mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-12-23 09:41:36 +00:00
added syntax highlighting, shortened lines
This commit is contained in:
parent
a9081a27cb
commit
921aa02cc5
@ -6,160 +6,233 @@ contributors:
|
||||
---
|
||||
|
||||
# Cairo
|
||||
Cairo is StarkNet's native language and the first Turing-complete language for scripting provable programs (where one party can prove to another that a certain computation was executed correctly) for general computations.
|
||||
|
||||
Cairo is a Turing-complete language that allows you write provable programs
|
||||
(where one party can prove to another that a certain computation
|
||||
was executed correctly) on StarkNet.
|
||||
|
||||
# StarkNet
|
||||
StarkNet is a decentralized ZK-rollup that operates as an Ethereum layer 2 chain. StarkNet enables Decentralized applications to achieve unlimited scale for their computation - without compromising Ethereum's decentralization and security, thereby solving the Scalability Trilemma.
|
||||
|
||||
In this document, we are going to be going in-depth into understanding Cairo's syntax and how you could create and deploy a Cairo smart contract on StarkNet.
|
||||
StarkNet is a decentralized ZK-rollup that operates as an Ethereum layer 2
|
||||
chain.
|
||||
|
||||
**NB: As at the time of this writing, StarkNet is still at v0.10.3, with Cairo 1.0 coming soon. The ecosystem is young and evolving very fast, so you might want to check the [official docs](https://www.cairo-lang.org/docs) to confirm this document is still up-to-date. Pull requests are welcome!**
|
||||
In this document, we are going to be going in-depth into understanding Cairo's
|
||||
syntax and how you could create and deploy a Cairo smart contract on StarkNet.
|
||||
|
||||
**NB: As at the time of this writing, StarkNet is still at v0.10.3, with Cairo
|
||||
1.0 coming soon. The ecosystem is young and evolving very fast, so you might
|
||||
want to check the [official docs](https://www.cairo-lang.org/docs) to confirm
|
||||
this document is still up-to-date. Pull requests are welcome!**
|
||||
|
||||
# Setting Up A Development Environment
|
||||
Before we get started writing codes, we will need to setup a Cairo development environment, for writing, compiling and deploying our contracts to StarkNet.
|
||||
For the purpose of this tutorial we are going to be using the [Protostar Framework](https://github.com/software-mansion/protostar). Installation steps can be found in the docs [here](https://docs.swmansion.com/protostar/docs/tutorials/installation).
|
||||
Note that Protostar supports just Mac and Linux OS, Windows users might need to use WSL, or go for other alternatives such as the Official [StarkNet CLI](https://www.cairo-lang.org/docs/quickstart.html) or [Nile from Openzeppelin](https://github.com/OpenZeppelin/nile)
|
||||
|
||||
Once you're done with the installations, run the command `protostar -v` to confirm your installation was successful. If successful, you should see your Protostar version displayed on the screen.
|
||||
Before we get started writing codes, we will need to setup a Cairo development
|
||||
environment, for writing, compiling and deploying our contracts to StarkNet.
|
||||
For the purpose of this tutorial we are going to be using the
|
||||
[Protostar Framework](https://github.com/software-mansion/protostar).
|
||||
Installation steps can be found in the docs
|
||||
[here](https://docs.swmansion.com/protostar/docs/tutorials/installation).
|
||||
Note that Protostar supports just Mac and Linux OS, Windows users might need to
|
||||
use WSL, or go for other alternatives such as the Official
|
||||
[StarkNet CLI](https://www.cairo-lang.org/docs/quickstart.html) or
|
||||
[Nile from Openzeppelin](https://github.com/OpenZeppelin/nile)
|
||||
|
||||
Once you're done with the installations, run the command `protostar -v` to
|
||||
confirm your installation was successful. If successful, you should see your
|
||||
Protostar version displayed on the screen.
|
||||
|
||||
## Initializing a new project
|
||||
Protostar similar to Truffle for solidity development can be installed once and used for multiple projects.
|
||||
|
||||
Protostar similar to Truffle for solidity development can be installed once and
|
||||
used for multiple projects.
|
||||
To initialize a new Protostar project, run the following command:
|
||||
|
||||
```
|
||||
protostar init
|
||||
```
|
||||
|
||||
2. It would then request the project's name and the library's directory name, you'd need to fill in this, and a new project will be initialized successfully.
|
||||
2. It would then request the project's name and the library's directory name,
|
||||
you'd need to fill in this, and a new project will be initialized
|
||||
successfully.
|
||||
|
||||
# Compiling, Declaring, Deploying And Interacting With StarkNet Contracts
|
||||
For the purpose of this tutorial, head over to this [github repo](https://github.com/Darlington02/CairoLearnXinYminutes) and clone locally.
|
||||
|
||||
Within the `src` folder you'll find a boilerplate contract that comes with initializing a new Protostar project, `main.cairo`. We are going to be compiling, declaring and deploying this contract.
|
||||
Within the `src` folder you'll find a boilerplate contract that comes with
|
||||
initializing a new Protostar project, `main.cairo`. We are going to be
|
||||
compiling, declaring and deploying this contract.
|
||||
|
||||
## Compiling Contracts
|
||||
To compile a Cairo contract using Protostar, ensure a path to the contract is specified in the `[contracts]` section of the `protostar.toml` file. Once you've done that, open your terminal and run the command:
|
||||
|
||||
To compile a Cairo contract using Protostar, ensure a path to the contract is
|
||||
specified in the `[contracts]` section of the `protostar.toml` file. Once
|
||||
you've done that, open your terminal and run the command:
|
||||
|
||||
```
|
||||
protostar build
|
||||
```
|
||||
And you should get an output similar to what you see below, with a `main.json` and `main_abi.json` files created in the `build` folder.
|
||||
|
||||
And you should get an output similar to what you see below, with a `main.json`
|
||||
and `main_abi.json` files created in the `build` folder.
|
||||
<img src="./cairo_assets/build.png" alt="building your contract">
|
||||
|
||||
## Declaring Contracts
|
||||
With the recent StarkNet update to 0.10.3, the DEPLOY transaction was deprecated and no longer works. To deploy a transaction, you must first declare a Contract to obtain the class hash, then deploy the declared contract using the [Universal Deployer Contract](https://community.starknet.io/t/universal-deployer-contract-proposal/1864).
