mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2025-01-10 21:06:21 +00:00
1352 lines
47 KiB
C#
1352 lines
47 KiB
C#
---
|
|
language: C#
|
|
contributors:
|
|
- ["Irfan Charania", "https://github.com/irfancharania"]
|
|
- ["Max Yankov", "https://github.com/golergka"]
|
|
- ["Melvyn Laïly", "http://x2a.yt"]
|
|
- ["Shaun McCarthy", "http://www.shaunmccarthy.com"]
|
|
- ["Wouter Van Schandevijl", "http://github.com/laoujin"]
|
|
- ["Jo Pearce", "http://github.com/jdpearce"]
|
|
- ["Chris Zimmerman", "https://github.com/chriszimmerman"]
|
|
- ["Shawn McGuire", "https://github.com/bigbash"]
|
|
filename: LearnCSharp.cs
|
|
---
|
|
|
|
C# is an elegant and type-safe object-oriented language that enables developers to build a variety of secure and robust applications that run on the cross-platform .NET framework.
|
|
|
|
[Read more here.](https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/)
|
|
|
|
```c#
|
|
// Single-line comments start with //
|
|
|
|
/*
|
|
Multi-line comments look like this
|
|
*/
|
|
|
|
/// <summary>
|
|
/// This is an XML documentation comment which can be used to generate external
|
|
/// documentation or provide context help within an IDE
|
|
/// </summary>
|
|
/// <param name="firstParam">This is some parameter documentation for firstParam</param>
|
|
/// <returns>Information on the returned value of a function</returns>
|
|
public void MethodOrClassOrOtherWithParsableHelp(string firstParam) { }
|
|
|
|
// Specify the namespaces this source code will be using
|
|
// The namespaces below are all part of the standard .NET Framework Class Library
|
|
using System;
|
|
using System.Collections.Generic;
|
|
using System.Dynamic;
|
|
using System.Linq;
|
|
using System.Net;
|
|
using System.Threading.Tasks;
|
|
using System.IO;
|
|
|
|
// But this one is not:
|
|
using System.Data.Entity;
|
|
// In order to be able to use it, you need to add a dll reference
|
|
// This can be done with the NuGet package manager: `Install-Package EntityFramework`
|
|
|
|
// Namespaces define scope to organize code into "packages" or "modules"
|
|
// Using this code from another source file: using Learning.CSharp;
|
|
|
|
// You can also do this in C# 10, it is called file-scoped namespaces.
|
|
// namespace Learning.CSharp;
|
|
|
|
namespace Learning.CSharp
|
|
{
|
|
// Each .cs file should at least contain a class with the same name as the file.
|
|
// You're allowed to do otherwise, but shouldn't for sanity.
|
|
public class LearnCSharp
|
|
{
|
|
// BASIC SYNTAX - skip to INTERESTING FEATURES if you have used Java or C++ before
|
|
public static void Syntax()
|
|
{
|
|
// Use Console.WriteLine to print lines
|
|
Console.WriteLine("Hello World");
|
|
Console.WriteLine(
|
|
"Integer: " + 10 +
|
|
" Double: " + 3.14 +
|
|
" Boolean: " + true);
|
|
|
|
// To print without a new line, use Console.Write
|
|
Console.Write("Hello ");
|
|
Console.Write("World");
|
|
|
|
///////////////////////////////////////////////////
|
|
// Types & Variables
|
|
//
|
|
// Declare a variable using <type> <name>
|
|
///////////////////////////////////////////////////
|
|
|
|
// Sbyte - Signed 8-bit integer
|
|
// (-128 <= sbyte <= 127)
|
|
sbyte fooSbyte = 100;
|
|
|
|
// Byte - Unsigned 8-bit integer
|
|
// (0 <= byte <= 255)
|
|
byte fooByte = 100;
|
|
|
|
// Short - 16-bit integer
|
|
// Signed - (-32,768 <= short <= 32,767)
|
|
// Unsigned - (0 <= ushort <= 65,535)
|
|
short fooShort = 10000;
|
|
ushort fooUshort = 10000;
|
|
|
|
// Integer - 32-bit integer
|
|
int fooInt = 1; // (-2,147,483,648 <= int <= 2,147,483,647)
|
|
uint fooUint = 1; // (0 <= uint <= 4,294,967,295)
|
|
|
|
// Long - 64-bit integer
|
|
long fooLong = 100000L; // (-9,223,372,036,854,775,808 <= long <= 9,223,372,036,854,775,807)
|
|
ulong fooUlong = 100000L; // (0 <= ulong <= 18,446,744,073,709,551,615)
|
|
// Numbers default to being int or uint depending on size.
|
|
// L is used to denote that this variable value is of type long or ulong
|
|
|
|
// Double - Double-precision 64-bit IEEE 754 Floating Point
|
|
double fooDouble = 123.4; // Precision: 15-16 digits
|
|
|
|
// Float - Single-precision 32-bit IEEE 754 Floating Point
|
|
float fooFloat = 234.5f; // Precision: 7 digits
|
|
// f is used to denote that this variable value is of type float
|
|
|
|
// Decimal - a 128-bits data type, with more precision than other floating-point types,
|
|
// suited for financial and monetary calculations
|
|
decimal fooDecimal = 150.3m;
|
|
|
|
// Boolean - true & false
|
|
bool fooBoolean = true; // or false
|
|
|
|
// Char - A single 16-bit Unicode character
|
|
char fooChar = 'A';
|
|
|
|
// Strings -- unlike the previous base types which are all value types,
|
|
// a string is a reference type. That is, you can set it to null
|
|
string fooString = "\"escape\" quotes and add \n (new lines) and \t (tabs)";
|
|
Console.WriteLine(fooString);
|
|
|
|
// You can access each character of the string with an indexer:
|
|
char charFromString = fooString[1]; // => 'e'
|
|
// Strings are immutable: you can't do fooString[1] = 'X';
|
|
|
|
// Compare strings with current culture, ignoring case
|
|
string.Compare(fooString, "x", StringComparison.CurrentCultureIgnoreCase);
|
|
|
|
// Formatting, based on sprintf
|
|
string fooFs = string.Format("Check Check, {0} {1}, {0} {1:0.0}", 1, 2);
|
|
|
|
// Dates & Formatting
|
|
DateTime fooDate = DateTime.Now;
|
|
Console.WriteLine(fooDate.ToString("hh:mm, dd MMM yyyy"));
|
|
|
|
// Verbatim String
|
|
// You can use the @ symbol before a string literal to escape all characters in the string
|
|
string path = "C:\\Users\\User\\Desktop";
|
|
string verbatimPath = @"C:\Users\User\Desktop";
|
|
Console.WriteLine(path == verbatimPath); // => true
|
|
|
|
// You can split a string over two lines with the @ symbol. To escape " use ""
|
|
string bazString = @"Here's some stuff
|
|
on a new line! ""Wow!"", the masses cried";
|
|
|
|
// Use const or read-only to make a variable immutable
|
|
// const values are calculated at compile time
|
|
const int HoursWorkPerWeek = 9001;
|
|
|
|
///////////////////////////////////////////////////
|
|
// Data Structures
|
|
///////////////////////////////////////////////////
|
|
|
|
// Arrays - zero indexed
|
|
// The array size must be decided upon declaration
|
|
// The format for declaring an array is
|
|
// <datatype>[] <var name> = new <datatype>[<array size>];
|
|
int[] intArray = new int[10];
|
|
|
|
// Another way to declare & initialize an array
|
|
int[] y = { 9000, 1000, 1337 };
|
|
|
|
// Indexing an array - Accessing an element
|
|
Console.WriteLine("intArray @ 0: " + intArray[0]);
|
|
// Arrays are mutable.
