mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2025-01-23 01:25:59 +00:00
1040 lines
32 KiB
Markdown
1040 lines
32 KiB
Markdown
---
|
||
language: Python
|
||
contributors:
|
||
- ["Louie Dinh", "http://pythonpracticeprojects.com"]
|
||
- ["Steven Basart", "http://github.com/xksteven"]
|
||
- ["Andre Polykanine", "https://github.com/Oire"]
|
||
translators:
|
||
- ["Geoff Liu", "http://geoffliu.me"]
|
||
- ["Maple", "https://github.com/mapleincode"]
|
||
filename: learnpython-cn.py
|
||
lang: zh-cn
|
||
---
|
||
|
||
Python 是由吉多·范罗苏姆(Guido Van Rossum)在 90 年代早期设计。
|
||
它是如今最常用的编程语言之一。它的语法简洁且优美,几乎就是可执行的伪代码。
|
||
|
||
注意:这篇教程是基于 Python 3 写的。如果你想学旧版 Python 2,我们特别有[另一篇教程](http://learnxinyminutes.com/docs/pythonlegacy/)。
|
||
|
||
```python
|
||
# 用井字符开头的是单行注释
|
||
|
||
""" 多行字符串用三个引号
|
||
包裹,也常被用来做多
|
||
行注释
|
||
"""
|
||
|
||
####################################################
|
||
## 1. 原始数据类型和运算符
|
||
####################################################
|
||
|
||
# 整数
|
||
3 # => 3
|
||
|
||
# 算术没有什么出乎意料的
|
||
1 + 1 # => 2
|
||
8 - 1 # => 7
|
||
10 * 2 # => 20
|
||
|
||
# 但是除法例外,会自动转换成浮点数
|
||
35 / 5 # => 7.0
|
||
10.0 / 3 # => 3.3333333333333335
|
||
|
||
# 整数除法的结果都是向下取整
|
||
5 // 3 # => 1
|
||
5.0 // 3.0 # => 1.0 # 浮点数也可以
|
||
-5 // 3 # => -2
|
||
-5.0 // 3.0 # => -2.0
|
||
|
||
# 浮点数的运算结果也是浮点数
|
||
3 * 2.0 # => 6.0
|
||
|
||
# 模除
|
||
7 % 3 # => 1
|
||
# i % j 结果的正负符号会和 j 相同,而不是和 i 相同
|
||
-7 % 3 # => 2
|
||
|
||
# x 的 y 次方
|
||
2**4 # => 16
|
||
|
||
# 用括号决定优先级
|
||
1 + 3 * 2 # => 7
|
||
(1 + 3) * 2 # => 8
|
||
|
||
# 布尔值 (注意: 首字母大写)
|
||
True # => True
|
||
False # => False
|
||
|
||
# 用 not 取非
|
||
not True # => False
|
||
not False # => True
|
||
|
||
# 逻辑运算符,注意 and 和 or 都是小写
|
||
True and False # => False
|
||
False or True # => True
|
||
|
||
# True 和 False 实质上就是数字 1 和0
|
||
True + True # => 2
|
||
True * 8 # => 8
|
||
False - 5 # => -5
|
||
|
||
# 数值与 True 和 False 之间的比较运算
|
||
0 == False # => True
|
||
2 == True # => False
|
||
1 == True # => True
|
||
-5 != False # => True
|
||
|
||
# 使用布尔逻辑运算符对数字类型的值进行运算时,会把数值强制转换为布尔值进行运算
|
||
# 但计算结果会返回它们的强制转换前的值
|
||
# 注意不要把 bool(ints) 与位运算的 "按位与"、"按位或" (&, |) 混淆
|
||
bool(0) # => False
|
||
bool(4) # => True
|
||
bool(-6) # => True
|
||
0 and 2 # => 0
|
||
-5 or 0 # => -5
|
||
|
||
# 用==判断相等
|
||
1 == 1 # => True
|
||
2 == 1 # => False
|
||
|
||
# 用!=判断不等
|
||
1 != 1 # => False
|
||
2 != 1 # => True
|
||
|
||
# 比较大小
|
||
1 < 10 # => True
|
||
1 > 10 # => False
|
||
2 <= 2 # => True
|
||
2 >= 2 # => True
|
||
|
||
# 判断一个值是否在范围里
|
||
1 < 2 and 2 < 3 # => True
|
||
2 < 3 and 3 < 2 # => False
|
||
# 大小比较可以连起来!
|
||
1 < 2 < 3 # => True
|
||
2 < 3 < 2 # => False
|
||
|
||
# (is 对比 ==) is 判断两个变量是否引用同一个对象,
|
||
# 而 == 判断两个对象是否含有相同的值
|
||
a = [1, 2, 3, 4] # 变量 a 是一个新的列表, [1, 2, 3, 4]
|
||
b = a # 变量 b 赋值了变量 a 的值
|
||
b is a # => True, a 和 b 引用的是同一个对象
|
||
b == a # => True, a 和 b 的对象的值相同
|
||
b = [1, 2, 3, 4] # 变量 b 赋值了一个新的列表, [1, 2, 3, 4]
|
||
b is a # => False, a 和 b 引用的不是同一个对象
|
||
b == a # => True, a 和 b 的对象的值相同
|
||
|
||
|
||
# 创建字符串可以使用单引号(')或者双引号(")
|
||
"这是个字符串"
|
||
'这也是个字符串'
|
||
|
||
# 字符串可以使用加号连接成新的字符串
|
||
"Hello " + "world!" # => "Hello world!"
