my_rec_ptr = &my_rec;
|
||||
|
||||
// Use dereferencing to set struct pointer members...
|
||||
(*my_rec_ptr).width = 30;
|
||||
|
||||
// ... or even better: prefer the -> shorthand for the sake of readability
|
||||
my_rec_ptr->height = 10; // Same as (*my_rec_ptr).height = 10;
|
||||
}
|
||||
|
||||
// You can apply a typedef to a struct for convenience
|
||||
typedef struct rectangle rect;
|
||||
|
||||
int area(rect r)
|
||||
{
|
||||
return r.width * r.height;
|
||||
}
|
||||
|
||||
// if you have large structs, you can pass them "by pointer" to avoid copying
|
||||
// the whole struct:
|
||||
int area(const rect *r)
|
||||
{
|
||||
return r->width * r->height;
|
||||
}
|
||||
|
||||
///////////////////////////////////////
|
||||
// Function pointers
|
||||
///////////////////////////////////////
|
||||
/*
|
||||
At runtime, functions are located at known memory addresses. Function pointers are
|
||||
much like any other pointer (they just store a memory address), but can be used
|
||||
to invoke functions directly, and to pass handlers (or callback functions) around.
|
||||
However, definition syntax may be initially confusing.
|
||||
|
||||
Example: use str_reverse from a pointer
|
||||
*/
|
||||
void str_reverse_through_pointer(char *str_in) {
|
||||
// Define a function pointer variable, named f.
|
||||
void (*f)(char *); // Signature should exactly match the target function.
|
||||
f = &str_reverse; // Assign the address for the actual function (determined at runtime)
|
||||
// f = str_reverse; would work as well - functions decay into pointers, similar to arrays
|
||||
(*f)(str_in); // Just calling the function through the pointer
|
||||
// f(str_in); // That's an alternative but equally valid syntax for calling it.
|
||||
}
|
||||
|
||||
/*
|
||||
As long as function signatures match, you can assign any function to the same pointer.
|
||||
Function pointers are usually typedef'd for simplicity and readability, as follows:
|
||||
*/
|
||||
|
||||
typedef void (*my_fnp_type)(char *);
|
||||
|
||||
// Then used when declaring the actual pointer variable:
|
||||
// ...
|
||||
// my_fnp_type f;
|
||||
|
||||
|
||||
///////////////////////////////////////
|
||||
// Order of Evaluation
|
||||
///////////////////////////////////////
|
||||
|
||||
//---------------------------------------------------//
|
||||
// Operators | Associativity //
|
||||
//---------------------------------------------------//
|
||||
// () [] -> . | left to right //
|
||||
// ! ~ ++ -- + = *(type)sizeof | right to left //
|
||||
// * / % | left to right //
|
||||
// + - | left to right //
|
||||
// << >> | left to right //
|
||||
// < <= > >= | left to right //
|
||||
// == != | left to right //
|
||||
// & | left to right //
|
||||
// ^ | left to right //
|
||||
// | | left to right //
|
||||
// && | left to right //
|
||||
// || | left to right //
|
||||
// ?: | right to left //
|
||||
// = += -= *= /= %= &= ^= |= <<= >>= | right to left //
|
||||
// , | left to right //
|
||||
//---------------------------------------------------//
|
||||
|
||||
```
|
||||
|
||||
## Further Reading
|
||||
|
||||
Best to find yourself a copy of [K&R, aka "The C Programming Language"](https://en.wikipedia.org/wiki/The_C_Programming_Language)
|
||||
It is *the* book about C, written by the creators of C. Be careful, though - it's ancient and it contains some
|
||||
inaccuracies (well, ideas that are not considered good anymore) or now-changed practices.
|
||||
|
||||
Another good resource is [Learn C the hard way](http://c.learncodethehardway.org/book/).
|
||||
|
||||
If you have a question, read the [compl.lang.c Frequently Asked Questions](http://c-faq.com).
|
||||
|
||||
It's very important to use proper spacing, indentation and to be consistent with your coding style in general.
|
||||
Readable code is better than clever code and fast code. For a good, sane coding style to adopt, see the
|
||||
[Linux kernel coding stlye](https://www.kernel.org/doc/Documentation/CodingStyle).
|
||||
|
||||
Other than that, Google is your friend.
|
||||
|
||||
[1] http://stackoverflow.com/questions/119123/why-isnt-sizeof-for-a-struct-equal-to-the-sum-of-sizeof-of-each-member
|
Loading…
Reference in New Issue
Block a user