|
||||
|
||||
Before declaring or deploying your contract using Protostar, you should set the private key associated with the specified account address in a file, or in the terminal. To set your private key in the terminal, run the command:
|
||||
With the recent StarkNet update to 0.10.3, the DEPLOY transaction was
|
||||
deprecated and no longer works. To deploy a transaction, you must first declare
|
||||
a Contract to obtain the class hash, then deploy the declared contract using
|
||||
the
|
||||
[Universal Deployer Contract](https://community.starknet.io/t/universal-deployer-contract-proposal/1864).
|
||||
|
||||
Before declaring or deploying your contract using Protostar, you should set the
|
||||
private key associated with the specified account address in a file, or in the
|
||||
terminal. To set your private key in the terminal, run the command:
|
||||
|
||||
```
|
||||
export PROTOSTAR_ACCOUNT_PRIVATE_KEY=[YOUR PRIVATE KEY HERE]
|
||||
```
|
||||
|
||||
Then to declare our contract using Protostar run the following command:
|
||||
|
||||
```
|
||||
protostar declare ./build/main.json --network testnet --account 0x0691622bBFD29e835bA4004e7425A4e9630840EbD11c5269DE51C16774585b16 --max-fee auto
|
||||
protostar declare ./build/main.json --network testnet --account
|
||||
0x0691622bBFD29e835bA4004e7425A4e9630840EbD11c5269DE51C16774585b16 --max-fee
|
||||
auto
|
||||
```
|
||||
|
||||
where `network` specifies the network we are deploying to, `account` specifies account whose private key we are using, `max-fee` specifies the maximum fee to be paid for the transaction. You should get the class hash outputted as seen below:
|
||||
where `network` specifies the network we are deploying to, `account` specifies
|
||||
account whose private key we are using, `max-fee` specifies the maximum fee to
|
||||
be paid for the transaction. You should get the class hash outputted as seen
|
||||
below:
|
||||
<img src="./cairo_assets/declare.png" alt="declaring your contract">
|
||||
|
||||
## Deploying Contracts
|
||||
After obtaining our class hash from declaring, we can now deploy using the below command:
|
||||
|
||||
After obtaining our class hash from declaring, we can now deploy using the
|
||||
below command:
|
||||
|
||||
```
|
||||
protostar deploy 0x02a5de1b145e18dfeb31c7cd7ff403714ededf5f3fdf75f8b0ac96f2017541bc --network testnet --account 0x0691622bBFD29e835bA4004e7425A4e9630840EbD11c5269DE51C16774585b16 --max-fee auto
|
||||
protostar deploy
|
||||
0x02a5de1b145e18dfeb31c7cd7ff403714ededf5f3fdf75f8b0ac96f2017541bc --network
|
||||
testnet --account
|
||||
0x0691622bBFD29e835bA4004e7425A4e9630840EbD11c5269DE51C16774585b16 --max-fee
|
||||
auto
|
||||
```
|
||||
|
||||
where `0x02a5de1b145e18dfeb31c7cd7ff403714ededf5f3fdf75f8b0ac96f2017541bc` is the class hash of our contract.
|
||||
where `0x02a5de1b145e18dfeb31c7cd7ff403714ededf5f3fdf75f8b0ac96f2017541bc` is
|
||||
the class hash of our contract.
|
||||
<img src="./cairo_assets/deploy.png" alt="deploying your contract">
|
||||
|
||||
## Interacting With Contracts
|
||||
To interact with your deployed contract, we will be using Argent X (alternative - Braavos), and Starkscan (alternative - Voyager). To install and setup Argent X, check out this [guide](https://www.argent.xyz/learn/how-to-create-an-argent-x-wallet/).
|
||||
|
||||
Copy your contract address, displayed on screen from the previous step, and head over to [Starkscan](https://testnet.starkscan.co/) to search for the contract. Once found, you can make write calls to the contract by following the steps below:
|
||||
To interact with your deployed contract, we will be using Argent X
|
||||
(alternative - Braavos), and Starkscan (alternative - Voyager). To install and
|
||||
setup Argent X, check out this
|
||||
[guide](https://www.argent.xyz/learn/how-to-create-an-argent-x-wallet/).
|
||||
|
||||
Copy your contract address, displayed on screen from the previous step, and
|
||||
head over to [Starkscan](https://testnet.starkscan.co/) to search for the
|
||||
contract. Once found, you can make write calls to the contract by following the
|
||||
steps below:
|
||||
|
||||
1. Click on the "connect wallet" button
|
||||
<img src="./cairo_assets/connect.png" alt="connect wallet">
|
||||
<img src="./cairo_assets/connect.png" alt="connect wallet">
|
||||
2. Select Argent X and approve the connection
|
||||
<img src="./cairo_assets/connect2.png" alt="connect to argentX">
|
||||
<img src="./cairo_assets/connect2.png" alt="connect to argentX">
|
||||
3. You can now make read and write calls easily.
|
||||
|
||||
# Let's learn Cairo
|
||||
|
||||
First let's look at a default contract that comes with Protostar
|
||||
|
||||
```cairo
|
||||
// Allows you to set balance on deployment, increase, and get the balance.
|
||||
|
||||
// Language directive - instructs compiler its a StarkNet contract
|
||||
%lang starknet
|
||||
|
||||
// Library imports from the Cairo-lang library
|
||||
from starkware.cairo.common.math import assert_nn
|
||||
from starkware.cairo.common.cairo_builtins import HashBuiltin
|
||||
|
||||
// @dev Storage variable that stores the balance of a user.
|
||||
// @storage_var is a decorator that instructs the compiler the function
|
||||
// below it is a storage variable.
|
||||
@storage_var
|
||||
func balance() -> (res: felt) {
|
||||
}
|
||||
|
||||
// @dev Constructor writes the balance variable to 0 on deployment
|
||||
// Constructors sets storage variables on deployment. Can accept arguments too.
|
||||
@constructor
|
||||
func constructor{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
|
||||
range_check_ptr}() {balance.write(0); return ();
|
||||
}
|
||||
|
||||
// @dev increase_balance updates the balance variable
|
||||
// @param amount the amount you want to add to balance
|
||||
// @external is a decorator that specifies the func below it is an external
|
||||
// function.
|
||||
@external
|
||||
func increase_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
|
||||
range_check_ptr}(amount: felt){
|
||||
with_attr error_message("Amount must be positive. Got: {amount}.") {
|
||||
assert_nn(amount);
|
||||
}
|
||||
|
||||
let (res) = balance.read();
|
||||
balance.write(res + amount);
|
||||
return ();
|
||||
}
|
||||
|
||||
// @dev returns the balance variable
|
||||
// @view is a decorator that specifies the func below it is a view function.