|
||
# 非变量形式的字符串甚至可以在没有加号的情况下连接
|
||
"Hello " "world!" # => "Hello world!"
|
||
|
||
# 字符串可以被当作字符列表
|
||
"Hello world!"[0] # => 'H'
|
||
|
||
# 你可以获得字符串的长度
|
||
len("This is a string") # => 16
|
||
|
||
# 你可以使用 f-strings 格式化字符串(python3.6+)
|
||
name = "Reiko"
|
||
f"She said her name is {name}." # => "She said her name is Reiko"
|
||
# 你可以在大括号内几乎加入任何 python 表达式,表达式的结果会以字符串的形式返回
|
||
f"{name} is {len(name)} characters long." # => "Reiko is 5 characters long."
|
||
|
||
# 用 .format 来格式化字符串
|
||
"{} can be {}".format("strings", "interpolated")
|
||
# 可以重复参数以节省时间
|
||
"{0} be nimble, {0} be quick, {0} jump over the {1}".format("Jack", "candle stick")
|
||
# => "Jack be nimble, Jack be quick, Jack jump over the candle stick"
|
||
# 如果不想数参数,可以用关键字
|
||
"{name} wants to eat {food}".format(name="Bob", food="lasagna")
|
||
# => "Bob wants to eat lasagna"
|
||
|
||
# 如果你的 Python3 程序也要在 Python2.5 以下环境运行,也可以用老式的格式化语法
|
||
"%s can be %s the %s way" % ("strings", "interpolated", "old")
|
||
|
||
# None是一个对象
|
||
None # => None
|
||
|
||
# 当与 None 进行比较时不要用 ==,要用 is。is 是用来比较两个变量是否指向同一个对象。
|
||
"etc" is None # => False
|
||
None is None # => True
|
||
|
||
# None,0,空字符串,空列表,空字典,空元组都算是 False
|
||
# 所有其他值都是 True
|
||
bool(0) # => False
|
||
bool("") # => False
|
||
bool([]) # => False
|
||
bool({}) # => False
|
||
bool(()) # => False
|
||
|
||
|
||
####################################################
|
||
## 2. 变量和集合
|
||
####################################################
|
||
|
||
# print是内置的打印函数
|
||
print("I'm Python. Nice to meet you!")
|
||
|
||
# 默认情况下,print 函数会在输出结果后加入一个空行作为结尾
|
||
# 可以使用附加参数改变输出结尾
|
||
print("Hello, World", end="!") # => Hello, World!
|
||
|
||
# 可以很简单的从终端获得输入数据
|
||
input_string_var = input("Enter some data: ") # 返回字符串数值
|
||
|
||
# 在给变量赋值前不用提前声明
|
||
# 习惯上变量命名是小写,用下划线分隔单词
|
||
some_var = 5
|
||
some_var # => 5
|
||
|
||
# 访问未赋值的变量会抛出异常
|
||
# 参考流程控制一段来学习异常处理
|
||
some_unknown_var # 抛出 NameError
|
||
|
||
# "if" 可以用作表达式,它的作用等同于 C 语言的三元运算符 "?:"
|
||
"yay!" if 0 > 1 else "nay!" # => "nay!"
|
||
|
||
# 用列表 (list) 储存序列
|
||
li = []
|
||
# 创建列表时也可以同时赋给元素
|
||
other_li = [4, 5, 6]
|
||
|
||
# 用append在列表最后追加元素
|
||
li.append(1) # li现在是[1]
|
||
li.append(2) # li现在是[1, 2]
|
||
li.append(4) # li现在是[1, 2, 4]
|
||
li.append(3) # li现在是[1, 2, 4, 3]
|
||
# 用pop从列表尾部删除
|
||
li.pop() # => 3 且li现在是[1, 2, 4]
|
||
# 把3再放回去
|
||
li.append(3) # li变回[1, 2, 4, 3]
|
||
|
||
# 列表存取跟数组一样
|
||
li[0] # => 1
|
||
# 取出最后一个元素
|
||
li[-1] # => 3
|
||
|
||
# 越界存取会造成 IndexError
|
||
li[4] # 抛出 IndexError
|
||
|
||
# 列表有切割语法
|
||
li[1:3] # => [2, 4]
|
||
# 取尾
|
||
li[2:] # => [4, 3]
|
||
# 取头
|
||
li[:3] # => [1, 2, 4]
|
||
# 隔一个取一个
|
||
li[::2] # =>[1, 4]
|
||
# 倒排列表
|
||
li[::-1] # => [3, 4, 2, 1]
|
||
# 可以用三个参数的任何组合来构建切割
|
||
# li[始:终:步伐]
|
||
|
||
# 简单的实现了单层数组的深度复制
|
||
li2 = li[:] # => li2 = [1, 2, 4, 3] ,但 (li2 is li) 会返回 False
|
||
|
||
# 用 del 删除任何一个元素
|
||
del li[2] # li 现在为 [1, 2, 3]
|
||
|
||
# 删除第一个匹配的元素
|
||
li.remove(2) # li 现在为 [1, 3]
|
||
li.remove(2) # 抛出错误 ValueError: 2 is not in the list
|
||
|
||
# 在指定索引处插入一个新的元素
|
||
li.insert(1, 2) # li is now [1, 2, 3] again
