31 KiB
language | filename | contributors | |||
---|---|---|---|---|---|
Cairo | learnCairo.sol |
|
Cairo
Cairo is a Turing-complete language that allows you write provable programs (where one party can prove to another that a certain computation was executed correctly) on StarkNet.
StarkNet
StarkNet is a decentralized ZK-rollup that operates as an Ethereum layer 2 chain.
In this document, we are going to be going in-depth into understanding Cairo's syntax and how you could create and deploy a Cairo smart contract on StarkNet.
NB: As at the time of this writing, StarkNet is still at v0.10.3, with Cairo 1.0 coming soon. The ecosystem is young and evolving very fast, so you might want to check the official docs to confirm this document is still up-to-date. Pull requests are welcome!
Setting Up A Development Environment
Before we get started writing codes, we will need to setup a Cairo development environment, for writing, compiling and deploying our contracts to StarkNet. For the purpose of this tutorial we are going to be using the Protostar Framework. Installation steps can be found in the docs here. Note that Protostar supports just Mac and Linux OS, Windows users might need to use WSL, or go for other alternatives such as the Official StarkNet CLI or Nile from Openzeppelin
Once you're done with the installations, run the command protostar -v
to
confirm your installation was successful. If successful, you should see your
Protostar version displayed on the screen.
Initializing a new project
Protostar similar to Truffle for solidity development can be installed once and used for multiple projects. To initialize a new Protostar project, run the following command:
protostar init
- It would then request the project's name and the library's directory name, you'd need to fill in this, and a new project will be initialized successfully.
Compiling, Declaring, Deploying And Interacting With StarkNet Contracts
Within the src
folder you'll find a boilerplate contract that comes with
initializing a new Protostar project, main.cairo
. We are going to be
compiling, declaring and deploying this contract.
Compiling Contracts
To compile a Cairo contract using Protostar, ensure a path to the contract is
specified in the [contracts]
section of the protostar.toml
file. Once
you've done that, open your terminal and run the command:
protostar build
And you should get an output similar to what you see below, with a main.json
and main_abi.json
files created in the build
folder.
Declaring Contracts
With the recent StarkNet update to 0.10.3, the DEPLOY transaction was deprecated and no longer works. To deploy a transaction, you must first declare a Contract to obtain the class hash, then deploy the declared contract using the Universal Deployer Contract.
Before declaring or deploying your contract using Protostar, you should set the private key associated with the specified account address in a file, or in the terminal. To set your private key in the terminal, run the command:
export PROTOSTAR_ACCOUNT_PRIVATE_KEY=[YOUR PRIVATE KEY HERE]
Then to declare our contract using Protostar run the following command:
protostar declare ./build/main.json --network testnet --account
0x0691622bBFD29e835bA4004e7425A4e9630840EbD11c5269DE51C16774585b16 --max-fee
auto
where network
specifies the network we are deploying to, account
specifies
account whose private key we are using, max-fee
specifies the maximum fee to
be paid for the transaction. You should get the class hash outputted as seen
below:
Deploying Contracts
After obtaining our class hash from declaring, we can now deploy using the below command:
protostar deploy
0x02a5de1b145e18dfeb31c7cd7ff403714ededf5f3fdf75f8b0ac96f2017541bc --network
testnet --account
0x0691622bBFD29e835bA4004e7425A4e9630840EbD11c5269DE51C16774585b16 --max-fee
auto
where 0x02a5de1b145e18dfeb31c7cd7ff403714ededf5f3fdf75f8b0ac96f2017541bc
is
the class hash of our contract.
Interacting With Contracts
To interact with your deployed contract, we will be using Argent X (alternative - Braavos), and Starkscan (alternative - Voyager). To install and setup Argent X, check out this guide.
Copy your contract address, displayed on screen from the previous step, and head over to Starkscan to search for the contract. Once found, you can make write calls to the contract by following the steps below:
- Click on the "connect wallet" button
- Select Argent X and approve the connection
- You can now make read and write calls easily.