|
|
intArray[1] = 1;
|
|
|
|
// Lists
|
|
// Lists are used more frequently than arrays as they are more flexible
|
|
// The format for declaring a list is
|
|
// List<datatype> <var name> = new List<datatype>();
|
|
List<int> intList = new List<int>();
|
|
List<string> stringList = new List<string>();
|
|
List<int> z = new List<int> { 9000, 1000, 1337 }; // initialize
|
|
// The <> are for generics - Check out the cool stuff section
|
|
|
|
// Lists don't default to a value;
|
|
// A value must be added before accessing the index
|
|
intList.Add(1);
|
|
Console.WriteLine("intList at 0: " + intList[0]);
|
|
|
|
// Other data structures to check out:
|
|
// Stack/Queue
|
|
// Dictionary (an implementation of a hash map)
|
|
// HashSet
|
|
// Read-only Collections
|
|
// Tuple (.NET 4+)
|
|
|
|
///////////////////////////////////////
|
|
// Operators
|
|
///////////////////////////////////////
|
|
Console.WriteLine("\n->Operators");
|
|
|
|
int i1 = 1, i2 = 2; // Shorthand for multiple declarations
|
|
|
|
// Arithmetic is straightforward
|
|
Console.WriteLine(i1 + i2 - i1 * 3 / 7); // => 3
|
|
|
|
// Modulo
|
|
Console.WriteLine("11%3 = " + (11 % 3)); // => 2
|
|
|
|
// Comparison operators
|
|
Console.WriteLine("3 == 2? " + (3 == 2)); // => false
|
|
Console.WriteLine("3 != 2? " + (3 != 2)); // => true
|
|
Console.WriteLine("3 > 2? " + (3 > 2)); // => true
|
|
Console.WriteLine("3 < 2? " + (3 < 2)); // => false
|
|
Console.WriteLine("2 <= 2? " + (2 <= 2)); // => true
|
|
Console.WriteLine("2 >= 2? " + (2 >= 2)); // => true
|
|
|
|
// Bitwise operators!
|
|
/*
|
|
~ Unary bitwise complement
|
|
<< Signed left shift
|
|
>> Signed right shift
|
|
& Bitwise AND
|
|
^ Bitwise exclusive OR
|
|
| Bitwise inclusive OR
|
|
*/
|
|
|
|
// Incrementing
|
|
int i = 0;
|
|
Console.WriteLine("\n->Inc/Dec-rement");
|
|
Console.WriteLine(i++); //Prints "0", i = 1. Post-Increment
|
|
Console.WriteLine(++i); //Prints "2", i = 2. Pre-Increment
|
|
Console.WriteLine(i--); //Prints "2", i = 1. Post-Decrement
|
|
Console.WriteLine(--i); //Prints "0", i = 0. Pre-Decrement
|
|
|
|
///////////////////////////////////////
|
|
// Control Structures
|
|
///////////////////////////////////////
|
|
Console.WriteLine("\n->Control Structures");
|
|
|
|
// If statements are C-like
|
|
int j = 10;
|
|
if (j == 10)
|
|
{
|
|
Console.WriteLine("I get printed");
|
|
}
|
|
else if (j > 10)
|
|
{
|
|
Console.WriteLine("I don't");
|
|
}
|
|
else
|
|
{
|
|
Console.WriteLine("I also don't");
|
|
}
|
|
|
|
// Ternary operators
|
|
// A simple if/else can be written as follows
|
|
// <condition> ? <true> : <false>
|
|
int toCompare = 17;
|
|
string isTrue = toCompare == 17 ? "True" : "False";
|
|
|
|
// While loop
|
|
int fooWhile = 0;
|
|
while (fooWhile < 100)
|
|
{
|
|
// Iterated 100 times, fooWhile 0->99
|
|
fooWhile++;
|
|
}
|
|
|
|
// Do While Loop
|
|
int fooDoWhile = 0;
|
|
do
|
|
{
|
|
// Start iteration 100 times, fooDoWhile 0->99
|
|
if (false)
|
|
continue; // skip the current iteration
|
|
|
|
fooDoWhile++;
|
|
|
|
if (fooDoWhile == 50)
|
|
break; // breaks from the loop completely
|
|
|
|
} while (fooDoWhile < 100);
|
|
|
|
// for loop structure => for(<start_statement>; <conditional>; <step>)
|
|
for (int fooFor = 0; fooFor < 10; fooFor++)
|
|
{
|
|
// Iterated 10 times, fooFor 0->9
|
|
}
|
|
|
|
// For Each Loop
|
|
// foreach loop structure => foreach(<iteratorType> <iteratorName> in <enumerable>)
|
|
// The foreach loop loops over any object implementing IEnumerable or IEnumerable<T>
|
|
// All the collection types (Array, List, Dictionary...) in the .NET framework
|
|
// implement one or both of these interfaces.
|
|
// (The ToCharArray() could be removed, because a string also implements IEnumerable)
|
|
foreach (char character in "Hello World".ToCharArray())
|
|
{
|
|
// Iterated over all the characters in the string
|
|
}
|
|
|
|
// Switch Case
|
|
// A switch works with byte, short, char, and int data types.