|
||
|
||
# 获得列表第一个匹配的值的索引
|
||
li.index(2) # => 1
|
||
li.index(4) # 抛出一个 ValueError: 4 is not in the list
|
||
|
||
# 列表可以相加
|
||
# 注意:li 和 other_li 的值都不变
|
||
li + other_li # => [1, 2, 3, 4, 5, 6]
|
||
|
||
# 用 "extend()" 拼接列表
|
||
li.extend(other_li) # li 现在是[1, 2, 3, 4, 5, 6]
|
||
|
||
# 用 "in" 测试列表是否包含值
|
||
1 in li # => True
|
||
|
||
# 用 "len()" 取列表长度
|
||
len(li) # => 6
|
||
|
||
|
||
# 元组类似列表,但是不允许修改
|
||
tup = (1, 2, 3)
|
||
tup[0] # => 1
|
||
tup[0] = 3 # 抛出 TypeError
|
||
|
||
# 如果元素数量为 1 的元组必须在元素之后加一个逗号
|
||
# 其他元素数量的元组,包括空元组,都不需要
|
||
type((1)) # => <class 'int'>
|
||
type((1,)) # => <class 'tuple'>
|
||
type(()) # => <class 'tuple'>
|
||
|
||
# 列表允许的操作元组大多都可以
|
||
len(tup) # => 3
|
||
tup + (4, 5, 6) # => (1, 2, 3, 4, 5, 6)
|
||
tup[:2] # => (1, 2)
|
||
2 in tup # => True
|
||
|
||
# 可以把元组合列表解包,赋值给变量
|
||
a, b, c = (1, 2, 3) # 现在 a 是 1,b 是 2,c 是 3
|
||
# 也可以做扩展解包
|
||
a, *b, c = (1, 2, 3, 4) # 现在 a 是 1, b 是 [2, 3], c 是 4
|
||
# 元组周围的括号是可以省略的
|
||
d, e, f = 4, 5, 6 # 元组 4, 5, 6 通过解包被赋值给变量 d, e, f
|
||
# 交换两个变量的值就这么简单
|
||
e, d = d, e # 现在 d 是 5,e 是 4
|
||
|
||
|
||
# 字典用来存储 key 到 value 的映射关系
|
||
empty_dict = {}
|
||
# 初始化的字典
|
||
filled_dict = {"one": 1, "two": 2, "three": 3}
|
||
|
||
# 字典的 key 必须为不可变类型。 这是为了确保 key 被转换为唯一的哈希值以用于快速查询
|
||
# 不可变类型包括整数、浮点、字符串、元组
|
||
invalid_dict = {[1,2,3]: "123"} # => 抛出 TypeError: unhashable type: 'list'
|
||
valid_dict = {(1,2,3):[1,2,3]} # 然而 value 可以是任何类型
|
||
|
||
# 用[]取值
|
||
filled_dict["one"] # => 1
|
||
|
||
# 用 keys 获得所有的键。
|
||
# 因为 keys 返回一个可迭代对象,所以我们需要把它包在 "list()" 里才能转换为列表。
|
||
# 我们下面会详细介绍可迭代。
|
||
# 注意: 对于版本 < 3.7 的 python, 字典的 key 的排序是无序的。你的运行结果
|
||
# 可能与下面的例子不符,但是在 3.7 版本,字典中的项会按照他们被插入到字典的顺序进行排序
|
||
list(filled_dict.keys()) # => ["three", "two", "one"] Python 版本 <3.7
|
||
list(filled_dict.keys()) # => ["one", "two", "three"] Python 版本 3.7+
|
||
|
||
# 用 "values()" 获得所有的值。跟 keys 一样也是可迭代对象,要使用 "list()" 才能转换为列表。
|
||
# 注意: 排序顺序和 keys 的情况相同。
|
||
|
||
list(filled_dict.values()) # => [3, 2, 1] Python 版本 < 3.7
|
||
list(filled_dict.values()) # => [1, 2, 3] Python 版本 3.7+
|
||
|
||
|
||
# 用in测试一个字典是否包含一个键
|
||
"one" in filled_dict # => True
|
||
1 in filled_dict # => False
|
||
|
||
# 访问不存在的键会导致 KeyError
|
||
filled_dict["four"] # KeyError
|
||
|
||
# 用 "get()" 来避免KeyError
|
||
filled_dict.get("one") # => 1
|
||
filled_dict.get("four") # => None
|
||
# 当键不存在的时候 "get()" 方法可以返回默认值
|
||
filled_dict.get("one", 4) # => 1
|
||
filled_dict.get("four", 4) # => 4
|
||
|
||
# "setdefault()" 方法只有当键不存在的时候插入新值
|
||
filled_dict.setdefault("five", 5) # filled_dict["five"] 设为5
|
||
filled_dict.setdefault("five", 6) # filled_dict["five"] 还是5
|
||
|
||
# 字典赋值
|
||
filled_dict.update({"four":4}) # => {"one": 1, "two": 2, "three": 3, "four": 4}
|
||
filled_dict["four"] = 4 # 另一种赋值方法
|
||
|
||
# 用 del 删除项
|
||
del filled_dict["one"] # 从 filled_dict 中把 one 删除
|
||
|
||
|
||
# 用 set 表达集合
|
||
empty_set = set()
|
||
# 初始化一个集合,语法跟字典相似。
|
||
some_set = {1, 1, 2, 2, 3, 4} # some_set现在是 {1, 2, 3, 4}
|
||
|
||
# 类似字典的 keys,set 的元素也必须是不可变类型
|
||
invalid_set = {[1], 1} # => Raises a TypeError: unhashable type: 'list'