Let's learn Cairo
First let's look at a default contract that comes with Protostar
// Allows you to set balance on deployment, increase, and get the balance.
// Language directive - instructs compiler its a StarkNet contract
%lang starknet
// Library imports from the Cairo-lang library
from starkware.cairo.common.math import assert_nn
from starkware.cairo.common.cairo_builtins import HashBuiltin
// @dev Storage variable that stores the balance of a user.
// @storage_var is a decorator that instructs the compiler the function
// below it is a storage variable.
@storage_var
func balance() -> (res: felt) {
}
// @dev Constructor writes the balance variable to 0 on deployment
// Constructors sets storage variables on deployment. Can accept arguments too.
@constructor
func constructor{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}() {balance.write(0); return ();
}
// @dev increase_balance updates the balance variable
// @param amount the amount you want to add to balance
// @external is a decorator that specifies the func below it is an external
// function.
@external
func increase_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}(amount: felt){
with_attr error_message("Amount must be positive. Got: {amount}.") {
assert_nn(amount);
}
let (res) = balance.read();
balance.write(res + amount);
return ();
}
// @dev returns the balance variable
// @view is a decorator that specifies the func below it is a view function.
@view
func get_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}() -> (res: felt) {
let (res) = balance.read();
return (res,);
}
// before proceeding, try to build, deploy and interact with this contract!
// NB: Should be at main.cairo if you are using Protostar.
Now unto the main lessons
1. THE FELT DATA TYPE
// Unlike solidity, where you have access to various data types, Cairo
// comes with just a single data type..felts
// Felts stands for Field elements, and are a 252 bit integer in the range
// 0<=x<=P where P is a prime number.
// You can create a Uint256 in Cairo by utlizing a struct of two 128 bits
// felts.
struct Uint256 {
low: felt, // The low 128 bits of the value.
high: felt, // The high 128 bits of the value.
}
// To avoid running into issues with divisions, it's safer to work with the
// unsigned_div_rem method from Cairo-lang's library.
2. LANG DIRECTIVE AND IMPORTS
// To get started with writing a StarkNet contract, you must specify the
// directive:
%lang starknet
// This directive informs the compiler you are writing a contract and not a
// program.
// The difference between both is contracts have access to StarkNet's
// storage, programs don't and as such are stateless.
// There are important functions you might need to import from the official
// Cairo-lang library or Openzeppelin's. e.g.
from starkware.cairo.common.cairo_builtins import HashBuiltin
from cairo_contracts.src.openzeppelin.token.erc20.library import ERC20
from starkware.cairo.common.uint256 import Uint256
from starkware.cairo.common.bool import TRUE
3. DATA STRUCTURES
// A. STORAGE VARIABLES
// Cairo's storage is a map with 2^251 slots, where each slot is a felt
// which is initialized to 0.
// You create one using the @storage_var decorator
@storage_var
func names() -> (name: felt){
}
// B. STORAGE MAPPINGS
// Unlike soldity where mappings have a separate keyword, in Cairo you
// create mappings using storage variables.
@storage_var
func names(address: felt) -> (name: felt){
}
// C. STRUCTS
// Structs are a means to create custom data types in Cairo.
// A Struct has a size, which is the sum of the sizes of its members. The
// size can be retrieved using MyStruct.SIZE.
// You create a struct in Cairo using the `struct` keyword.
struct Person {
name: felt,
age: felt,
address: felt,
}
// D. CONSTANTS
// Constants are fixed and as such can't be altered after being set.
// They evaluate to an integer (field element) at compile time.
// To create a constant in Cairo, you use the `const` keyword.
// Its proper practice to capitalize constant names.
const USER =
0x01C6cfC1DB2ae90dACEA243F0a8C2F4e32560F7cDD398e4dA2Cc56B733774E9b
// E. ARRAYS
// Arrays can be defined as a pointer(felt*) to the first element of the
//array.
// As an array is populated, its elements take up contigous memory cells.