|
|
// It also works with enumerated types (discussed in Enum Types),
|
|
// the String class, and a few special classes that wrap
|
|
// primitive types: Character, Byte, Short, and Integer.
|
|
int month = 3;
|
|
string monthString;
|
|
switch (month)
|
|
{
|
|
case 1:
|
|
monthString = "January";
|
|
break;
|
|
case 2:
|
|
monthString = "February";
|
|
break;
|
|
case 3:
|
|
monthString = "March";
|
|
break;
|
|
// You can assign more than one case to an action
|
|
// But you can't add an action without a break before another case
|
|
// (if you want to do this, you would have to explicitly add a goto case x)
|
|
case 6:
|
|
case 7:
|
|
case 8:
|
|
monthString = "Summer time!!";
|
|
break;
|
|
default:
|
|
monthString = "Some other month";
|
|
break;
|
|
}
|
|
|
|
///////////////////////////////////////
|
|
// Converting Data Types And Typecasting
|
|
///////////////////////////////////////
|
|
|
|
// Converting data
|
|
|
|
// Convert String To Integer
|
|
// this will throw a FormatException on failure
|
|
int.Parse("123"); // returns an integer version of "123"
|
|
|
|
// TryParse will default to the type's default value on failure
|
|
// in this case 0
|
|
int tryInt;
|
|
if (int.TryParse("123", out tryInt)) // Function is boolean
|
|
Console.WriteLine(tryInt); // 123
|
|
|
|
// Convert Integer To String
|
|
// The Convert class has a number of methods to facilitate conversions
|
|
|
|
// String to int
|
|
|
|
// Better
|
|
bool result = int.TryParse(string, out var integer)
|
|
int.Parse(string);
|
|
|
|
// Not recommended
|
|
Convert.ToString(123);
|
|
|
|
// Int to string
|
|
tryInt.ToString();
|
|
|
|
// Casting
|
|
// Cast decimal 15 to an int
|
|
// and then implicitly cast to long
|
|
long x = (int) 15M;
|
|
}
|
|
|
|
///////////////////////////////////////
|
|
// CLASSES - see definitions at end of file
|
|
///////////////////////////////////////
|
|
public static void Classes()
|
|
{
|
|
// See Declaration of objects at end of file
|
|
|
|
// Use new to instantiate a class
|
|
Bicycle trek = new Bicycle();
|
|
|
|
// Call object methods
|
|
trek.SpeedUp(3); // You should always use setter and getter methods
|
|
trek.Cadence = 100;
|
|
|
|
// ToString is a convention to display the value of this Object.
|
|
Console.WriteLine("trek info: " + trek.Info());
|
|
|
|
// Instantiate a new Penny Farthing
|
|
PennyFarthing funbike = new PennyFarthing(1, 10);
|
|
Console.WriteLine("funbike info: " + funbike.Info());
|
|
|
|
Console.Read();
|
|
} // End main method
|
|
|
|
// Available in C# 9 and later, this is basically syntactic sugar for a class. Records are immutable*.
|
|
public record ARecord(string Csharp);
|
|
|
|
// CONSOLE ENTRY - A console application must have a main method as an entry point
|
|
public static void Main(string[] args)
|
|
{
|
|
OtherInterestingFeatures();
|
|
}
|
|
|
|
//
|
|
// INTERESTING FEATURES
|
|
//
|
|
|
|
// DEFAULT METHOD SIGNATURES
|
|
|
|
public // Visibility
|
|
static // Allows for direct call on class without object
|
|
int // Return Type,
|
|
MethodSignatures(
|
|
int maxCount, // First variable, expects an int
|
|
int count = 0, // will default the value to 0 if not passed in
|
|
int another = 3,
|
|
params string[] otherParams // captures all other parameters passed to method
|
|
)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
// Methods can have the same name, as long as the signature is unique
|
|
// A method that differs only in return type is not unique
|
|
public static void MethodSignatures(
|
|
ref int maxCount, // Pass by reference
|
|
out int count)
|
|
{
|
|
// the argument passed in as 'count' will hold the value of 15 outside of this function
|
|
count = 15; // out param must be assigned before control leaves the method
|
|
}
|
|
|
|
// GENERICS
|
|
// The classes for TKey and TValue is specified by the user calling this function.
|
|
// This method emulates Python's dict.setdefault()
|
|
public static TValue SetDefault<TKey, TValue>(
|
|
IDictionary<TKey, TValue> dictionary,
|
|
TKey key,
|
|
TValue defaultItem)
|
|
{
|
|
TValue result;
|
|
if (!dictionary.TryGetValue(key, out result))
|
|
return dictionary[key] = defaultItem;
|
|
return result;
|
|
}
|
|
|
|
// You can narrow down the objects that are passed in
|
|
public static void IterateAndPrint<T>(T toPrint) where T: IEnumerable<int>
|
|
{
|
|
// We can iterate, since T is a IEnumerable
|
|
foreach (var item in toPrint)
|
|
// Item is an int
|
|
Console.WriteLine(item.ToString());
|
|
}
|
|
|
|
// YIELD
|
|
// Usage of the "yield" keyword indicates that the method it appears in is an Iterator
|
|
// (this means you can use it in a foreach loop)
|
|
public static IEnumerable<int> YieldCounter(int limit = 10)
|
|
{
|
|
for (var i = 0; i < limit; i++)
|
|
yield return i;
|
|
}
|
|
|
|
// which you would call like this :
|
|
public static void PrintYieldCounterToConsole()
|
|
{
|
|
foreach (var counter in YieldCounter())
|
|
Console.WriteLine(counter);
|
|
}
|
|
|
|
// you can use more than one "yield return" in a method
|
|
public static IEnumerable<int> ManyYieldCounter()
|
|
{
|
|
yield return 0;
|
|
yield return 1;
|
|
yield return 2;
|
|
yield return 3;
|
|
}
|
|
|
|
// you can also use "yield break" to stop the Iterator
|
|
// this method would only return half of the values from 0 to limit.