|
||
valid_set = {(1,), 1}
|
||
|
||
# 可以把集合赋值于变量
|
||
filled_set = some_set
|
||
|
||
# 为集合添加元素
|
||
filled_set.add(5) # filled_set 现在是 {1, 2, 3, 4, 5}
|
||
# set 没有重复的元素
|
||
filled_set.add(5) # filled_set 依然是 {1, 2, 3, 4, 5}
|
||
|
||
# "&" 取交集
|
||
other_set = {3, 4, 5, 6}
|
||
filled_set & other_set # => {3, 4, 5}
|
||
|
||
# "|" 取并集
|
||
filled_set | other_set # => {1, 2, 3, 4, 5, 6}
|
||
|
||
# "-" 取补集
|
||
{1, 2, 3, 4} - {2, 3, 5} # => {1, 4}
|
||
|
||
# "^" 取异或集(对称差)
|
||
{1, 2, 3, 4} ^ {2, 3, 5} # => {1, 4, 5}
|
||
|
||
# 判断左边的集合是否是右边集合的超集
|
||
{1, 2} >= {1, 2, 3} # => False
|
||
|
||
# 判断左边的集合是否是右边集合的子集
|
||
{1, 2} <= {1, 2, 3} # => True
|
||
|
||
# in 测试集合是否包含元素
|
||
2 in filled_set # => True
|
||
10 in filled_set # => False
|
||
|
||
# 单层集合的深度复制
|
||
filled_set = some_set.copy() # filled_set 是 {1, 2, 3, 4, 5}
|
||
filled_set is some_set # => False
|
||
|
||
####################################################
|
||
## 3. 流程控制和迭代器
|
||
####################################################
|
||
|
||
# 先随便定义一个变量
|
||
some_var = 5
|
||
|
||
# 这是个if语句。注意缩进在Python里是有意义的!
|
||
# 缩进要使用 4 个空格而不是 tabs。
|
||
# 这段代码会打印 "some_var is smaller than 10"
|
||
if some_var > 10:
|
||
print("some_var is totally bigger than 10.")
|
||
elif some_var < 10: # elif 语句是可选的
|
||
print("some_var is smaller than 10.")
|
||
else: # else 也是可选的
|
||
print("some_var is indeed 10.")
|
||
|
||
|
||
"""
|
||
用 for 循环语句遍历列表
|
||
打印:
|
||
dog is a mammal
|
||
cat is a mammal
|
||
mouse is a mammal
|
||
"""
|
||
for animal in ["dog", "cat", "mouse"]:
|
||
# 你可以使用 format() 格式化字符串并插入值
|
||
print("{} is a mammal".format(animal))
|
||
|
||
"""
|
||
"range(number)" 返回数字列表从 0 到 number 的数字
|
||
打印:
|
||
0
|
||
1
|
||
2
|
||
3
|
||
"""
|
||
for i in range(4):
|
||
print(i)
|
||
|
||
"""
|
||
"range(lower, upper)" 会返回一个包含从 lower 到 upper 的数字迭代器
|
||
prints:
|
||
4
|
||
5
|
||
6
|
||
7
|
||
"""
|
||
for i in range(4, 8):
|
||
print(i)
|
||
|
||
"""
|
||
"range(lower, upper, step)" 会返回一个,从 lower 到 upper、并且间隔值为 step 的迭代器。
|
||
如果 step 未传入则会使用默认值 1
|
||
prints:
|
||
4
|
||
6
|
||
"""
|
||
for i in range(4, 8, 2):
|
||
print(i)
|
||
|
||
"""
|
||
遍历列表,并且同时返回列表里的每一个元素的索引和数值。
|
||
prints:
|
||
0 dog
|
||
1 cat
|
||
2 mouse
|
||
"""
|
||
animals = ["dog", "cat", "mouse"]
|
||
for i, value in enumerate(animals):
|
||
print(i, value)
|
||
|
||
"""
|
||
while 循环直到条件不满足
|
||
打印:
|
||
0
|
||
1
|
||
2
|
||
3
|
||
"""
|
||
x = 0
|
||
while x < 4:
|
||
print(x)
|
||
x += 1 # x = x + 1 的简写
|
||
|
||
|
||
# 用 try/except 块处理异常状况
|
||
try:
|
||
# 用 raise 抛出异常
|
||
raise IndexError("This is an index error")
|
||
except IndexError as e:
|
||
pass # pass 是无操作,但是应该在这里处理错误
|
||
except (TypeError, NameError):
|
||
pass # 可以同时处理不同类的错误
|
||
else: # else语句是可选的,必须在所有的except之后
|
||
print("All good!") # 只有当try运行完没有错误的时候这句才会运行
|
||
finally: # 在任何情况下都会执行
|
||
print("We can clean up resources here")
|
||
|
||
# 你可以使用 with 语句来代替 try/finally 对操作进行结束的操作
|
||
with open("myfile.txt") as f:
|
||
for line in f:
|
||
print(line)
|
||
|
||
# 写入文件
|
||
contents = {"aa": 12, "bb": 21}
|
||
with open("myfile1.txt", "w+") as file:
|
||
file.write(str(contents)) # 写入字符串到文件
|
||
|
||
with open("myfile2.txt", "w+") as file:
|
||
file.write(json.dumps(contents)) # 写入对象到文件
|
||
|
||
# Reading from a file
|
||
with open("myfile1.txt", "r+") as file:
|
||
contents = file.read() # 从文件读取字符串
|
||
print(contents)
|
||
# print: {"aa": 12, "bb": 21}
|
||
|
||
with open("myfile2.txt", "r+") as file:
|
||
contents = json.load(file) # 从文件读取 json 对象