|
||||
@view
|
||||
func get_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
|
||||
range_check_ptr}() -> (res: felt) {
|
||||
let (res) = balance.read();
|
||||
return (res,);
|
||||
}
|
||||
|
||||
// before proceeding, try to build, deploy and interact with this contract!
|
||||
// NB: Should be at main.cairo if you are using Protostar.
|
||||
```
|
||||
// Allows you to set balanace on deployment, increase, and get the balance.
|
||||
|
||||
// Language directive - instructs compiler its a StarkNet contract
|
||||
%lang starknet
|
||||
|
||||
// Library imports from the Cairo-lang library
|
||||
from starkware.cairo.common.math import assert_nn
|
||||
from starkware.cairo.common.cairo_builtins import HashBuiltin
|
||||
|
||||
// @dev Storage variable that stores the balance of a user.
|
||||
// @storage_var is a decorator that instructs the compiler the function below it is a storage variable.
|
||||
@storage_var
|
||||
func balance() -> (res: felt) {
|
||||
}
|
||||
|
||||
// @dev Constructor writes the balance variable to 0 on deployment
|
||||
// Constructors sets storage variables on deployment. Can accept arguments too.
|
||||
@constructor
|
||||
func constructor{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}() {
|
||||
balance.write(0);
|
||||
return ();
|
||||
}
|
||||
|
||||
// @dev increase_balance updates the balance variable
|
||||
// @param amount the amount you want to add to balance
|
||||
// @external is a decorator that specifies the func below it is an external function.
|
||||
@external
|
||||
func increase_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(
|
||||
amount: felt
|
||||
) {
|
||||
with_attr error_message("Amount must be positive. Got: {amount}.") {
|
||||
assert_nn(amount);
|
||||
}
|
||||
|
||||
let (res) = balance.read();
|
||||
balance.write(res + amount);
|
||||
return ();
|
||||
}
|
||||
|
||||
// @dev returns the balance variable
|
||||
// @view is a decorator that specifies the func below it is a view function.
|
||||
@view
|
||||
func get_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}() -> (res: felt) {
|
||||
let (res) = balance.read();
|
||||
return (res,);
|
||||
}
|
||||
|
||||
// before proceeding, try to build, deploy and interact with this contract!
|
||||
// NB: Should be at main.cairo if you are using Protostar.
|
||||
|
||||
```
|
||||
Now unto the main lessons
|
||||
|
||||
### 1. THE FELT DATA TYPE
|
||||
```
|
||||
// Unlike solidity, where you have access to various data types, Cairo comes with just a single data type..felts
|
||||
// Felts stands for Field elements, and are a 252 bit integer in the range 0<=x<=P where P is a prime number.
|
||||
// You can create a Uint256 in Cairo by utlizing a struct of two 128 bits felts.
|
||||
|
||||
```cairo
|
||||
// Unlike solidity, where you have access to various data types, Cairo
|
||||
// comes with just a single data type..felts
|
||||
// Felts stands for Field elements, and are a 252 bit integer in the range
|
||||
// 0<=x<=P where P is a prime number.
|
||||
// You can create a Uint256 in Cairo by utlizing a struct of two 128 bits
|
||||
// felts.
|
||||
|
||||
struct Uint256 {
|
||||
low: felt, // The low 128 bits of the value.
|
||||
high: felt, // The high 128 bits of the value.
|
||||
}
|
||||
|
||||
// To avoid running into issues with divisions, it's safer to work with the unsigned_div_rem method from Cairo-lang's library.
|
||||
// To avoid running into issues with divisions, it's safer to work with the
|
||||
// unsigned_div_rem method from Cairo-lang's library.
|
||||
```
|
||||
|
||||
### 2. LANG DIRECTIVE AND IMPORTS
|
||||
```
|
||||
// To get started with writing a StarkNet contract, you must specify the directive:
|
||||
|
||||
```cairo
|
||||
// To get started with writing a StarkNet contract, you must specify the
|
||||
// directive:
|
||||
|
||||
%lang starknet
|
||||
|
||||
// This directive informs the compiler you are writing a contract and not a program.
|
||||
// The difference between both is contracts have access to StarkNet's storage, programs don't and as such are stateless.
|
||||
// This directive informs the compiler you are writing a contract and not a
|
||||
// program.
|
||||
// The difference between both is contracts have access to StarkNet's
|
||||
// storage, programs don't and as such are stateless.
|
||||
|
||||
// There are important functions you might need to import from the official
|
||||
// Cairo-lang library or Openzeppelin's. e.g.
|
||||
|
||||
// There are important functions you might need to import from the official Cairo-lang library or Openzeppelin's. e.g.
|
||||
|
||||
from starkware.cairo.common.cairo_builtins import HashBuiltin
|
||||
from cairo_contracts.src.openzeppelin.token.erc20.library import ERC20
|
||||
from starkware.cairo.common.uint256 import Uint256
|
||||
@ -167,9 +240,11 @@ Now unto the main lessons
|
||||
```
|
||||
|
||||
### 3. DATA STRUCTURES
|
||||
```
|
||||
|
||||
```cairo
|
||||
// A. STORAGE VARIABLES
|
||||
// Cairo's storage is a map with 2^251 slots, where each slot is a felt which is initialized to 0.
|
||||
// Cairo's storage is a map with 2^251 slots, where each slot is a felt
|
||||
// which is initialized to 0.
|
||||
// You create one using the @storage_var decorator
|
||||
|
||||
@storage_var
|
||||
@ -177,7 +252,8 @@ Now unto the main lessons
|
||||
}
|
||||
|
||||
// B. STORAGE MAPPINGS
|
||||
// Unlike soldity where mappings have a separate keyword, in Cairo you create mappings using storage variables.
|
||||
// Unlike soldity where mappings have a separate keyword, in Cairo you
|
||||
// create mappings using storage variables.
|
||||
|
||||
@storage_var
|
||||
func names(address: felt) -> (name: felt){
|
||||
@ -185,7 +261,8 @@ Now unto the main lessons
|
||||
|
||||
// C. STRUCTS
|
||||
// Structs are a means to create custom data types in Cairo.
|
||||
// A Struct has a size, which is the sum of the sizes of its members. The size can be retrieved using MyStruct.SIZE.
|
||||
// A Struct has a size, which is the sum of the sizes of its members. The
|
||||
// size can be retrieved using MyStruct.SIZE.