// The `alloc` keyword can be used to dynamically allocate a new memory
// segment, which can be used to store an array
let (myArray: felt*) = alloc ();
assert myArray[0] = 1;
assert myArray[1] = 2;
assert myArray[3] = 3;
// You can also use the `new` operator to create fixed-size arrays using
//tuples
// The new operator is useful as it enables you allocate memory and
// initialize the object in one instruction
func foo() {
tempvar arr: felt* = new (1, 1, 2, 3, 5);
assert arr[4] = 5;
return ();
}
// F. TUPLES
// A tuple is a finite, ordered, unchangeable list of elements
// It is represented as a comma-separated list of elements enclosed by
// parentheses
// Their elements may be of any combination of valid types.
local tuple0: (felt, felt, felt) = (7, 9, 13);
// G. EVENTS
// Events allows a contract emit information during the course of its
// execution, that can be used outside of StarkNet.
// To create an event:
@event
func name_stored(address, name) {
}
// To emit an event:
name_stored.emit(address, name);
4. CONSTRUCTORS, EXTERNAL AND VIEW FUNCTIONS
// A. CONSTRUCTORS
// Constructors are a way to intialize state variables on contract
// deployment
// You create a constructor using the @constructor decorator
@constructor
func constructor{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}(_name: felt) {
let (caller) = get_caller_address();
names.write(caller, _name);
return ();
}
// B. EXTERNAL FUNCTIONS
// External functions are functions that modifies the state of the network
// You create an external function using the @external decorator
@external
func store_name{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}(_name: felt){
let (caller) = get_caller_address();
names.write(caller, _name);
stored_name.emit(caller, _name);
return ();
}
// C. VIEW FUNCTIONS
// View functions do not modify the state of the blockchain
// You can create a view function using the @view decorator
@view
func get_name{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}(_address: felt) -> (name: felt){
let (name) = names.read(_address);
return (name,);
}
// NB: Unlike Solidity, Cairo supports just External and View function
// types.
// You can alternatively also create an internal function by not adding any
// decorator to the function.
5. DECORATORS
// All functions in Cairo are specified by the `func` keyword, which can be
// confusing.
// Decorators are used by the compiler to distinguish between these
// functions.
// Here are the most common decorators you'll encounter in Cairo:
// 1. @storage_var — used for specifying state variables.
// 2. @constructor — used for specifying constructors.
// 3. @external — used for specifying functions that write to a state
// variable.
// 4. @event — used for specifying events
// 5. @view — used for specifying functions that reads from a state
// variable.
// 6. @contract_interface - used for specifying function interfaces.
// 7. @l1_handler — used for specifying functions that processes message
// sent from an L1 contract in a messaging bridge.
6. BUILTINS, HINTS & IMPLICIT ARGUMENTS
// A. BUILTINS
// Builtins are predefined optimized low-level execution units, which are
// added to Cairo’s CPU board.
// They help perform predefined computations like pedersen hashing, bitwise
// operations etc, which are expensive to perform in Vanilla Cairo.
// Each builtin in Cairo, is assigned a separate memory location,
// accessible through regular Cairo memory calls using implicit parameters.
// You specify them using the %builtins directive
// Here is a list of available builtins in Cairo:
// 1. output — the output builtin is used for writing program outputs
// 2. pedersen — the pedersen builtin is used for pedersen hashing
// computations
// 3. range_check — This builtin is mostly used for integer comparisons,
// and facilitates check to confirm that a field element is within a range [0,
// 2^128)
// 4. ecdsa — the ecdsa builtin is used for verifying ECDSA signatures
// 5. bitwise — the bitwise builtin is used for carrying out bitwise
// operations on felts
// B. HINTS
// Hints are pieces of Python codes, which contains instructions that only
// the prover sees and executes
// From the point of view of the verifier these hints do not exist
// To specify a hint in Cairo, you need to encapsulate it within %{ and%}
// Its good practice to avoid using hints as much as you can in your
// contracts, as hints are not added to the bytecode, and thus do not count in the
// total number of execution steps.
%{
# Python hint goes here
%}
// C. IMPLICIT ARGUMENTS
// Implicit arguments are not restricted to the function body, but can be
// inherited by other functions calls that require them.