|
||
print(contents)
|
||
# print: {"aa": 12, "bb": 21}
|
||
|
||
# Windows 环境调用 open() 读取文件的默认编码为 ANSI,如果需要读取 utf-8 编码的文件,
|
||
# 需要指定 encoding 参数:
|
||
# open("myfile3.txt", "r+", encoding = "utf-8")
|
||
|
||
|
||
# Python 提供一个叫做可迭代 (iterable) 的基本抽象。一个可迭代对象是可以被当作序列
|
||
# 的对象。比如说上面 range 返回的对象就是可迭代的。
|
||
|
||
filled_dict = {"one": 1, "two": 2, "three": 3}
|
||
our_iterable = filled_dict.keys()
|
||
print(our_iterable) # => dict_keys(['one', 'two', 'three']),是一个实现可迭代接口的对象
|
||
|
||
# 可迭代对象可以遍历
|
||
for i in our_iterable:
|
||
print(i) # 打印 one, two, three
|
||
|
||
# 但是不可以随机访问
|
||
our_iterable[1] # 抛出TypeError
|
||
|
||
# 可迭代对象知道怎么生成迭代器
|
||
our_iterator = iter(our_iterable)
|
||
|
||
# 迭代器是一个可以记住遍历的位置的对象
|
||
# 用 "next()" 获得下一个对象
|
||
next(our_iterator) # => "one"
|
||
|
||
# 再一次调取 "next()" 时会记得位置
|
||
next(our_iterator) # => "two"
|
||
next(our_iterator) # => "three"
|
||
|
||
# 当迭代器所有元素都取出后,会抛出 StopIteration
|
||
next(our_iterator) # 抛出 StopIteration
|
||
|
||
# 我们还可以通过遍历访问所有的值,实际上,for 内部实现了迭代
|
||
our_iterator = iter(our_iterable)
|
||
for i in our_iterator:
|
||
print(i) # 依次打印 one, two, three
|
||
|
||
# 可以用 list 一次取出迭代器或者可迭代对象所有的元素
|
||
list(filled_dict.keys()) # => 返回 ["one", "two", "three"]
|
||
list(our_iterator) # => 返回 [] 因为迭代的位置被保存了
|
||
|
||
|
||
####################################################
|
||
## 4. 函数
|
||
####################################################
|
||
|
||
# 用def定义新函数
|
||
def add(x, y):
|
||
print("x is {} and y is {}".format(x, y))
|
||
return x + y # 用 return 语句返回
|
||
|
||
# 调用函数
|
||
add(5, 6) # => 打印 "x is 5 and y is 6" 并且返回 11
|
||
|
||
# 也可以用关键字参数来调用函数
|
||
add(y=6, x=5) # 关键字参数可以用任何顺序
|
||
|
||
|
||
# 我们可以定义一个可变参数函数
|
||
def varargs(*args):
|
||
return args
|
||
|
||
varargs(1, 2, 3) # => (1, 2, 3)
|
||
|
||
|
||
# 我们也可以定义一个关键字可变参数函数
|
||
def keyword_args(**kwargs):
|
||
return kwargs
|
||
|
||
# 我们来看看结果是什么:
|
||
keyword_args(big="foot", loch="ness") # => {"big": "foot", "loch": "ness"}
|
||
|
||
|
||
# 这两种可变参数可以混着用
|
||
def all_the_args(*args, **kwargs):
|
||
print(args)
|
||
print(kwargs)
|
||
"""
|
||
all_the_args(1, 2, a=3, b=4) prints:
|
||
(1, 2)
|
||
{"a": 3, "b": 4}
|
||
"""
|
||
|
||
# 调用可变参数函数时可以做跟上面相反的,用 * 展开元组,用 ** 展开字典。
|
||
args = (1, 2, 3, 4)
|
||
kwargs = {"a": 3, "b": 4}
|
||
all_the_args(*args) # 相当于 all_the_args(1, 2, 3, 4)
|
||
all_the_args(**kwargs) # 相当于 all_the_args(a=3, b=4)
|
||
all_the_args(*args, **kwargs) # 相当于 all_the_args(1, 2, 3, 4, a=3, b=4)
|
||
|
||
# 使用返回多个数值(返回值为元组类型)
|
||
def swap(x, y):
|
||
return y, x # 用不带括号的元组的格式来返回多个数值
|
||
# (注意: 括号不需要加,但是也可以加)
|
||
|
||
x = 1
|
||
y = 2
|
||
x, y = swap(x, y) # => x = 2, y = 1
|
||
# (x, y) = swap(x,y) # 同上,括号不需要加,但是也可以加
|
||
|
||
|
||
# 函数作用域
|
||
x = 5
|
||
|
||
def setX(num):
|
||
# 局部作用域的 x 和全局域的 x 是不同的
|
||
x = num # => 43
|
||
print (x) # => 43
|
||
|
||
def setGlobalX(num):
|
||
global x
|
||
print (x) # => 5
|
||
x = num # 现在全局域的 x 被赋值
|
||
print (x) # => 6
|
||
|
||
setX(43)
|
||
setGlobalX(6)
|
||
|
||
|
||
# 函数在 Python 是一等公民
|
||
def create_adder(x):
|
||
def adder(y):
|
||
return x + y
|
||
return adder
|
||
|
||
add_10 = create_adder(10)
|
||
add_10(3) # => 13
|
||
|
||
# 也有匿名函数
|
||
(lambda x: x > 2)(3) # => True
|
||
(lambda x, y: x ** 2 + y ** 2)(2, 1) # => 5
|
||
|
||
# 内置的高阶函数
|
||
list(map(add_10, [1, 2, 3])) # => [11, 12, 13]
|
||
list(map(max, [1, 2, 3], [4, 2, 1])) # => [4, 2, 3]
|
||
|
||
list(filter(lambda x: x > 5, [3, 4, 5, 6, 7])) # => [6, 7]
|
||
|
||
# 用列表推导式可以简化映射和过滤。列表推导式的返回值是另一个列表。
|