|
|
public static IEnumerable<int> YieldCounterWithBreak(int limit = 10)
|
|
{
|
|
for (var i = 0; i < limit; i++)
|
|
{
|
|
if (i > limit/2) yield break;
|
|
yield return i;
|
|
}
|
|
}
|
|
|
|
public static void OtherInterestingFeatures()
|
|
{
|
|
// OPTIONAL PARAMETERS
|
|
MethodSignatures(3, 1, 3, "Some", "Extra", "Strings");
|
|
MethodSignatures(3, another: 3); // explicitly set a parameter, skipping optional ones
|
|
|
|
// BY REF AND OUT PARAMETERS
|
|
int maxCount = 0, count; // ref params must have value
|
|
MethodSignatures(ref maxCount, out count);
|
|
|
|
// EXTENSION METHODS
|
|
int i = 3;
|
|
i.Print(); // Defined below
|
|
|
|
// NULLABLE TYPES - great for database interaction / return values
|
|
// any value type (i.e. not a class) can be made nullable by suffixing a ?
|
|
// <type>? <var name> = <value>
|
|
int? nullable = null; // short hand for Nullable<int>
|
|
Console.WriteLine("Nullable variable: " + nullable);
|
|
bool hasValue = nullable.HasValue; // true if not null
|
|
|
|
// ?? is syntactic sugar for specifying default value (coalesce)
|
|
// in case variable is null
|
|
int notNullable = nullable ?? 0; // 0
|
|
|
|
// ?. is an operator for null-propagation - a shorthand way of checking for null
|
|
nullable?.Print(); // Use the Print() extension method if nullable isn't null
|
|
|
|
// IMPLICITLY TYPED VARIABLES - you can let the compiler work out what the type is:
|
|
var magic = "magic is a string, at compile time, so you still get type safety";
|
|
// magic = 9; will not work as magic is a string, not an int
|
|
|
|
// GENERICS
|
|
//
|
|
var phonebook = new Dictionary<string, string>() {
|
|
{"Sarah", "212 555 5555"} // Add some entries to the phone book
|
|
};
|
|
|
|
// Calling SETDEFAULT defined as a generic above
|
|
Console.WriteLine(SetDefault<string,string>(phonebook, "Shaun", "No Phone")); // No Phone
|
|
// nb, you don't need to specify the TKey and TValue since they can be
|
|
// derived implicitly
|
|
Console.WriteLine(SetDefault(phonebook, "Sarah", "No Phone")); // 212 555 5555
|
|
|
|
// LAMBDA EXPRESSIONS - allow you to write code in line
|
|
Func<int, int> square = (x) => x * x; // Last T item is the return value
|
|
Console.WriteLine(square(3)); // 9
|
|
|
|
// ERROR HANDLING - coping with an uncertain world
|
|
try
|
|
{
|
|
var funBike = PennyFarthing.CreateWithGears(6);
|
|
|
|
// will no longer execute because CreateWithGears throws an exception
|
|
string some = "";
|
|
if (true) some = null;
|
|
some.ToLower(); // throws a NullReferenceException
|
|
}
|
|
catch (NotSupportedException)
|
|
{
|
|
Console.WriteLine("Not so much fun now!");
|
|
}
|
|
catch (Exception ex) // catch all other exceptions
|
|
{
|
|
throw new ApplicationException("It hit the fan", ex);
|
|
// throw; // A rethrow that preserves the callstack
|
|
}
|
|
// catch { } // catch-all without capturing the Exception
|
|
finally
|
|
{
|
|
// executes after try or catch
|
|
}
|
|
|
|
// DISPOSABLE RESOURCES MANAGEMENT - let you handle unmanaged resources easily.
|
|
// Most of objects that access unmanaged resources (file handle, device contexts, etc.)
|
|
// implement the IDisposable interface. The using statement takes care of
|
|
// cleaning those IDisposable objects for you.
|
|
using (StreamWriter writer = new StreamWriter("log.txt"))
|
|
{
|
|
writer.WriteLine("Nothing suspicious here");
|
|
// At the end of scope, resources will be released.
|
|
// Even if an exception is thrown.
|
|
}
|
|
|
|
// PARALLEL FRAMEWORK
|
|
// https://devblogs.microsoft.com/csharpfaq/parallel-programming-in-net-framework-4-getting-started/
|
|
|
|
var words = new List<string> {"dog", "cat", "horse", "pony"};
|
|
|
|
Parallel.ForEach(words,
|
|
new ParallelOptions() { MaxDegreeOfParallelism = 4 },
|
|
word =>
|
|
{
|
|
Console.WriteLine(word);
|
|
}
|
|
);
|
|
|
|
// Running this will produce different outputs
|
|
// since each thread finishes at different times.
|
|
// Some example outputs are:
|
|
// cat dog horse pony
|
|
// dog horse pony cat
|
|
|
|
// DYNAMIC OBJECTS (great for working with other languages)
|
|
dynamic student = new ExpandoObject();
|
|
student.FirstName = "First Name"; // No need to define class first!
|
|
|
|
// You can even add methods (returns a string, and takes in a string)
|
|
student.Introduce = new Func<string, string>(
|
|
(introduceTo) => string.Format("Hey {0}, this is {1}", student.FirstName, introduceTo));
|
|
Console.WriteLine(student.Introduce("Beth"));
|
|
|
|
// IQUERYABLE<T> - almost all collections implement this, which gives you a lot of
|
|
// very useful Map / Filter / Reduce style methods
|
|
var bikes = new List<Bicycle>();
|
|
bikes.Sort(); // Sorts the array
|
|
bikes.Sort((b1, b2) => b1.Wheels.CompareTo(b2.Wheels)); // Sorts based on wheels
|
|
var result = bikes
|
|
.Where(b => b.Wheels > 3) // Filters - chainable (returns IQueryable of previous type)
|
|
.Where(b => b.IsBroken && b.HasTassles)
|
|
.Select(b => b.ToString()); // Map - we only this selects, so result is a IQueryable<string>
|
|
|
|
var sum = bikes.Sum(b => b.Wheels); // Reduce - sums all the wheels in the collection
|
|
|
|
// Create a list of IMPLICIT objects based on some parameters of the bike
|
|
var bikeSummaries = bikes.Select(b=>new { Name = b.Name, IsAwesome = !b.IsBroken && b.HasTassles });
|
|
// Hard to show here, but you get type ahead completion since the compiler can implicitly work
|
|
// out the types above!
