learnxinyminutes-docs/spark.html.markdown
scronge 045e9d22aa
Create spark.html.markdown
This commit introduces a new "Learn Spark in Y Minutes" guide in the format of LearnXinYMinutes documentation. The guide provides a concise overview of Apache Spark using PySpark, following repository style guidelines and including examples of basic Spark operations. Key sections cover:

- Initializing a Spark session
- Creating and manipulating DataFrames
- Applying transformations and actions
- Performing SQL queries
- Reading from and writing to various file formats
- Working with RDDs
- Ending a Spark session
2024-11-09 13:40:55 -06:00

64 lines
1.3 KiB
Markdown

---
language: Spark
category: tool
tool: Spark
filename: learnspark.spark
contributors:
- ["YourName", "https://github.com/Scronge"]
---
[Spark](https://spark.apache.org/) is an open-source distributed data processing framework that enables large-scale data processing across clusters. This guide covers the basics of **Apache Spark** using PySpark, the Python API.
```python
# Setting Up Spark
from pyspark.sql import SparkSession
spark = SparkSession.builder \
.appName("ExampleApp") \
.getOrCreate()
# Working with DataFrames
data = [("Alice", 30), ("Bob", 40)]
columns = ["Name", "Age"]
df = spark.createDataFrame(data, columns)
df.show()
# +-----+---+
# | Name|Age|
# +-----+---+
# |Alice| 30|
# | Bob| 40|
# +-----+---+
# Transformations and Actions
df_filtered = df.filter(df.Age > 35)
df_filtered.show()
# +----+---+
# |Name|Age|
# +----+---+
# | Bob| 40|
# +----+---+
# SQL Queries
df.createOrReplaceTempView("people")
spark.sql("SELECT * FROM people WHERE Age > 30").show()
# Reading and Writing Files
csv_df = spark.read.csv("path/to/file.csv", header=True, inferSchema=True)
df.write.parquet("output_path")
# RDD Basics
rdd = spark.sparkContext.parallelize([1, 2, 3, 4])
squared_rdd = rdd.map(lambda x: x ** 2)
print(squared_rdd.collect())
# Output: [1, 4, 9, 16]
# Ending the Spark Session
spark.stop()