|
||||
// You create a struct in Cairo using the `struct` keyword.
|
||||
|
||||
struct Person {
|
||||
@ -200,20 +277,25 @@ Now unto the main lessons
|
||||
// To create a constant in Cairo, you use the `const` keyword.
|
||||
// Its proper practice to capitalize constant names.
|
||||
|
||||
const USER = 0x01C6cfC1DB2ae90dACEA243F0a8C2F4e32560F7cDD398e4dA2Cc56B733774E9b
|
||||
const USER =
|
||||
0x01C6cfC1DB2ae90dACEA243F0a8C2F4e32560F7cDD398e4dA2Cc56B733774E9b
|
||||
|
||||
// E. ARRAYS
|
||||
// Arrays can be defined as a pointer(felt*) to the first element of the array.
|
||||
// Arrays can be defined as a pointer(felt*) to the first element of the
|
||||
//array.
|
||||
// As an array is populated, its elements take up contigous memory cells.
|
||||
// The `alloc` keyword can be used to dynamically allocate a new memory segment, which can be used to store an array
|
||||
// The `alloc` keyword can be used to dynamically allocate a new memory
|
||||
// segment, which can be used to store an array
|
||||
|
||||
let (myArray: felt*) = alloc ();
|
||||
assert myArray[0] = 1;
|
||||
assert myArray[1] = 2;
|
||||
assert myArray[3] = 3;
|
||||
|
||||
// You can also use the `new` operator to create fixed-size arrays using tuples
|
||||
// The new operator is useful as it enables you allocate memory and initialize the object in one instruction
|
||||
// You can also use the `new` operator to create fixed-size arrays using
|
||||
//tuples
|
||||
// The new operator is useful as it enables you allocate memory and
|
||||
// initialize the object in one instruction
|
||||
|
||||
func foo() {
|
||||
tempvar arr: felt* = new (1, 1, 2, 3, 5);
|
||||
@ -223,13 +305,15 @@ Now unto the main lessons
|
||||
|
||||
// F. TUPLES
|
||||
// A tuple is a finite, ordered, unchangeable list of elements
|
||||
// It is represented as a comma-separated list of elements enclosed by parentheses
|
||||
// It is represented as a comma-separated list of elements enclosed by
|
||||
// parentheses
|
||||
// Their elements may be of any combination of valid types.
|
||||
|
||||
local tuple0: (felt, felt, felt) = (7, 9, 13);
|
||||
|
||||
// G. EVENTS
|
||||
// Events allows a contract emit information during the course of its execution, that can be used outside of StarkNet.
|
||||
// Events allows a contract emit information during the course of its
|
||||
// execution, that can be used outside of StarkNet.
|
||||
// To create an event:
|
||||
|
||||
@event
|
||||
@ -242,24 +326,28 @@ Now unto the main lessons
|
||||
```
|
||||
|
||||
### 4. CONSTRUCTORS, EXTERNAL AND VIEW FUNCTIONS
|
||||
```
|
||||
|
||||
```cairo
|
||||
// A. CONSTRUCTORS
|
||||
// Constructors are a way to intialize state variables on contract deployment
|
||||
// Constructors are a way to intialize state variables on contract
|
||||
// deployment
|
||||
// You create a constructor using the @constructor decorator
|
||||
|
||||
@constructor
|
||||
func constructor{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(_name: felt) {
|
||||
func constructor{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
|
||||
range_check_ptr}(_name: felt) {
|
||||
let (caller) = get_caller_address();
|
||||
names.write(caller, _name);
|
||||
return ();
|
||||
}
|
||||
|
||||
|
||||
// B. EXTERNAL FUNCTIONS
|
||||
// External functions are functions that modifies the state of the network
|
||||
// You create an external function using the @external decorator
|
||||
|
||||
@external
|
||||
func store_name{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(_name: felt){
|
||||
func store_name{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
|
||||
range_check_ptr}(_name: felt){
|
||||
let (caller) = get_caller_address();
|
||||
names.write(caller, _name);
|
||||
stored_name.emit(caller, _name);
|
||||
@ -271,61 +359,84 @@ Now unto the main lessons
|
||||
// You can create a view function using the @view decorator
|
||||
|
||||
@view
|
||||
func get_name{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(_address: felt) -> (name: felt){
|
||||
func get_name{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
|
||||
range_check_ptr}(_address: felt) -> (name: felt){
|
||||
let (name) = names.read(_address);
|
||||
return (name,);
|
||||
}
|
||||
|
||||
// NB: Unlike Solidity, Cairo supports just External and View function types.
|
||||
// You can alternatively also create an internal function by not adding any decorator to the function.
|
||||
// NB: Unlike Solidity, Cairo supports just External and View function
|
||||
// types.
|
||||
// You can alternatively also create an internal function by not adding any
|
||||
// decorator to the function.
|
||||
```
|
||||
|
||||
### 5. DECORATORS
|
||||
```
|
||||
// All functions in Cairo are specified by the `func` keyword, which can be confusing.
|
||||
// Decorators are used by the compiler to distinguish between these functions.
|
||||
|
||||
```cairo
|
||||
// All functions in Cairo are specified by the `func` keyword, which can be
|
||||
// confusing.
|
||||
// Decorators are used by the compiler to distinguish between these
|
||||
// functions.
|
||||
|
||||
// Here are the most common decorators you'll encounter in Cairo:
|
||||
|
||||
// 1. @storage_var — used for specifying state variables.
|
||||
// 2. @constructor — used for specifying constructors.
|
||||
// 3. @external — used for specifying functions that write to a state variable.
|
||||
// 3. @external — used for specifying functions that write to a state
|
||||
// variable.
|
||||
// 4. @event — used for specifying events
|
||||
// 5. @view — used for specifying functions that reads from a state variable.
|
||||
// 5. @view — used for specifying functions that reads from a state
|
||||
// variable.
|
||||
// 6. @contract_interface - used for specifying function interfaces.
|
||||
// 7. @l1_handler — used for specifying functions that processes message sent from an L1 contract in a messaging bridge.
|
||||
// 7. @l1_handler — used for specifying functions that processes message
|
||||
// sent from an L1 contract in a messaging bridge.
|
||||
```
|
||||
|
||||
### 6. BUILTINS, HINTS & IMPLICIT ARGUMENTS
|
||||
```
|
||||
|
||||
```cairo
|
||||
// A. BUILTINS
|
||||
// Builtins are predefined optimized low-level execution units, which are added to Cairo’s CPU board.