||
[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
|
||
[x for x in [3, 4, 5, 6, 7] if x > 5] # => [6, 7]
|
||
|
||
# 你也可以用这种方式实现对集合和字典的构建
|
||
{x for x in 'abcddeef' if x not in 'abc'} # => {'d', 'e', 'f'}
|
||
{x: x**2 for x in range(5)} # => {0: 0, 1: 1, 2: 4, 3: 9, 4: 16}
|
||
|
||
|
||
####################################################
|
||
## 5. 模块
|
||
####################################################
|
||
|
||
# 导入模块
|
||
import math
|
||
print(math.sqrt(16)) # => 4.0
|
||
|
||
# 你可以导入模块中具体的函数
|
||
from math import ceil, floor
|
||
print(ceil(3.7)) # => 4.0
|
||
print(floor(3.7)) # => 3.0
|
||
|
||
# 你可以导入模块中的所有的函数
|
||
# 警告: 此操作不推荐
|
||
from math import *
|
||
|
||
# 你可以对模块名进行简化
|
||
import math as m
|
||
math.sqrt(16) == m.sqrt(16) # => True
|
||
|
||
# Python 模块实质上是 Python 文件
|
||
# 你可以自己编写自己的模块,然后导入
|
||
# 模块的名称和文件名相同
|
||
|
||
# 你可以用 "dir()" 查看模块中定义的函数和字段
|
||
import math
|
||
dir(math)
|
||
|
||
# 当你的脚本文件所在的文件夹也包含了一个名为 math.py 的 Python 文件
|
||
# 这个 math.py 文件会被代替引入,而不是引入 Python 內建模块中的 math
|
||
# 出现这个情况的原因是本地文件夹的引入优先级要比 Python 內建库引入优先级要高
|
||
|
||
|
||
####################################################
|
||
## 6. 类
|
||
####################################################
|
||
|
||
# 我们使用 "class" 语句来创建类
|
||
class Human:
|
||
|
||
# 一个类的字段。 这个字段共享给这个类的所有实例。
|
||
species = "H. sapiens"
|
||
|
||
# 构造方法,当实例被初始化时被调用。注意名字前后的双下划线,这是表明这个属性
|
||
# 或方法对 Python 有特殊意义,但是允许用户自行定义。
|
||
# 方法(可能是对象或者属性) 类似: __init__, __str__,__repr__ etc
|
||
# 都是特殊的方法
|
||
# 你自己取名时不应该用这种格式
|
||
def __init__(self, name):
|
||
# 将参数赋值给实例的 name 字段
|
||
self.name = name
|
||
|
||
# 初始化属性
|
||
self._age = 0
|
||
|
||
# 实例方法,第一个参数总是self,也就是这个实例对象
|
||
def say(self, msg):
|
||
print("{name}: {message}".format(name=self.name, message=msg))
|
||
|
||
# 另一个实例方法
|
||
def sing(self):
|
||
return 'yo... yo... microphone check... one two... one two...'
|
||
|
||
# 类方法,被所有此类的实例共用。
|
||
# 第一个参数是这个类对象。
|
||
@classmethod
|
||
def get_species(cls):
|
||
return cls.species
|
||
|
||
# 静态方法。调用时没有实例或类的绑定。
|
||
@staticmethod
|
||
def grunt():
|
||
return "*grunt*"
|
||
|
||
# property 有点类似 getter
|
||
# 它把方法 age() 转换为同名并且只读的属性
|
||
# 通常情况下,可以不需要编写复杂的 getter 和 setter。
|
||
@property
|
||
def age(self):
|
||
return self._age
|
||
|
||
# 允许属性被修改
|
||
@age.setter
|
||
def age(self, age):
|
||
self._age = age
|
||
|
||
# 允许属性被删除
|
||
@age.deleter
|
||
def age(self):
|
||
del self._age
|
||
|
||
# 当 Python 解释器在读取源文件的时候,就会执行文件中所有的代码
|
||
# 对 __name__ 的检查可以保证这块代码只会在这个模块是主程序的情况下被运行(而不是在引用时运行)
|
||
if __name__ == '__main__':
|
||
#
|
||
i = Human(name="Ian")
|
||
i.say("hi") # "Ian: hi"
|
||
j = Human("Joel")
|
||
j.say("hello") # "Joel: hello"
|
||
# i 和 j 都是 Human 实例化后的对象,换一句话说,它们都是 Human 实例
|
||
|
||
# 运行类方法 (classmethod)
|
||
i.say(i.get_species()) # "Ian: H. sapiens"
|
||
# 修改共享的类属性
|
||
Human.species = "H. neanderthalensis"
|
||
i.say(i.get_species()) # => "Ian: H. neanderthalensis"
|
||
j.say(j.get_species()) # => "Joel: H. neanderthalensis"
|
||
|
||
# 运行静态方法 (staticmethod)
|
||
print(Human.grunt()) # => "*grunt*"
|
||
|
||
# 实例上也可以执行静态方法
|
||
print(i.grunt()) # => "*grunt*"
|
||
|
||
# 更新实例的属性
|
||
i.age = 42
|
||
# 访问实例的属性
|
||
i.say(i.age) # => "Ian: 42"
|
||
j.say(j.age) # => "Joel: 0"
|
||
# 删除实例的属性
|
||
del i.age
|
||
# i.age # => 这会抛出一个错误: AttributeError
|
||
|
||
|
||
####################################################
|
||
## 6.1 类的继承
|
||
####################################################
|
||
|
||
# 继承机制允许子类可以继承父类上的方法和变量。
|
||