|
|
foreach (var bikeSummary in bikeSummaries.Where(b => b.IsAwesome))
|
|
Console.WriteLine(bikeSummary.Name);
|
|
|
|
// ASPARALLEL
|
|
// And this is where things get wicked - combine linq and parallel operations
|
|
var threeWheelers = bikes.AsParallel().Where(b => b.Wheels == 3).Select(b => b.Name);
|
|
// this will happen in parallel! Threads will automagically be spun up and the
|
|
// results divvied amongst them! Amazing for large datasets when you have lots of
|
|
// cores
|
|
|
|
// LINQ - maps a store to IQueryable<T> objects, with delayed execution
|
|
// e.g. LinqToSql - maps to a database, LinqToXml maps to an xml document
|
|
var db = new BikeRepository();
|
|
|
|
// execution is delayed, which is great when querying a database
|
|
var filter = db.Bikes.Where(b => b.HasTassles); // no query run
|
|
if (42 > 6) // You can keep adding filters, even conditionally - great for "advanced search" functionality
|
|
filter = filter.Where(b => b.IsBroken); // no query run
|
|
|
|
var query = filter
|
|
.OrderBy(b => b.Wheels)
|
|
.ThenBy(b => b.Name)
|
|
.Select(b => b.Name); // still no query run
|
|
|
|
// Now the query runs, but opens a reader, so only populates as you iterate through
|
|
foreach (string bike in query)
|
|
Console.WriteLine(result);
|
|
|
|
|
|
|
|
}
|
|
|
|
} // End LearnCSharp class
|
|
|
|
// You can include other classes in a .cs file
|
|
|
|
public static class Extensions
|
|
{
|
|
// EXTENSION METHODS
|
|
public static void Print(this object obj)
|
|
{
|
|
Console.WriteLine(obj.ToString());
|
|
}
|
|
}
|
|
|
|
|
|
// DELEGATES AND EVENTS
|
|
public class DelegateTest
|
|
{
|
|
public static int count = 0;
|
|
public static int Increment()
|
|
{
|
|
// increment count then return it
|
|
return ++count;
|
|
}
|
|
|
|
// A delegate is a reference to a method.
|
|
// To reference the Increment method,
|
|
// first declare a delegate with the same signature,
|
|
// i.e. takes no arguments and returns an int
|
|
public delegate int IncrementDelegate();
|
|
|
|
// An event can also be used to trigger delegates
|
|
// Create an event with the delegate type
|
|
public static event IncrementDelegate MyEvent;
|
|
|
|
static void Main(string[] args)
|
|
{
|
|
// Refer to the Increment method by instantiating the delegate
|
|
// and passing the method itself in as an argument
|
|
IncrementDelegate inc = new IncrementDelegate(Increment);
|
|
Console.WriteLine(inc()); // => 1
|
|
|
|
// Delegates can be composed with the + operator
|
|
IncrementDelegate composedInc = inc;
|
|
composedInc += inc;
|
|
composedInc += inc;
|
|
|
|
// composedInc will run Increment 3 times
|
|
Console.WriteLine(composedInc()); // => 4
|
|
|
|
|
|
// Subscribe to the event with the delegate
|
|
MyEvent += new IncrementDelegate(Increment);
|
|
MyEvent += new IncrementDelegate(Increment);
|
|
|
|
// Trigger the event
|
|
// ie. run all delegates subscribed to this event
|
|
Console.WriteLine(MyEvent()); // => 6
|
|
}
|
|
}
|
|
|
|
|
|
// Class Declaration Syntax:
|
|
// <public/private/protected/internal> class <class name>{
|
|
// //data fields, constructors, functions all inside.
|
|
// //functions are called as methods in Java.
|
|
// }
|
|
|
|
public class Bicycle
|
|
{
|
|
// Bicycle's Fields/Variables
|
|
public int Cadence // Public: Can be accessed from anywhere
|
|
{
|
|
get // get - define a method to retrieve the property
|
|
{
|
|
return _cadence;
|
|
}
|
|
set // set - define a method to set a property
|
|
{
|
|
_cadence = value; // Value is the value passed in to the setter
|
|
}
|
|
}
|
|
private int _cadence;
|
|
|
|
protected virtual int Gear // Protected: Accessible from the class and subclasses
|
|
{
|
|
get; // creates an auto property so you don't need a member field
|
|
set;
|
|
}
|
|
|
|
internal int Wheels // Internal: Accessible from within the assembly
|
|
{
|
|
get;
|
|
private set; // You can set modifiers on the get/set methods
|
|
}
|
|
|
|
int _speed; // Everything is private by default: Only accessible from within this class.
|
|
// can also use keyword private
|
|
public string Name { get; set; }
|
|
|
|
// Properties also have a special syntax for when you want a readonly property
|
|
// that simply returns the result of an expression
|
|
public string LongName => Name + " " + _speed + " speed";
|
|
|
|
// Enum is a value type that consists of a set of named constants
|
|
// It is really just mapping a name to a value (an int, unless specified otherwise).
|
|
// The approved types for an enum are byte, sbyte, short, ushort, int, uint, long, or ulong.
|
|
// An enum can't contain the same value twice.
|
|
public enum BikeBrand
|
|
{
|
|
AIST,
|
|
BMC,
|
|
Electra = 42, //you can explicitly set a value to a name
|
|
Gitane // 43
|
|
}
|
|
// We defined this type inside a Bicycle class, so it is a nested type
|
|
// Code outside of this class should reference this type as Bicycle.BikeBrand
|
|
|
|
public BikeBrand Brand; // After declaring an enum type, we can declare the field of this type
|
|
|
|
// Decorate an enum with the FlagsAttribute to indicate that multiple values can be switched on
|
|
// Any class derived from Attribute can be used to decorate types, methods, parameters etc
|
|
// Bitwise operators & and | can be used to perform and/or operations
|
|
|
|
[Flags]
|
|
public enum BikeAccessories
|
|
{
|
|
None = 0,
|
|
Bell = 1,
|
|
MudGuards = 2, // need to set the values manually!
|
|
Racks = 4,
|
|
Lights = 8,
|
|
FullPackage = Bell | MudGuards | Racks | Lights
|
|
}
|
|
|
|
// Usage: aBike.Accessories.HasFlag(Bicycle.BikeAccessories.Bell)
|
|
// Before .NET 4: (aBike.Accessories & Bicycle.BikeAccessories.Bell) == Bicycle.BikeAccessories.Bell
|
|
public BikeAccessories Accessories { get; set; }
|
|
|
|
// Static members belong to the type itself rather than specific object.