// Implicit arguments are passed in between curly bracelets, like you can
// see below:
func store_name{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}(_name: felt){
let (caller) = get_caller_address();
names.write(caller, _name);
stored_name.emit(caller, _name);
return ();
}
7. ERROR MESSAGES & ACCESS CONTROLS
// You can create custom errors in Cairo which is outputted to the user
// upon failed execution.
// This can be very useful for implementing checks and proper access
// control mechanisms.
// An example is preventing a user to call a function except user is admin.
// imports
from starkware.starknet.common.syscalls import get_caller_address
// create an admin constant
const ADMIN =
0x01C6cfC1DB2ae90dACEA243F0a8C2F4e32560F7cDD398e4dA2Cc56B733774E9b
// implement access control
with_attr error_message("You do not have access to make this action!"){
let (caller) = get_caller_address();
assert ADMIN = caller;
}
// using an assert statement throws if condition is not true, thus
// returning the specified error.
8. CONTRACT INTERFACES
// Contract interfaces provide a means for one contract to invoke or call
// the external function of another contract.
// To create a contract interface, you use the @contract_interface keyword
@contract_interface
namespace IENS {
func store_name(_name: felt) {
}
func get_name(_address: felt) -> (name: felt) {
}
}
// Once a contract interface is specified, any contract can make calls to
// that contract passing in the contract address as the first parameter like this:
IENS.store_name(contract_address, _name);
// Note that Interfaces excludes the function body/logic and the implicit
// arguments.
9. RECURSIONS
// Due to the unavailability of loops, Recursions are the go-to for similar
// operations.
// In simple terms, a recursive function is one which calls itself
// repeatedly.
// A good example to demonstrate this is writing a function for getting the
// nth fibonacci number:
@external
func fibonacci{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}(n : felt) -> (result : felt){
alloc_locals;
if (n == 0){
return (0);
}
if (n == 1){
return (1);
}
let (local x) = fibonacci(n - 1);
let (local y) = fibonacci(n - 2);
return (result=(x + y));
}
// The nth fibonacci term is the sum of the nth - 1 and the nth - 2
// numbers, that's why we get these two as (x, y) using recursion.
// NB: when implementing recursive functions, always remember to implement
// a base case (n==0, n==1 in our case), to prevent stack overflow.
Some low-level stuffs
10. REGISTERS
// Registers holds values that may change over time.
// There are 3 major types of Registers:
// 1. ap (allocation pointer) points to a yet unused memory. Temporary
// variables created using `let`, `tempvar` are held here, and thus susceptible to
// being revoked
// 2. fp (frame pointer) points to the frame of the current function. The
// address of all the function arguments and local variables are relative to this
// register and as such can never be revoked
// 3. pc (program counter) points to the current instruction
11. REVOKED REFERENCES
// Revoked references occurs when there is a call instruction to another
// function, between the definition of a reference variable that depends on
// `ap`(temp variables) and its usage. This occurs as the compiler may not be able
// to compute the change of `ap` (as one may jump to the label from another place
// in the program, or call a function that might change ap in an unknown way).
// Here is an example to demonstrate what I mean:
@external
func get_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}() -> (res: felt) {
return (res=100);
}
@external
func double_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}() -> (res: felt) {
let multiplier = 2;
let (balance) = get_balance();
let new_balance = balance * multiplier;
return (res=new_balance);
}
// If you run that code, you'll run into the revoked reference error as we
// are trying to access the `multiplier` variable after calling the get_balance
// function;
// To solve revoked references, In simple cases you can resolve this issue,
// by adding the keyword, `alloc_locals` within function scopes, but in most
// complex cases you might need to create a local variable to resolve it.
// resolving the `double_balance` function:
@external
func double_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}() -> (res: felt) {
alloc_locals;
let multiplier = 2;
let (balance) = get_balance();
let new_balance = balance * multiplier;
return (res=new_balance);
}
Miscellaneous
12. Understanding Cairo's punctuations
// ; (semicolon). Used at the end of each instruction
// ( ) (parentheses). Used in a function declaration, if statements, and in
// a tuple declaration
// { } (curly brackets). Used in a declaration of implicit arguments and to
// define code blocks.