|
||||
// They help perform predefined computations like pedersen hashing, bitwise operations etc, which are expensive to perform in Vanilla Cairo.
|
||||
// Each builtin in Cairo, is assigned a separate memory location, accessible through regular Cairo memory calls using implicit parameters.
|
||||
// Builtins are predefined optimized low-level execution units, which are
|
||||
// added to Cairo’s CPU board.
|
||||
// They help perform predefined computations like pedersen hashing, bitwise
|
||||
// operations etc, which are expensive to perform in Vanilla Cairo.
|
||||
// Each builtin in Cairo, is assigned a separate memory location,
|
||||
// accessible through regular Cairo memory calls using implicit parameters.
|
||||
// You specify them using the %builtins directive
|
||||
|
||||
// Here is a list of available builtins in Cairo:
|
||||
// 1. output — the output builtin is used for writing program outputs
|
||||
// 2. pedersen — the pedersen builtin is used for pedersen hashing computations
|
||||
// 3. range_check — This builtin is mostly used for integer comparisons, and facilitates check to confirm that a field element is within a range [0, 2^128)
|
||||
// 2. pedersen — the pedersen builtin is used for pedersen hashing
|
||||
// computations
|
||||
// 3. range_check — This builtin is mostly used for integer comparisons,
|
||||
// and facilitates check to confirm that a field element is within a range [0,
|
||||
// 2^128)
|
||||
// 4. ecdsa — the ecdsa builtin is used for verifying ECDSA signatures
|
||||
// 5. bitwise — the bitwise builtin is used for carrying out bitwise operations on felts
|
||||
// 5. bitwise — the bitwise builtin is used for carrying out bitwise
|
||||
// operations on felts
|
||||
|
||||
// B. HINTS
|
||||
// Hints are pieces of Python codes, which contains instructions that only the prover sees and executes
|
||||
// Hints are pieces of Python codes, which contains instructions that only
|
||||
// the prover sees and executes
|
||||
// From the point of view of the verifier these hints do not exist
|
||||
// To specify a hint in Cairo, you need to encapsulate it within %{ and%}
|
||||
// Its good practice to avoid using hints as much as you can in your contracts, as hints are not added to the bytecode, and thus do not count in the total number of execution steps.
|
||||
// Its good practice to avoid using hints as much as you can in your
|
||||
// contracts, as hints are not added to the bytecode, and thus do not count in the
|
||||
// total number of execution steps.
|
||||
|
||||
%{
|
||||
# Python hint goes here
|
||||
%{
|
||||
# Python hint goes here
|
||||
%}
|
||||
|
||||
// C. IMPLICIT ARGUMENTS
|
||||
// Implicit arguments are not restricted to the function body, but can be inherited by other functions calls that require them.
|
||||
// Implicit arguments are passed in between curly bracelets, like you can see below:
|
||||
// Implicit arguments are not restricted to the function body, but can be
|
||||
// inherited by other functions calls that require them.
|
||||
// Implicit arguments are passed in between curly bracelets, like you can
|
||||
// see below:
|
||||
|
||||
func store_name{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(_name: felt){
|
||||
func store_name{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
|
||||
range_check_ptr}(_name: felt){
|
||||
let (caller) = get_caller_address();
|
||||
names.write(caller, _name);
|
||||
stored_name.emit(caller, _name);
|
||||
@ -334,16 +445,20 @@ Now unto the main lessons
|
||||
```
|
||||
|
||||
### 7. ERROR MESSAGES & ACCESS CONTROLS
|
||||
```
|
||||
// You can create custom errors in Cairo which is outputted to the user upon failed execution.
|
||||
// This can be very useful for implementing checks and proper access control mechanisms.
|
||||
|
||||
```cairo
|
||||
// You can create custom errors in Cairo which is outputted to the user
|
||||
// upon failed execution.
|
||||
// This can be very useful for implementing checks and proper access
|
||||
// control mechanisms.
|
||||
// An example is preventing a user to call a function except user is admin.
|
||||
|
||||
// imports
|
||||
from starkware.starknet.common.syscalls import get_caller_address
|
||||
|
||||
// create an admin constant
|
||||
const ADMIN = 0x01C6cfC1DB2ae90dACEA243F0a8C2F4e32560F7cDD398e4dA2Cc56B733774E9b
|
||||
const ADMIN =
|
||||
0x01C6cfC1DB2ae90dACEA243F0a8C2F4e32560F7cDD398e4dA2Cc56B733774E9b
|
||||
|
||||
// implement access control
|
||||
with_attr error_message("You do not have access to make this action!"){
|
||||
@ -351,12 +466,15 @@ Now unto the main lessons
|
||||
assert ADMIN = caller;
|
||||
}
|
||||
|
||||
// using an assert statement throws if condition is not true, thus returning the specified error.
|
||||
// using an assert statement throws if condition is not true, thus
|
||||
// returning the specified error.
|
||||
```
|
||||
|
||||
### 8. CONTRACT INTERFACES
|
||||
```
|
||||
// Contract interfaces provide a means for one contract to invoke or call the external function of another contract.
|
||||
|
||||
```cairo
|
||||
// Contract interfaces provide a means for one contract to invoke or call
|
||||
// the external function of another contract.
|
||||
// To create a contract interface, you use the @contract_interface keyword
|
||||
|
||||
@contract_interface
|
||||
@ -368,22 +486,29 @@ Now unto the main lessons
|
||||
}
|
||||
}
|
||||
|
||||
// Once a contract interface is specified, any contract can make calls to that contract passing in the contract address as the first parameter like this:
|
||||
// Once a contract interface is specified, any contract can make calls to
|
||||
// that contract passing in the contract address as the first parameter like this:
|
||||
|
||||
IENS.store_name(contract_address, _name);
|
||||
|
||||
// Note that Interfaces excludes the function body/logic and the implicit arguments.
|
||||
// Note that Interfaces excludes the function body/logic and the implicit
|
||||
// arguments.
|
||||
```
|
||||
|
||||
### 9. RECURSIONS
|
||||
```
|
||||
// Due to the unavailability of loops, Recursions are the go-to for similar operations.
|
||||
// In simple terms, a recursive function is one which calls itself repeatedly.
|
||||
|
||||
// A good example to demonstrate this is writing a function for getting the nth fibonacci number:
|
||||
```cairo
|
||||
// Due to the unavailability of loops, Recursions are the go-to for similar
|
||||
// operations.