|
|
// You can access them without a reference to any object:
|
|
// Console.WriteLine("Bicycles created: " + Bicycle.bicyclesCreated);
|
|
public static int BicyclesCreated { get; set; }
|
|
|
|
// readonly values are set at run time
|
|
// they can only be assigned upon declaration or in a constructor
|
|
readonly bool _hasCardsInSpokes = false; // read-only private
|
|
|
|
// Constructors are a way of creating classes
|
|
// This is a default constructor
|
|
public Bicycle()
|
|
{
|
|
this.Gear = 1; // you can access members of the object with the keyword this
|
|
Cadence = 50; // but you don't always need it
|
|
_speed = 5;
|
|
Name = "Bontrager";
|
|
Brand = BikeBrand.AIST;
|
|
BicyclesCreated++;
|
|
}
|
|
|
|
// This is a specified constructor (it contains arguments)
|
|
public Bicycle(int startCadence, int startSpeed, int startGear,
|
|
string name, bool hasCardsInSpokes, BikeBrand brand)
|
|
: base() // calls base first
|
|
{
|
|
Gear = startGear;
|
|
Cadence = startCadence;
|
|
_speed = startSpeed;
|
|
Name = name;
|
|
_hasCardsInSpokes = hasCardsInSpokes;
|
|
Brand = brand;
|
|
}
|
|
|
|
// Constructors can be chained
|
|
public Bicycle(int startCadence, int startSpeed, BikeBrand brand) :
|
|
this(startCadence, startSpeed, 0, "big wheels", true, brand)
|
|
{
|
|
}
|
|
|
|
// Function Syntax:
|
|
// <public/private/protected> <return type> <function name>(<args>)
|
|
|
|
// classes can implement getters and setters for their fields
|
|
// or they can implement properties (this is the preferred way in C#)
|
|
|
|
// Method parameters can have default values.
|
|
// In this case, methods can be called with these parameters omitted
|
|
public void SpeedUp(int increment = 1)
|
|
{
|
|
_speed += increment;
|
|
}
|
|
|
|
public void SlowDown(int decrement = 1)
|
|
{
|
|
_speed -= decrement;
|
|
}
|
|
|
|
// properties get/set values
|
|
// when only data needs to be accessed, consider using properties.
|
|
// properties may have either get or set, or both
|
|
private bool _hasTassles; // private variable
|
|
public bool HasTassles // public accessor
|
|
{
|
|
get { return _hasTassles; }
|
|
set { _hasTassles = value; }
|
|
}
|
|
|
|
// You can also define an automatic property in one line
|
|
// this syntax will create a backing field automatically.
|
|
// You can set an access modifier on either the getter or the setter (or both)
|
|
// to restrict its access:
|
|
public bool IsBroken { get; private set; }
|
|
|
|
// Properties can be auto-implemented
|
|
public int FrameSize
|
|
{
|
|
get;
|
|
// you are able to specify access modifiers for either get or set
|
|
// this means only Bicycle class can call set on Framesize
|
|
private set;
|
|
}
|
|
|
|
// It's also possible to define custom Indexers on objects.
|
|
// All though this is not entirely useful in this example, you
|
|
// could do bicycle[0] which returns "chris" to get the first passenger or
|
|
// bicycle[1] = "lisa" to set the passenger. (of this apparent quattrocycle)
|
|
private string[] passengers = { "chris", "phil", "darren", "regina" };
|
|
|
|
public string this[int i]
|
|
{
|
|
get {
|
|
return passengers[i];
|
|
}
|
|
|
|
set {
|
|
passengers[i] = value;
|
|
}
|
|
}
|
|
|
|
// Method to display the attribute values of this Object.
|
|
public virtual string Info()
|
|
{
|
|
return "Gear: " + Gear +
|
|
" Cadence: " + Cadence +
|
|
" Speed: " + _speed +
|
|
" Name: " + Name +
|
|
" Cards in Spokes: " + (_hasCardsInSpokes ? "yes" : "no") +
|
|
"\n------------------------------\n"
|
|
;
|
|
}
|
|
|
|
// Methods can also be static. It can be useful for helper methods
|
|
public static bool DidWeCreateEnoughBicycles()
|
|
{
|
|
// Within a static method, we only can reference static class members
|
|
return BicyclesCreated > 9000;
|
|
} // If your class only needs static members, consider marking the class itself as static.
|
|
|
|
|
|
} // end class Bicycle
|
|
|
|
// PennyFarthing is a subclass of Bicycle
|
|
class PennyFarthing : Bicycle
|
|
{
|
|
// (Penny Farthings are those bicycles with the big front wheel.
|
|
// They have no gears.)
|
|
|
|
// calling parent constructor
|
|
public PennyFarthing(int startCadence, int startSpeed) :
|
|
base(startCadence, startSpeed, 0, "PennyFarthing", true, BikeBrand.Electra)
|
|
{
|
|
}
|
|
|
|
protected override int Gear
|
|
{
|
|
get
|
|
{
|
|
return 0;
|
|
}
|
|
set
|
|
{
|
|
throw new InvalidOperationException("You can't change gears on a PennyFarthing");
|
|
}
|
|
}
|
|
|
|
public static PennyFarthing CreateWithGears(int gears)
|
|
{
|
|
var penny = new PennyFarthing(1, 1);
|
|
penny.Gear = gears; // Oops, can't do this!
|
|
return penny;
|
|
}
|
|
|
|
public override string Info()
|
|
{
|
|
string result = "PennyFarthing bicycle ";
|
|
result += base.ToString(); // Calling the base version of the method
|
|
return result;
|
|
}
|
|
}
|
|
|
|
// Interfaces only contain signatures of the members, without the implementation.
|
|
interface IJumpable
|
|
{
|
|
void Jump(int meters); // all interface members are implicitly public
|
|
}
|
|
|
|
interface IBreakable
|
|
{
|
|
bool Broken { get; } // interfaces can contain properties as well as methods & events
|
|
}
|
|
|
|
// Classes can inherit only one other class, but can implement any amount of interfaces,
|
|
// however the base class name must be the first in the list and all interfaces follow
|
|
class MountainBike : Bicycle, IJumpable, IBreakable
|
|
{
|
|
int damage = 0;
|
|
|
|
public void Jump(int meters)
|
|
{
|
|
damage += meters;
|
|
}
|
|
|
|
public bool Broken
|
|
{
|
|
get
|
|
{
|
|
return damage > 100;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Used to connect to DB for LinqToSql example.
