mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-12-23 09:41:36 +00:00
one more quick run over the code
This commit is contained in:
parent
c8ad0d0809
commit
9fab30a26a
@ -30,7 +30,7 @@ This is based on Julia 1.0.0
|
||||
3 # => 3 (Int64)
|
||||
3.2 # => 3.2 (Float64)
|
||||
2 + 1im # => 2 + 1im (Complex{Int64})
|
||||
2 // 3 # => 2//3 (Rational{Int64})
|
||||
2 // 3 # => 2 // 3 (Rational{Int64})
|
||||
|
||||
# All of the normal infix operators are available.
|
||||
1 + 1 # => 2
|
||||
@ -81,29 +81,18 @@ false
|
||||
2 < 3 < 2 # => false
|
||||
|
||||
# Strings are created with "
|
||||
try
|
||||
"This is a string."
|
||||
catch ; end
|
||||
|
||||
# Julia has several types of strings, including ASCIIString and UTF8String.
|
||||
# More on this in the Types section.
|
||||
"This is a string."
|
||||
|
||||
# Character literals are written with '
|
||||
try
|
||||
'a'
|
||||
catch ; end
|
||||
'a'
|
||||
|
||||
# Some strings can be indexed like an array of characters
|
||||
try
|
||||
"This is a string"[1] # => 'T' # Julia indexes from 1
|
||||
catch ; end
|
||||
# However, this is will not work well for UTF8 strings,
|
||||
# so iterating over strings is recommended (map, for loops, etc).
|
||||
# Strings are UTF8 encoded. Only if they contain only ASCII characters can
|
||||
# they be safely indexed.
|
||||
ascii("This is a string")[1] # => 'T' # Julia indexes from 1
|
||||
# Otherwise, iterating over strings is recommended (map, for loops, etc).
|
||||
|
||||
# $ can be used for string interpolation:
|
||||
try
|
||||
"2 + 2 = $(2 + 2)" # => "2 + 2 = 4"
|
||||
catch ; end
|
||||
"2 + 2 = $(2 + 2)" # => "2 + 2 = 4"
|
||||
# You can put any Julia expression inside the parentheses.
|
||||
|
||||
# Another way to format strings is the printf macro from the stdlib Printf.
|
||||
@ -157,19 +146,19 @@ SomeOtherVar123! = 6 # => 6
|
||||
# functions are sometimes called mutating functions or in-place functions.
|
||||
|
||||
# Arrays store a sequence of values indexed by integers 1 through n:
|
||||
a = Int64[] # => 0-element Int64 Array
|
||||
a = Int64[] # => 0-element Int64 Array
|
||||
|
||||
# 1-dimensional array literals can be written with comma-separated values.
|
||||
b = [4, 5, 6] # => 3-element Int64 Array: [4, 5, 6]
|
||||
b = [4; 5; 6] # => 3-element Int64 Array: [4, 5, 6]
|
||||
b[1] # => 4
|
||||
b[end] # => 6
|
||||
b = [4, 5, 6] # => 3-element Int64 Array: [4, 5, 6]
|
||||
b = [4; 5; 6] # => 3-element Int64 Array: [4, 5, 6]
|
||||
b[1] # => 4
|
||||
b[end] # => 6
|
||||
|
||||
# 2-dimensional arrays use space-separated values and semicolon-separated rows.
|
||||
matrix = [1 2; 3 4] # => 2x2 Int64 Array: [1 2; 3 4]
|
||||
matrix = [1 2; 3 4] # => 2x2 Int64 Array: [1 2; 3 4]
|
||||
|
||||
# Arrays of a particular Type
|
||||
b = Int8[4, 5, 6] # => 3-element Int8 Array: [4, 5, 6]
|
||||
# Arrays of a particular type
|
||||
b = Int8[4, 5, 6] # => 3-element Int8 Array: [4, 5, 6]
|
||||
|
||||
# Add stuff to the end of a list with push! and append!
|
||||
push!(a, 1) # => [1]
|
||||
@ -184,11 +173,11 @@ pop!(b) # => 6 and b is now [4,5]
|
||||
# Let's put it back
|
||||
push!(b, 6) # b is now [4,5,6] again.
|
||||
|
||||
a[1] # => 1 # remember that Julia indexes from 1, not 0!
|
||||
a[1] # => 1 # remember that Julia indexes from 1, not 0!