|
||||
// In simple terms, a recursive function is one which calls itself
|
||||
// repeatedly.
|
||||
|
||||
// A good example to demonstrate this is writing a function for getting the
|
||||
// nth fibonacci number:
|
||||
|
||||
@external
|
||||
func fibonacci{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(n : felt) -> (result : felt){
|
||||
func fibonacci{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
|
||||
range_check_ptr}(n : felt) -> (result : felt){
|
||||
alloc_locals;
|
||||
if (n == 0){
|
||||
return (0);
|
||||
@ -396,48 +521,67 @@ Now unto the main lessons
|
||||
return (result=(x + y));
|
||||
}
|
||||
|
||||
// The nth fibonacci term is the sum of the nth - 1 and the nth - 2 numbers, that's why we get these two as (x, y) using recursion.
|
||||
// NB: when implementing recursive functions, always remember to implement a base case (n==0, n==1 in our case), to prevent stack overflow.
|
||||
// The nth fibonacci term is the sum of the nth - 1 and the nth - 2
|
||||
// numbers, that's why we get these two as (x, y) using recursion.
|
||||
// NB: when implementing recursive functions, always remember to implement
|
||||
// a base case (n==0, n==1 in our case), to prevent stack overflow.
|
||||
```
|
||||
|
||||
Some low-level stuffs
|
||||
|
||||
### 10. REGISTERS
|
||||
```
|
||||
|
||||
```cairo
|
||||
// Registers holds values that may change over time.
|
||||
|
||||
// There are 3 major types of Registers:
|
||||
// 1. ap (allocation pointer) points to a yet unused memory. Temporary variables created using `let`, `tempvar` are held here, and thus susceptible to being revoked
|
||||
// 2. fp (frame pointer) points to the frame of the current function. The address of all the function arguments and local variables are relative to this register and as such can never be revoked
|
||||
// 1. ap (allocation pointer) points to a yet unused memory. Temporary
|
||||
// variables created using `let`, `tempvar` are held here, and thus susceptible to
|
||||
// being revoked
|
||||
// 2. fp (frame pointer) points to the frame of the current function. The
|
||||
// address of all the function arguments and local variables are relative to this
|
||||
// register and as such can never be revoked
|
||||
// 3. pc (program counter) points to the current instruction
|
||||
```
|
||||
|
||||
### 11. REVOKED REFERENCES
|
||||
```
|
||||
// Revoked references occurs when there is a call instruction to another function, between the definition of a reference variable that depends on `ap`(temp variables) and its usage. This occurs as the compiler may not be able to compute the change of `ap` (as one may jump to the label from another place in the program, or call a function that might change ap in an unknown way).
|
||||
|
||||
```cairo
|
||||
// Revoked references occurs when there is a call instruction to another
|
||||
// function, between the definition of a reference variable that depends on
|
||||
// `ap`(temp variables) and its usage. This occurs as the compiler may not be able
|
||||
// to compute the change of `ap` (as one may jump to the label from another place
|
||||
// in the program, or call a function that might change ap in an unknown way).
|
||||
|
||||
// Here is an example to demonstrate what I mean:
|
||||
|
||||
@external
|
||||
func get_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}() -> (res: felt) {
|
||||
func get_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
|
||||
range_check_ptr}() -> (res: felt) {
|
||||
return (res=100);
|
||||
}
|
||||
|
||||
@external
|
||||
func double_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}() -> (res: felt) {
|
||||
func double_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
|
||||
range_check_ptr}() -> (res: felt) {
|
||||
let multiplier = 2;
|
||||
let (balance) = get_balance();
|
||||
let new_balance = balance * multiplier;
|
||||
return (res=new_balance);
|
||||
}
|
||||
|
||||
// If you run that code, you'll run into the revoked reference error as we are trying to access the `multiplier` variable after calling the get_balance function;
|
||||
|
||||
// To solve revoked references, In simple cases you can resolve this issue, by adding the keyword, `alloc_locals` within function scopes, but in most complex cases you might need to create a local variable to resolve it.
|
||||
// If you run that code, you'll run into the revoked reference error as we
|
||||
// are trying to access the `multiplier` variable after calling the get_balance
|
||||
// function;
|
||||
|
||||
// To solve revoked references, In simple cases you can resolve this issue,
|
||||
// by adding the keyword, `alloc_locals` within function scopes, but in most
|
||||
// complex cases you might need to create a local variable to resolve it.
|
||||
|
||||
// resolving the `double_balance` function:
|
||||
@external
|
||||
func double_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}() -> (res: felt) {
|
||||
func double_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
|
||||
range_check_ptr}() -> (res: felt) {
|
||||
alloc_locals;
|
||||
let multiplier = 2;
|
||||
let (balance) = get_balance();
|
||||
@ -449,38 +593,51 @@ Some low-level stuffs
|
||||
Miscellaneous
|
||||
|
||||
### 12. Understanding Cairo's punctuations
|
||||
```
|
||||
|
||||
```cairo
|
||||
// ; (semicolon). Used at the end of each instruction
|
||||
|
||||
// ( ) (parentheses). Used in a function declaration, if statements, and in a tuple declaration
|
||||
// ( ) (parentheses). Used in a function declaration, if statements, and in
|
||||
// a tuple declaration
|
||||
|
||||
// { } (curly brackets). Used in a declaration of implicit arguments and to define code blocks.
|
||||
// { } (curly brackets). Used in a declaration of implicit arguments and to
|
||||
// define code blocks.
|
||||
|
||||
// [ ] (square brackets). Standalone brackets represent the value at a particular address location (such as the allocation pointer, [ap]). Brackets following a pointer or a tuple act as a subscript operator, where x[2] represents the element with index 2 in x.
|
||||
// [ ] (square brackets). Standalone brackets represent the value at a
|
||||
// particular address location (such as the allocation pointer, [ap]). Brackets
|
||||
// following a pointer or a tuple act as a subscript operator, where x[2]
|
||||
// represents the element with index 2 in x.
|
||||
|
||||
// * Single asterisk. Refers to the pointer of an expression.
|
||||
|
||||
// % Percent sign. Appears at the start of a directive, such as %builtins or %lang.
|
||||
// % Percent sign. Appears at the start of a directive, such as %builtins
|
||||
// or %lang.
|
||||
|
||||
// %{ %} Represents Python hints.
|
||||
|
||||
// _ (underscore). A placeholder to handle values that are not used, such as an unused function return value.