|
|
/// EntityFramework Code First is awesome (similar to Ruby's ActiveRecord, but bidirectional)
|
|
/// https://docs.microsoft.com/ef/ef6/modeling/code-first/workflows/new-database
|
|
/// </summary>
|
|
public class BikeRepository : DbContext
|
|
{
|
|
public BikeRepository()
|
|
: base()
|
|
{
|
|
}
|
|
|
|
public DbSet<Bicycle> Bikes { get; set; }
|
|
}
|
|
|
|
// Classes can be split across multiple .cs files
|
|
// A1.cs
|
|
public partial class A
|
|
{
|
|
public static void A1()
|
|
{
|
|
Console.WriteLine("Method A1 in class A");
|
|
}
|
|
}
|
|
|
|
// A2.cs
|
|
public partial class A
|
|
{
|
|
public static void A2()
|
|
{
|
|
Console.WriteLine("Method A2 in class A");
|
|
}
|
|
}
|
|
|
|
// Program using the partial class "A"
|
|
public class Program
|
|
{
|
|
static void Main()
|
|
{
|
|
A.A1();
|
|
A.A2();
|
|
}
|
|
}
|
|
|
|
// String interpolation by prefixing the string with $
|
|
// and wrapping the expression you want to interpolate with { braces }
|
|
// You can also combine both interpolated and verbatim strings with $@
|
|
public class Rectangle
|
|
{
|
|
public int Length { get; set; }
|
|
public int Width { get; set; }
|
|
}
|
|
|
|
class Program
|
|
{
|
|
static void Main(string[] args)
|
|
{
|
|
Rectangle rect = new Rectangle { Length = 5, Width = 3 };
|
|
Console.WriteLine($"The length is {rect.Length} and the width is {rect.Width}");
|
|
|
|
string username = "User";
|
|
Console.WriteLine($@"C:\Users\{username}\Desktop");
|
|
}
|
|
}
|
|
|
|
// New C# 6 features
|
|
class GlassBall : IJumpable, IBreakable
|
|
{
|
|
// Autoproperty initializers
|
|
public int Damage { get; private set; } = 0;
|
|
|
|
// Autoproperty initializers on getter-only properties
|
|
public string Name { get; } = "Glass ball";
|
|
|
|
// Getter-only autoproperty that is initialized in constructor
|
|
public string GenieName { get; }
|
|
|
|
public GlassBall(string genieName = null)
|
|
{
|
|
GenieName = genieName;
|
|
}
|
|
|
|
public void Jump(int meters)
|
|
{
|
|
if (meters < 0)
|
|
// New nameof() expression; compiler will check that the identifier exists
|
|
// nameof(x) == "x"
|
|
// Prevents e.g. parameter names changing but not updated in error messages
|
|
throw new ArgumentException("Cannot jump negative amount!", nameof(meters));
|
|
|
|
Damage += meters;
|
|
}
|
|
|
|
// Expression-bodied properties ...
|
|
public bool Broken
|
|
=> Damage > 100;
|
|
|
|
// ... and methods
|
|
public override string ToString()
|
|
// Interpolated string
|
|
=> $"{Name}. Damage taken: {Damage}";
|
|
|
|
public string SummonGenie()
|
|
// Null-conditional operators
|
|
// x?.y will return null immediately if x is null; y is not evaluated
|
|
=> GenieName?.ToUpper();
|
|
}
|
|
|
|
static class MagicService
|
|
{
|
|
private static bool LogException(Exception ex)
|
|
{
|
|
// log exception somewhere
|
|
return false;
|
|
}
|
|
|
|
public static bool CastSpell(string spell)
|
|
{
|
|
try
|
|
{
|
|
// Pretend we call API here
|
|
throw new MagicServiceException("Spell failed", 42);
|
|
|
|
// Spell succeeded
|
|
return true;
|
|
}
|
|
// Only catch if Code is 42 i.e. spell failed
|
|
catch(MagicServiceException ex) when (ex.Code == 42)
|
|
{
|
|
// Spell failed
|
|
return false;
|
|
}
|
|
// Other exceptions, or MagicServiceException where Code is not 42
|
|
catch(Exception ex) when (LogException(ex))
|
|
{
|
|
// Execution never reaches this block
|
|
// The stack is not unwound
|
|
}
|
|
return false;
|
|
// Note that catching a MagicServiceException and rethrowing if Code
|
|
// is not 42 or 117 is different, as then the final catch-all block
|
|
// will not catch the rethrown exception
|
|
}
|
|
}
|
|
|
|
public class MagicServiceException : Exception
|
|
{
|
|
public int Code { get; }
|
|
|
|
public MagicServiceException(string message, int code) : base(message)
|
|
{
|
|
Code = code;
|
|
}
|
|
}
|
|
|
|
public static class PragmaWarning {
|
|
// Obsolete attribute
|
|
[Obsolete("Use NewMethod instead", false)]
|
|
public static void ObsoleteMethod()
|
|
{
|
|
// obsolete code
|
|
}
|
|
|
|
public static void NewMethod()
|
|
{
|
|
// new code
|
|
}
|
|
|
|
public static void Main()
|
|
{
|
|
ObsoleteMethod(); // CS0618: 'ObsoleteMethod is obsolete: Use NewMethod instead'
|
|
#pragma warning disable CS0618
|
|
ObsoleteMethod(); // no warning
|
|
#pragma warning restore CS0618
|
|
ObsoleteMethod(); // CS0618: 'ObsoleteMethod is obsolete: Use NewMethod instead'
|
|
}
|
|
}
|
|
} // End Namespace
|
|
|
|
using System;
|
|
// C# 6, static using
|
|
using static System.Math;
|
|
|
|
namespace Learning.More.CSharp
|
|
{
|
|
class StaticUsing
|
|
{
|
|
static void Main()
|
|
{
|
|
// Without a static using statement..