// [ ] (square brackets). Standalone brackets represent the value at a
// particular address location (such as the allocation pointer, [ap]). Brackets
// following a pointer or a tuple act as a subscript operator, where x[2]
// represents the element with index 2 in x.
// * Single asterisk. Refers to the pointer of an expression.
// % Percent sign. Appears at the start of a directive, such as %builtins
// or %lang.
// %{ %} Represents Python hints.
// _ (underscore). A placeholder to handle values that are not used, such
// as an unused function return value.
FULL CONTRACT EXAMPLE
Below is a simple automated market maker contract example that implements most of what we just learnt! Re-write, deploy, have fun!
%lang starknet
from starkware.cairo.common.cairo_builtins import HashBuiltin
from starkware.cairo.common.hash import hash2
from starkware.cairo.common.alloc import alloc
from starkware.cairo.common.math import (assert_le, assert_nn_le,
unsigned_div_rem)
from starkware.starknet.common.syscalls import (get_caller_address,
storage_read, storage_write)
//
// CONSTANTS
//
// @dev the maximum amount of each token that belongs to the AMM
const BALANCE_UPPER_BOUND = 2 ** 64;
const TOKEN_TYPE_A = 1;
const TOKEN_TYPE_B = 2;
// @dev Ensure the user's balances are much smaller than the pool's balance
const POOL_UPPER_BOUND = 2 ** 30;
const ACCOUNT_BALANCE_BOUND = 1073741; // (2 ** 30 / 1000)
//
// STORAGE VARIABLES
//
// @dev A map from account and token type to corresponding balance
@storage_var
func account_balance(account_id: felt, token_type: felt) -> (balance: felt){
}
// @dev a map from token type to corresponding pool balance
@storage_var
func pool_balance(token_type: felt) -> (balance: felt) {
}
//
// GETTERS
//
// @dev returns account balance for a given token
// @param account_id Account to be queried
// @param token_type Token to be queried
@view
func get_account_token_balance{syscall_ptr: felt*, pedersen_ptr:
HashBuiltin*, range_check_ptr}(
account_id: felt, token_type: felt
) -> (balance: felt) {
return account_balance.read(account_id, token_type);
}
// @dev return the pool's balance
// @param token_type Token type to get pool balance
@view
func get_pool_token_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}(
token_type: felt
) -> (balance: felt) {
return pool_balance.read(token_type);
}
//
// EXTERNALS
//
// @dev set pool balance for a given token
// @param token_type Token whose balance is to be set
// @param balance Amount to be set as balance
@external
func set_pool_token_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}(
token_type: felt, balance: felt
) {
with_attr error_message("exceeds maximum allowed tokens!"){
assert_nn_le(balance, BALANCE_UPPER_BOUND - 1);
}
pool_balance.write(token_type, balance);
return ();
}
// @dev add demo token to the given account
// @param token_a_amount amount of token a to be added
// @param token_b_amount amount of token b to be added
@external
func add_demo_token{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}(
token_a_amount: felt, token_b_amount: felt
) {
alloc_locals;
let (account_id) = get_caller_address();
modify_account_balance(account_id=account_id, token_type=TOKEN_TYPE_A,
amount=token_a_amount);
modify_account_balance(account_id=account_id, token_type=TOKEN_TYPE_B,
amount=token_b_amount);
return ();
}
// @dev intialize AMM
// @param token_a amount of token a to be set in pool
// @param token_b amount of token b to be set in pool
@external
func init_pool{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}(
token_a: felt, token_b: felt
) {
with_attr error_message("exceeds maximum allowed tokens!"){
assert_nn_le(token_a, POOL_UPPER_BOUND - 1);
assert_nn_le(token_b, POOL_UPPER_BOUND - 1);
}
set_pool_token_balance(token_type=TOKEN_TYPE_A, balance=token_a);
set_pool_token_balance(token_type=TOKEN_TYPE_B, balance=token_b);
return ();
}