|
||||
// _ (underscore). A placeholder to handle values that are not used, such
|
||||
// as an unused function return value.
|
||||
```
|
||||
|
||||
# FULL CONTRACT EXAMPLE
|
||||
Below is a simple automated market maker contract example that implements most of what we just learnt! Re-write, deploy, have fun!
|
||||
```
|
||||
|
||||
Below is a simple automated market maker contract example that implements most
|
||||
of what we just learnt! Re-write, deploy, have fun!
|
||||
|
||||
```cairo
|
||||
%lang starknet
|
||||
|
||||
from starkware.cairo.common.cairo_builtins import HashBuiltin
|
||||
from starkware.cairo.common.hash import hash2
|
||||
from starkware.cairo.common.alloc import alloc
|
||||
from starkware.cairo.common.math import (assert_le, assert_nn_le, unsigned_div_rem)
|
||||
from starkware.starknet.common.syscalls import (get_caller_address, storage_read, storage_write)
|
||||
from starkware.cairo.common.math import (assert_le, assert_nn_le,
|
||||
unsigned_div_rem)
|
||||
from starkware.starknet.common.syscalls import (get_caller_address,
|
||||
storage_read, storage_write)
|
||||
|
||||
//
|
||||
//
|
||||
// CONSTANTS
|
||||
//
|
||||
//
|
||||
|
||||
|
||||
// @dev the maximum amount of each token that belongs to the AMM
|
||||
@ -493,13 +650,13 @@ Below is a simple automated market maker contract example that implements most o
|
||||
const POOL_UPPER_BOUND = 2 ** 30;
|
||||
const ACCOUNT_BALANCE_BOUND = 1073741; // (2 ** 30 / 1000)
|
||||
|
||||
//
|
||||
//
|
||||
// STORAGE VARIABLES
|
||||
//
|
||||
//
|
||||
|
||||
// @dev A map from account and token type to corresponding balance
|
||||
@storage_var
|
||||
func account_balance(account_id: felt, token_type: felt) -> (balance: felt) {
|
||||
func account_balance(account_id: felt, token_type: felt) -> (balance: felt){
|
||||
}
|
||||
|
||||
// @dev a map from token type to corresponding pool balance
|
||||
@ -507,15 +664,16 @@ Below is a simple automated market maker contract example that implements most o
|
||||
func pool_balance(token_type: felt) -> (balance: felt) {
|
||||
}
|
||||
|
||||
//
|
||||
//
|
||||
// GETTERS
|
||||
//
|
||||
//
|
||||
|
||||
// @dev returns account balance for a given token
|
||||
// @param account_id Account to be queried
|
||||
// @param token_type Token to be queried
|
||||
@view
|
||||
func get_account_token_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(
|
||||
func get_account_token_balance{syscall_ptr: felt*, pedersen_ptr:
|
||||
HashBuiltin*, range_check_ptr}(
|
||||
account_id: felt, token_type: felt
|
||||
) -> (balance: felt) {
|
||||
return account_balance.read(account_id, token_type);
|
||||
@ -524,21 +682,23 @@ Below is a simple automated market maker contract example that implements most o
|
||||
// @dev return the pool's balance
|
||||
// @param token_type Token type to get pool balance
|
||||
@view
|
||||
func get_pool_token_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(
|
||||
func get_pool_token_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
|
||||
range_check_ptr}(
|
||||
token_type: felt
|
||||
) -> (balance: felt) {
|
||||
return pool_balance.read(token_type);
|
||||
}
|
||||
|
||||
//
|
||||
//
|
||||
// EXTERNALS
|
||||
//
|
||||
//
|
||||
|
||||
// @dev set pool balance for a given token
|
||||
// @param token_type Token whose balance is to be set
|
||||
// @param balance Amount to be set as balance
|
||||
@external
|
||||
func set_pool_token_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(
|
||||
func set_pool_token_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
|
||||
range_check_ptr}(
|
||||
token_type: felt, balance: felt
|
||||
) {
|
||||
with_attr error_message("exceeds maximum allowed tokens!"){
|
||||
@ -553,14 +713,17 @@ Below is a simple automated market maker contract example that implements most o
|
||||
// @param token_a_amount amount of token a to be added
|
||||
// @param token_b_amount amount of token b to be added
|
||||
@external
|
||||
func add_demo_token{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(
|
||||
func add_demo_token{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
|
||||
range_check_ptr}(
|
||||
token_a_amount: felt, token_b_amount: felt
|
||||
) {
|
||||
alloc_locals;
|
||||
let (account_id) = get_caller_address();
|
||||
|
||||
modify_account_balance(account_id=account_id, token_type=TOKEN_TYPE_A, amount=token_a_amount);
|
||||
modify_account_balance(account_id=account_id, token_type=TOKEN_TYPE_B, amount=token_b_amount);
|
||||
modify_account_balance(account_id=account_id, token_type=TOKEN_TYPE_A,
|
||||
amount=token_a_amount);
|
||||
modify_account_balance(account_id=account_id, token_type=TOKEN_TYPE_B,
|
||||
amount=token_b_amount);
|
||||
|
||||
return ();
|
||||
}
|
||||
@ -569,7 +732,8 @@ Below is a simple automated market maker contract example that implements most o
|
||||
// @param token_a amount of token a to be set in pool
|
||||
// @param token_b amount of token b to be set in pool
|
||||
@external
|
||||
func init_pool{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(
|
||||
func init_pool{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
|
||||
range_check_ptr}(
|
||||
token_a: felt, token_b: felt
|
||||
) {
|
||||
with_attr error_message("exceeds maximum allowed tokens!"){
|
||||
@ -606,27 +770,30 @@ Below is a simple automated market maker contract example that implements most o
|
||||
}
|
||||
|
||||
// check user has enough funds
|
||||
let (account_from_balance) = get_account_token_balance(account_id=account_id, token_type=token_from);
|
||||
let (account_from_balance) =
|
||||
get_account_token_balance(account_id=account_id, token_type=token_from);
|
||||
with_attr error_message("insufficient balance!"){
|
||||
assert_le(amount_from, account_from_balance);
|
||||
}
|
||||
|
||||
let (token_to) = get_opposite_token(token_type=token_from);
|
||||
let (amount_to) = do_swap(account_id=account_id, token_from=token_from, token_to=token_to, amount_from=amount_from);