# 我们可以把 Human 类作为一个基础类或者说叫做父类,
|
||
# 然后定义一个名为 Superhero 的子类来继承父类上的比如 "species"、 "name"、 "age" 的属性
|
||
# 和比如 "sing" 、"grunt" 这样的方法,同时,也可以定义它自己独有的属性
|
||
|
||
# 基于 Python 文件模块化的特点,你可以把这个类放在独立的文件中,比如说,human.py。
|
||
|
||
# 要从别的文件导入函数,需要使用以下的语句
|
||
# from "filename-without-extension" import "function-or-class"
|
||
|
||
from human import Human
|
||
|
||
# 指定父类作为类初始化的参数
|
||
class Superhero(Human):
|
||
|
||
# 如果子类需要继承所有父类的定义,并且不需要做任何的修改,
|
||
# 你可以直接使用 "pass" 关键字(并且不需要其他任何语句)
|
||
# 但是在这个例子中会被注释掉,以用来生成不一样的子类。
|
||
# pass
|
||
|
||
# 子类可以重写父类定义的字段
|
||
species = 'Superhuman'
|
||
|
||
# 子类会自动的继承父类的构造函数包括它的参数,但同时,子类也可以新增额外的参数或者定义,
|
||
# 甚至去覆盖父类的方法比如说构造函数。
|
||
# 这个构造函数从父类 "Human" 上继承了 "name" 参数,同时又新增了 "superpower" 和
|
||
# "movie" 参数:
|
||
def __init__(self, name, movie=False,
|
||
superpowers=["super strength", "bulletproofing"]):
|
||
|
||
# 新增额外类的参数
|
||
self.fictional = True
|
||
self.movie = movie
|
||
# 注意可变的默认值,因为默认值是共享的
|
||
self.superpowers = superpowers
|
||
|
||
# "super" 函数让你可以访问父类中被子类重写的方法
|
||
# 在这个例子中,被重写的是 __init__ 方法
|
||
# 这个语句是用来运行父类的构造函数:
|
||
super().__init__(name)
|
||
|
||
# 重写父类中的 sing 方法
|
||
def sing(self):
|
||
return 'Dun, dun, DUN!'
|
||
|
||
# 新增一个额外的方法
|
||
def boast(self):
|
||
for power in self.superpowers:
|
||
print("I wield the power of {pow}!".format(pow=power))
|
||
|
||
|
||
if __name__ == '__main__':
|
||
sup = Superhero(name="Tick")
|
||
|
||
# 检查实例类型
|
||
if isinstance(sup, Human):
|
||
print('I am human')
|
||
if type(sup) is Superhero:
|
||
print('I am a superhero')
|
||
|
||
# 获取方法解析顺序 MRO,MRO 被用于 getattr() 和 super()
|
||
# 这个字段是动态的,并且可以被修改
|
||
print(Superhero.__mro__) # => (<class '__main__.Superhero'>,
|
||
# => <class 'human.Human'>, <class 'object'>)
|
||
|
||
# 调用父类的方法并且使用子类的属性
|
||
print(sup.get_species()) # => Superhuman
|
||
|
||
# 调用被重写的方法
|
||
print(sup.sing()) # => Dun, dun, DUN!
|
||
|
||
# 调用 Human 的方法
|
||
sup.say('Spoon') # => Tick: Spoon
|
||
|
||
# 调用 Superhero 独有的方法
|
||
sup.boast() # => I wield the power of super strength!
|
||
# => I wield the power of bulletproofing!
|
||
|
||
# 继承类的字段
|
||
sup.age = 31
|
||
print(sup.age) # => 31
|
||
|
||
# Superhero 独有的字段
|
||
print('Am I Oscar eligible? ' + str(sup.movie))
|
||
|
||
|
||
####################################################
|
||
## 6.2 多重继承
|
||
####################################################
|
||
|
||
# 定义另一个类
|
||
# bat.py
|
||
class Bat:
|
||
|
||
species = 'Baty'
|
||
|
||
def __init__(self, can_fly=True):
|
||
self.fly = can_fly
|
||
|
||
# 这个类同样有 say 的方法
|
||
def say(self, msg):
|
||
msg = '... ... ...'
|
||
return msg
|
||
|
||
# 新增一个独有的方法
|
||
def sonar(self):
|
||
return '))) ... ((('
|
||
|
||
if __name__ == '__main__':
|
||
b = Bat()
|
||
print(b.say('hello'))
|
||
print(b.fly)
|
||
|
||
# 现在我们来定义一个类来同时继承 Superhero 和 Bat
|
||
# superhero.py
|
||
from superhero import Superhero
|
||
from bat import Bat
|
||
|
||
# 定义 Batman 作为子类,来同时继承 SuperHero 和 Bat
|
||
class Batman(Superhero, Bat):
|
||
|
||
def __init__(self, *args, **kwargs):
|
||
# 通常要继承属性,你必须调用 super:
|
||
# super(Batman, self).__init__(*args, **kwargs)
|
||
# 然而在这里我们处理的是多重继承,而 super() 只会返回 MRO 列表的下一个基础类。
|
||
# 因此,我们需要显式调用初始类的 __init__
|
||
# *args 和 **kwargs 传递参数时更加清晰整洁,而对于父类而言像是 “剥了一层洋葱”
|
||
Superhero.__init__(self, 'anonymous', movie=True,
|
||
superpowers=['Wealthy'], *args, **kwargs)
|
||
Bat.__init__(self, *args, can_fly=False, **kwargs)
|
||
# 重写了 name 字段
|
||
self.name = 'Sad Affleck'
|
||
|
||
def sing(self):
|
||
return 'nan nan nan nan nan batman!'