// @dev swaps token between the given account and the pool
// @param token_from token to be swapped
// @param amount_from amount of token to be swapped
// @return amount_to the token swapped to
@external
func swap{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(
token_from: felt, amount_from: felt
) -> (amount_to: felt) {
alloc_locals;
let (account_id) = get_caller_address();
// verify token_from is TOKEN_TYPE_A or TOKEN_TYPE_B
with_attr error_message("token not allowed in pool!"){
assert (token_from - TOKEN_TYPE_A) * (token_from - TOKEN_TYPE_B) = 0;
}
// check requested amount_from is valid
with_attr error_message("exceeds maximum allowed tokens!"){
assert_nn_le(amount_from, BALANCE_UPPER_BOUND - 1);
}
// check user has enough funds
let (account_from_balance) =
get_account_token_balance(account_id=account_id, token_type=token_from);
with_attr error_message("insufficient balance!"){
assert_le(amount_from, account_from_balance);
}
let (token_to) = get_opposite_token(token_type=token_from);
let (amount_to) = do_swap(account_id=account_id, token_from=token_from,
token_to=token_to, amount_from=amount_from);
return (amount_to=amount_to);
}
//
// INTERNALS
//
// @dev internal function that updates account balance for a given token
// @param account_id Account whose balance is to be modified
// @param token_type Token type to be modified
// @param amount Amount Amount to be added
func modify_account_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}(
account_id: felt, token_type: felt, amount: felt
) {
let (current_balance) = account_balance.read(account_id, token_type);
tempvar new_balance = current_balance + amount;
with_attr error_message("exceeds maximum allowed tokens!"){
assert_nn_le(new_balance, BALANCE_UPPER_BOUND - 1);
}
account_balance.write(account_id=account_id, token_type=token_type,
value=new_balance);
return ();
}
// @dev internal function that swaps tokens between the given account and
// the pool
// @param account_id Account whose tokens are to be swapped
// @param token_from Token type to be swapped from
// @param token_to Token type to be swapped to
// @param amount_from Amount to be swapped
func do_swap{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}(
account_id: felt, token_from: felt, token_to: felt, amount_from: felt
) -> (amount_to: felt) {
alloc_locals;
// get pool balance
let (local amm_from_balance) = get_pool_token_balance(token_type =
token_from);
let (local amm_to_balance) =
get_pool_token_balance(token_type=token_to);
// calculate swap amount
let (local amount_to, _) = unsigned_div_rem((amm_to_balance *
amount_from), (amm_from_balance + amount_from));
// update token_from balances
modify_account_balance(account_id=account_id, token_type=token_from,
amount=-amount_from);
set_pool_token_balance(token_type=token_from, balance=(amm_from_balance
+ amount_from));
// update token_to balances
modify_account_balance(account_id=account_id, token_type=token_to,
amount=amount_to);
set_pool_token_balance(token_type=token_to, balance=(amm_to_balance -
amount_to));
return (amount_to=amount_to);
}
// @dev internal function to get the opposite token type
// @param token_type Token whose opposite pair needs to be gotten
func get_opposite_token(token_type: felt) -> (t: felt) {
if(token_type == TOKEN_TYPE_A) {
return (t=TOKEN_TYPE_B);
} else {
return (t=TOKEN_TYPE_A);
}
}
Additional Resources
- Official documentation
- Starknet EDU
- Journey through Cairo
- Demystifying Cairo whitepaper
- Learn about StarkNet with Argent
Development Frameworks
Helpful Libraries
Educational Repos
- StarkNet Cairo 101
- StarkNet ERC721
- StarkNet ERC20
- L1 -> L2 Messaging
- StarkNet Debug
- StarkNet Accounts
- Min-Starknet
Security
- Amarna static analysis for Cairo programs
- Cairo and StarkNet security by Ctrl03
- How to hack almost any Cairo smart contract
- Analyzing Cairo code using Armana
Future TO-DOs
Update tutorial to fit Cairo 1.0