|
|
Console.WriteLine("The square root of 4 is {}.", Math.Sqrt(4));
|
|
// With one
|
|
Console.WriteLine("The square root of 4 is {}.", Sqrt(4));
|
|
}
|
|
}
|
|
}
|
|
|
|
// New C# 7 Feature
|
|
// Install Microsoft.Net.Compilers Latest from Nuget
|
|
// Install System.ValueTuple Latest from Nuget
|
|
using System;
|
|
namespace Csharp7
|
|
{
|
|
// TUPLES, DECONSTRUCTION AND DISCARDS
|
|
class TuplesTest
|
|
{
|
|
public (string, string) GetName()
|
|
{
|
|
// Fields in tuples are by default named Item1, Item2...
|
|
var names1 = ("Peter", "Parker");
|
|
Console.WriteLine(names1.Item2); // => Parker
|
|
|
|
// Fields can instead be explicitly named
|
|
// Type 1 Declaration
|
|
(string FirstName, string LastName) names2 = ("Peter", "Parker");
|
|
|
|
// Type 2 Declaration
|
|
var names3 = (First:"Peter", Last:"Parker");
|
|
|
|
Console.WriteLine(names2.FirstName); // => Peter
|
|
Console.WriteLine(names3.Last); // => Parker
|
|
|
|
return names3;
|
|
}
|
|
|
|
public string GetLastName() {
|
|
var fullName = GetName();
|
|
|
|
// Tuples can be deconstructed
|
|
(string firstName, string lastName) = fullName;
|
|
|
|
// Fields in a deconstructed tuple can be discarded by using _
|
|
var (_, last) = fullName;
|
|
return last;
|
|
}
|
|
|
|
// Any type can be deconstructed in the same way by
|
|
// specifying a Deconstruct method
|
|
public int randomNumber = 4;
|
|
public int anotherRandomNumber = 10;
|
|
|
|
public void Deconstruct(out int randomNumber, out int anotherRandomNumber)
|
|
{
|
|
randomNumber = this.randomNumber;
|
|
anotherRandomNumber = this.anotherRandomNumber;
|
|
}
|
|
|
|
static void Main(string[] args)
|
|
{
|
|
var tt = new TuplesTest();
|
|
(int num1, int num2) = tt;
|
|
Console.WriteLine($"num1: {num1}, num2: {num2}"); // => num1: 4, num2: 10
|
|
|
|
Console.WriteLine(tt.GetLastName());
|
|
}
|
|
}
|
|
|
|
// PATTERN MATCHING
|
|
class PatternMatchingTest
|
|
{
|
|
public static (string, int)? CreateLogMessage(object data)
|
|
{
|
|
switch(data)
|
|
{
|
|
// Additional filtering using when
|
|
case System.Net.Http.HttpRequestException h when h.Message.Contains("404"):
|
|
return (h.Message, 404);
|
|
case System.Net.Http.HttpRequestException h when h.Message.Contains("400"):
|
|
return (h.Message, 400);
|
|
case Exception e:
|
|
return (e.Message, 500);
|
|
case string s:
|
|
return (s, s.Contains("Error") ? 500 : 200);
|
|
case null:
|
|
return null;
|
|
default:
|
|
return (data.ToString(), 500);
|
|
}
|
|
}
|
|
}
|
|
|
|
// REFERENCE LOCALS
|
|
// Allow you to return a reference to an object instead of just its value
|
|
class RefLocalsTest
|
|
{
|
|
// note ref in return
|
|
public static ref string FindItem(string[] arr, string el)
|
|
{
|
|
for(int i=0; i<arr.Length; i++)
|
|
{
|
|
if(arr[i] == el) {
|
|
// return the reference
|
|
return ref arr[i];
|
|
}
|
|
}
|
|
throw new Exception("Item not found");
|
|
}
|
|
|
|
public static void SomeMethod()
|
|
{
|
|
string[] arr = {"this", "is", "an", "array"};
|
|
|
|
// note refs everywhere
|
|
ref string item = ref FindItem(arr, "array");
|
|
item = "apple";
|
|
Console.WriteLine(arr[3]); // => apple
|
|
}
|
|
}
|
|
|
|
// LOCAL FUNCTIONS
|
|
class LocalFunctionTest
|
|
{
|
|
private static int _id = 0;
|
|
public int id;
|
|
public LocalFunctionTest()
|
|
{
|
|
id = generateId();
|
|
|
|
// This local function can only be accessed in this scope
|
|
int generateId()
|
|
{
|
|
return _id++;
|
|
}
|
|
}
|
|
|
|
public static void AnotherMethod()
|
|
{
|
|
var lf1 = new LocalFunctionTest();
|
|
var lf2 = new LocalFunctionTest();
|
|
Console.WriteLine($"{lf1.id}, {lf2.id}"); // => 0, 1
|
|
|
|
int id = generateId();
|
|
// error CS0103: The name 'generateId' does not exist in the current context
|
|
}
|
|
}
|
|
}
|
|
|
|
```
|
|
|
|
## Topics Not Covered
|
|
✨ New, 👍 Old, 🎈 LTS, 🔥 Cross-platform, 🎁 Windows-only
|
|
|
|
* Attributes
|
|
|
|
* Asynchronous Programming
|
|
|
|
* Web Development
|
|
* ASP.NET Core ✨
|
|
|
|
* Desktop Development
|
|
* Windows Presentation Foundation 👍 🎈 🎁
|
|
* Universal Windows Platform ✨ 🎁
|
|
* Uno Platform 🔥 ✨
|
|
* WinForms 👍 🎈 🎁
|
|
* Avalonia 🔥 ✨
|
|
* WinUI ✨ 🎁
|
|
|
|
* Cross-platform Development
|
|
* Xamarin.Forms 👍
|
|
* MAUI ✨
|
|
|
|
|
|
## Further Reading
|
|
|
|
* [C# language reference](https://docs.microsoft.com/dotnet/csharp/language-reference/)
|
|
* [Learn .NET](https://dotnet.microsoft.com/learn)
|
|
* [C# Coding Conventions](https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/coding-conventions)
|
|
* [DotNetPerls](http://www.dotnetperls.com)
|
|
* [C# in Depth](http://manning.com/skeet2)
|
|
* [Programming C# 5.0](http://shop.oreilly.com/product/0636920024064.do)
|
|
* [LINQ Pocket Reference](http://shop.oreilly.com/product/9780596519254.do)
|
|
* [Windows Forms Programming in C#](http://www.amazon.com/Windows-Forms-Programming-Chris-Sells/dp/0321116208)
|
|
* [freeCodeCamp - C# Tutorial for Beginners](https://www.youtube.com/watch?v=GhQdlIFylQ8)
|
|
|