|
||||
|
||||
# end is a shorthand for the last index. It can be used in any
|
||||
# indexing expression
|
||||
a[end] # => 6
|
||||
a[end] # => 6
|
||||
|
||||
# we also have popfirst! and pushfirst!
|
||||
popfirst!(a) # => 1 and a is now [2,4,3,4,5,6]
|
||||
@ -196,28 +185,30 @@ pushfirst!(a, 7) # => [7,2,4,3,4,5,6]
|
||||
|
||||
# Function names that end in exclamations points indicate that they modify
|
||||
# their argument.
|
||||
arr = [5,4,6] # => 3-element Int64 Array: [5,4,6]
|
||||
arr = [5,4,6] # => 3-element Int64 Array: [5,4,6]
|
||||
sort(arr) # => [4,5,6]; arr is still [5,4,6]
|
||||
sort!(arr) # => [4,5,6]; arr is now [4,5,6]
|
||||
|
||||
# Looking out of bounds is a BoundsError
|
||||
try
|
||||
a[0] # => ERROR: BoundsError() in getindex at array.jl:270
|
||||
a[end + 1] # => ERROR: BoundsError() in getindex at array.jl:270
|
||||
a[0]
|
||||
# => BoundsError: attempt to access 7-element Array{Int64,1} at index [0]
|
||||
a[end + 1]
|
||||
# => BoundsError: attempt to access 7-element Array{Int64,1} at index [8]
|
||||
catch e
|
||||
println(e)
|
||||
end
|
||||
|
||||
# Errors list the line and file they came from, even if it's in the standard
|
||||
# library. If you built Julia from source, you can look in the folder base
|
||||
# inside the julia folder to find these files.
|
||||
# library. You can look in the folder share/julia inside the julia folder to
|
||||
# find these files.
|
||||
|
||||
# You can initialize arrays from ranges
|
||||
a = [1:5;] # => 5-element Int64 Array: [1,2,3,4,5]
|
||||
a = [1:5;] # => 5-element Int64 Array: [1,2,3,4,5]
|
||||
|
||||
# You can look at ranges with slice syntax.
|
||||
a[1:3] # => [1, 2, 3]
|
||||
a[2:end] # => [2, 3, 4, 5]
|
||||
a[1:3] # => [1, 2, 3]
|
||||
a[2:end] # => [2, 3, 4, 5]
|
||||
|
||||
# Remove elements from an array by index with splice!
|
||||
arr = [3,4,5]
|
||||
@ -235,16 +226,16 @@ length(a) # => 8
|
||||
|
||||
# Tuples are immutable.
|
||||
tup = (1, 2, 3) # => (1,2,3) # an (Int64,Int64,Int64) tuple.
|
||||
tup[1] # => 1
|
||||
tup[1] # => 1
|
||||
try
|
||||
tup[1] = 3 # => ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64)
|
||||
catch e
|
||||
println(e)
|
||||
end
|
||||
|
||||
# Many list functions also work on tuples
|
||||
# Many array functions also work on tuples
|
||||
length(tup) # => 3
|
||||
tup[1:2] # => (1,2)
|
||||
tup[1:2] # => (1,2)
|
||||
in(2, tup) # => true
|
||||
|
||||
# You can unpack tuples into variables
|
||||
@ -266,19 +257,20 @@ empty_dict = Dict() # => Dict{Any,Any}()
|
||||
|
||||
# You can create a dictionary using a literal
|
||||
filled_dict = Dict("one" => 1, "two" => 2, "three" => 3)
|
||||
# => Dict{ASCIIString,Int64}
|
||||
# => Dict{String,Int64}
|
||||
|
||||
# Look up values with []
|
||||
filled_dict["one"] # => 1
|
||||
filled_dict["one"] # => 1
|
||||
|
||||
# Get all keys
|
||||
keys(filled_dict)
|
||||
# => KeyIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
|
||||
# => Base.KeySet for a Dict{String,Int64} with 3 entries. Keys:
|
||||
# "two", "one", "three"
|
||||
# Note - dictionary keys are not sorted or in the order you inserted them.
|
||||
|
||||
# Get all values
|
||||
values(filled_dict)