|
||
|
||
|
||
if __name__ == '__main__':
|
||
sup = Batman()
|
||
|
||
# 获取方法解析顺序 MRO,MRO 被用于 getattr() 和 super()
|
||
# 这个字段是动态的,并且可以被修改
|
||
print(Batman.__mro__) # => (<class '__main__.Batman'>,
|
||
# => <class 'superhero.Superhero'>,
|
||
# => <class 'human.Human'>,
|
||
# => <class 'bat.Bat'>, <class 'object'>)
|
||
|
||
# 调用父类的方法并且使用子类的属性
|
||
print(sup.get_species()) # => Superhuman
|
||
|
||
# 调用被重写的类
|
||
print(sup.sing()) # => nan nan nan nan nan batman!
|
||
|
||
# 调用 Human 上的方法,(之所以是 Human 而不是 Bat),是因为继承顺序起了作用
|
||
sup.say('I agree') # => Sad Affleck: I agree
|
||
|
||
# 调用仅存在于第二个继承的父类的方法
|
||
print(sup.sonar()) # => ))) ... (((
|
||
|
||
# 继承类的属性
|
||
sup.age = 100
|
||
print(sup.age) # => 100
|
||
|
||
# 从第二个类上继承字段,并且其默认值被重写
|
||
print('Can I fly? ' + str(sup.fly)) # => Can I fly? False
|
||
|
||
|
||
####################################################
|
||
## 7. 高级用法
|
||
####################################################
|
||
|
||
# 用生成器(generators)方便地写惰性运算
|
||
def double_numbers(iterable):
|
||
for i in iterable:
|
||
yield i + i
|
||
|
||
# 生成器只有在需要时才计算下一个值。它们每一次循环只生成一个值,而不是把所有的
|
||
# 值全部算好。
|
||
#
|
||
# range的返回值也是一个生成器,不然一个1到900000000的列表会花很多时间和内存。
|
||
#
|
||
# 如果你想用一个Python的关键字当作变量名,可以加一个下划线来区分。
|
||
range_ = range(1, 900000000)
|
||
# 当找到一个 >=30 的结果就会停
|
||
# 这意味着 `double_numbers` 不会生成大于30的数。
|
||
for i in double_numbers(range_):
|
||
print(i)
|
||
if i >= 30:
|
||
break
|
||
# 你也可以把一个生成器推导直接转换为列表
|
||
values = (-x for x in [1,2,3,4,5])
|
||
gen_to_list = list(values)
|
||
print(gen_to_list) # => [-1, -2, -3, -4, -5]
|
||
|
||
|
||
# 装饰器(decorators)
|
||
# 这个例子中,beg装饰say
|
||
# beg会先调用say。如果返回的say_please为真,beg会改变返回的字符串。
|
||
from functools import wraps
|
||
|
||
|
||
def beg(target_function):
|
||
@wraps(target_function)
|
||
def wrapper(*args, **kwargs):
|
||
msg, say_please = target_function(*args, **kwargs)
|
||
if say_please:
|
||
return "{} {}".format(msg, "Please! I am poor :(")
|
||
return msg
|
||
|
||
return wrapper
|
||
|
||
|
||
@beg
|
||
def say(say_please=False):
|
||
msg = "Can you buy me a beer?"
|
||
return msg, say_please
|
||
|
||
|
||
print(say()) # Can you buy me a beer?
|
||
print(say(say_please=True)) # Can you buy me a beer? Please! I am poor :(
|
||
```
|
||
|
||
## 想继续学吗?
|
||
|
||
### 在线免费材料(英文)
|
||
|
||
* [Automate the Boring Stuff with Python](https://automatetheboringstuff.com/)
|
||
* [Ideas for Python Projects](http://pythonpracticeprojects.com/)
|
||
* [The Official Docs](https://docs.python.org/3/)
|
||
* [Hitchhiker’s Guide to Python](https://docs.python-guide.org/)
|
||
* [Python Course](https://www.python-course.eu/)
|
||
* [First Steps With Python](https://realpython.com/learn/python-first-steps/)
|
||
* [A curated list of awesome Python frameworks, libraries and software](https://github.com/vinta/awesome-python)
|
||
* [Official Style Guide for Python](https://peps.python.org/pep-0008/)
|
||
* [Python 3 Computer Science Circles](https://cscircles.cemc.uwaterloo.ca/)
|
||
* [Dive Into Python 3](https://www.diveintopython3.net/)
|
||
* [Python Tutorial for Intermediates](https://pythonbasics.org/)
|
||
* [Build a Desktop App with Python](https://pythonpyqt.com/)
|
||
|
||
### 书籍(也是英文)
|
||
|
||
* [Programming Python](http://www.amazon.com/gp/product/0596158106/ref=as_li_qf_sp_asin_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0596158106&linkCode=as2&tag=homebits04-20)
|
||
* [Dive Into Python](http://www.amazon.com/gp/product/1441413022/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1441413022&linkCode=as2&tag=homebits04-20)
|
||
* [Python Essential Reference](http://www.amazon.com/gp/product/0672329786/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0672329786&linkCode=as2&tag=homebits04-20)
|
||
|