|
||||
let (amount_to) = do_swap(account_id=account_id, token_from=token_from,
|
||||
token_to=token_to, amount_from=amount_from);
|
||||
|
||||
return (amount_to=amount_to);
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
//
|
||||
// INTERNALS
|
||||
//
|
||||
//
|
||||
|
||||
// @dev internal function that updates account balance for a given token
|
||||
// @param account_id Account whose balance is to be modified
|
||||
// @param token_type Token type to be modified
|
||||
// @param amount Amount Amount to be added
|
||||
func modify_account_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(
|
||||
func modify_account_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
|
||||
range_check_ptr}(
|
||||
account_id: felt, token_type: felt, amount: felt
|
||||
) {
|
||||
let (current_balance) = account_balance.read(account_id, token_type);
|
||||
@ -636,34 +803,44 @@ Below is a simple automated market maker contract example that implements most o
|
||||
assert_nn_le(new_balance, BALANCE_UPPER_BOUND - 1);
|
||||
}
|
||||
|
||||
account_balance.write(account_id=account_id, token_type=token_type, value=new_balance);
|
||||
account_balance.write(account_id=account_id, token_type=token_type,
|
||||
value=new_balance);
|
||||
return ();
|
||||
}
|
||||
|
||||
// @dev internal function that swaps tokens between the given account and the pool
|
||||
// @dev internal function that swaps tokens between the given account and
|
||||
// the pool
|
||||
// @param account_id Account whose tokens are to be swapped
|
||||
// @param token_from Token type to be swapped from
|
||||
// @param token_to Token type to be swapped to
|
||||
// @param amount_from Amount to be swapped
|
||||
func do_swap{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(
|
||||
func do_swap{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
|
||||
range_check_ptr}(
|
||||
account_id: felt, token_from: felt, token_to: felt, amount_from: felt
|
||||
) -> (amount_to: felt) {
|
||||
alloc_locals;
|
||||
|
||||
// get pool balance
|
||||
let (local amm_from_balance) = get_pool_token_balance(token_type = token_from);
|
||||
let (local amm_to_balance) = get_pool_token_balance(token_type=token_to);
|
||||
let (local amm_from_balance) = get_pool_token_balance(token_type =
|
||||
token_from);
|
||||
let (local amm_to_balance) =
|
||||
get_pool_token_balance(token_type=token_to);
|
||||
|
||||
// calculate swap amount
|
||||
let (local amount_to, _) = unsigned_div_rem((amm_to_balance * amount_from), (amm_from_balance + amount_from));
|
||||
let (local amount_to, _) = unsigned_div_rem((amm_to_balance *
|
||||
amount_from), (amm_from_balance + amount_from));
|
||||
|
||||
// update token_from balances
|
||||
modify_account_balance(account_id=account_id, token_type=token_from, amount=-amount_from);
|
||||
set_pool_token_balance(token_type=token_from, balance=(amm_from_balance + amount_from));
|
||||
modify_account_balance(account_id=account_id, token_type=token_from,
|
||||
amount=-amount_from);
|
||||
set_pool_token_balance(token_type=token_from, balance=(amm_from_balance
|
||||
+ amount_from));
|
||||
|
||||
// update token_to balances
|
||||
modify_account_balance(account_id=account_id, token_type=token_to, amount=amount_to);
|
||||
set_pool_token_balance(token_type=token_to, balance=(amm_to_balance - amount_to));
|
||||
modify_account_balance(account_id=account_id, token_type=token_to,
|
||||
amount=amount_to);
|
||||
set_pool_token_balance(token_type=token_to, balance=(amm_to_balance -
|
||||
amount_to));
|
||||
|
||||
return (amount_to=amount_to);
|
||||
}
|
||||
@ -680,6 +857,7 @@ Below is a simple automated market maker contract example that implements most o
|
||||
```
|
||||
|
||||
# Additional Resources
|
||||
|
||||
1. [Official documentation](https://www.cairo-lang.org/docs/)
|
||||
2. [Starknet EDU](https://medium.com/starknet-edu)
|
||||
3. [Journey through Cairo](https://medium.com/@darlingtonnnam/journey-through-cairo-i-setting-up-protostar-and-argentx-for-local-development-ba40ae6c5524)
|
||||
@ -687,15 +865,18 @@ Below is a simple automated market maker contract example that implements most o
|
||||
5. [Learn about StarkNet with Argent](https://www.argent.xyz/learn/tag/starknet/)
|
||||
|
||||
# Development Frameworks
|
||||
|
||||
1. [Protostar](https://docs.swmansion.com/protostar/docs/tutorials/installation)
|
||||
2. [Nile](https://github.com/OpenZeppelin/nile)
|
||||
3. [StarkNet CLI](https://www.cairo-lang.org/docs/quickstart.html)
|
||||
|
||||
# Helpful Libraries
|
||||
|
||||
1. [Cairo-lang](https://github.com/starkware-libs/cairo-lang)
|
||||
2. [Openzeppelin](https://github.com/OpenZeppelin/cairo-contracts)
|
||||
|
||||
# Educational Repos
|
||||
|
||||
1. [StarkNet Cairo 101](https://github.com/starknet-edu/starknet-cairo-101)
|
||||
2. [StarkNet ERC721](https://github.com/starknet-edu/starknet-erc721)
|
||||
3. [StarkNet ERC20](https://github.com/starknet-edu/starknet-erc20)
|
||||
@ -704,11 +885,13 @@ Below is a simple automated market maker contract example that implements most o
|
||||
6. [StarkNet Accounts](https://github.com/starknet-edu/starknet-accounts)
|
||||
7. [Min-Starknet](https://github.com/Darlington02/min-starknet)
|
||||
|
||||
# Security
|
||||
# Security
|
||||
|
||||
1. [Amarna static analysis for Cairo programs](https://blog.trailofbits.com/2022/04/20/amarna-static-analysis-for-cairo-programs/)
|
||||
2. [Cairo and StarkNet security by Ctrl03](https://ctrlc03.github.io/)
|
||||
3. [How to hack almost any Cairo smart contract](https://medium.com/ginger-security/how-to-hack-almost-any-starknet-cairo-smart-contract-67b4681ac0f6)
|
||||
4. [Analyzing Cairo code using Armana](https://dic0de.substack.com/p/analyzing-cairo-code-using-amarna?sd=pf)
|
||||
|
||||
# Future TO-DOs
|
||||
Update tutorial to fit Cairo 1.0
|
||||
|
||||
Update tutorial to fit Cairo 1.0
|
||||
|
Loading…
Reference in New Issue
Block a user