|
||||
# => ValueIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
|
||||
# => Base.ValueIterator{Dict{String,Int64}} with 3 entries. Values: 2, 1, 3
|
||||
# Note - Same as above regarding key ordering.
|
||||
|
||||
# Check for existence of keys in a dictionary with in, haskey
|
||||
@ -289,33 +281,33 @@ haskey(filled_dict, 1) # => false
|
||||
|
||||
# Trying to look up a non-existent key will raise an error
|
||||
try
|
||||
filled_dict["four"] # => ERROR: key not found: four in getindex at dict.jl:489
|
||||
filled_dict["four"] # => KeyError: key "four" not found
|
||||
catch e
|
||||
println(e)
|
||||
end
|
||||
|
||||
# Use the get method to avoid that error by providing a default value
|
||||
# get(dictionary,key,default_value)
|
||||
# get(dictionary, key, default_value)
|
||||
get(filled_dict, "one", 4) # => 1
|
||||
get(filled_dict, "four", 4) # => 4
|
||||
|
||||
# Use Sets to represent collections of unordered, unique values
|
||||
empty_set = Set() # => Set{Any}()
|
||||
# Initialize a set with values
|
||||
filled_set = Set([1,2,2,3,4]) # => Set{Int64}(1,2,3,4)
|
||||
filled_set = Set([1, 2, 2, 3, 4]) # => Set([4, 2, 3, 1])
|
||||
|
||||
# Add more values to a set
|
||||
push!(filled_set, 5) # => Set{Int64}(5,4,2,3,1)
|
||||
push!(filled_set, 5) # => Set([4, 2, 3, 5, 1])
|
||||
|
||||
# Check if the values are in the set
|
||||
in(2, filled_set) # => true
|
||||
in(10, filled_set) # => false
|
||||
|
||||
# There are functions for set intersection, union, and difference.
|
||||
other_set = Set([3, 4, 5, 6]) # => Set{Int64}(6,4,5,3)
|
||||
intersect(filled_set, other_set) # => Set{Int64}(3,4,5)
|
||||
union(filled_set, other_set) # => Set{Int64}(1,2,3,4,5,6)
|
||||
setdiff(Set([1,2,3,4]), Set([2,3,5])) # => Set{Int64}(1,4)
|
||||
other_set = Set([3, 4, 5, 6]) # => Set([4, 3, 5, 6])
|
||||
intersect(filled_set, other_set) # => Set([4, 3, 5])
|
||||
union(filled_set, other_set) # => Set([4, 2, 3, 5, 6, 1])
|
||||
setdiff(Set([1,2,3,4]), Set([2,3,5])) # => Set([4, 1])
|
||||
|
||||
|
||||
####################################################
|
||||
@ -356,8 +348,9 @@ end
|
||||
# cat is a mammal
|
||||
# mouse is a mammal
|
||||
|
||||
for a in Dict("dog" => "mammal", "cat" => "mammal", "mouse" => "mammal")
|
||||
println("$(a[1]) is a $(a[2])")
|
||||
for pair in Dict("dog" => "mammal", "cat" => "mammal", "mouse" => "mammal")
|
||||
from, to = pair
|
||||
println("$from is a $to")
|
||||
end
|
||||
# prints:
|
||||
# dog is a mammal
|
||||
@ -509,8 +502,8 @@ map(add_10, [1,2,3]) # => [11, 12, 13]
|
||||
filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
|
||||
|
||||
# We can use list comprehensions for nicer maps
|
||||
[add_10(i) for i = [1, 2, 3]] # => [11, 12, 13]
|
||||
[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
|
||||
[add_10(i) for i = [1, 2, 3]] # => [11, 12, 13]
|
||||
[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
|
||||
|
||||
####################################################
|
||||
## 5. Types
|
||||
@ -703,9 +696,9 @@ fight(Lion("RAR"), Lion("brown", "rarrr")) # => prints The lions come to a tie
|
||||
# Under the hood
|
||||
# You can take a look at the llvm and the assembly code generated.
|
||||
|
||||
square_area(l) = l * l # square_area (generic function with 1 method)
|
||||
square_area(l) = l * l # square_area (generic function with 1 method)
|
||||
|
||||
square_area(5) #25
|
||||
square_area(5) # => 25
|
||||
|
||||
# What happens when we feed square_area an integer?
|
||||
code_native(square_area, (Int32,))
|
||||
|
Loading…
Reference in New Issue
Block a user