mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2025-01-15 05:35:59 +00:00
1.3 KiB
1.3 KiB
language | category | tool | filename | contributors | |||
---|---|---|---|---|---|---|---|
Spark | tool | Spark | learnspark.spark |
|
Spark is an open-source distributed data processing framework that enables large-scale data processing across clusters. This guide covers the basics of Apache Spark using PySpark, the Python API.
# Setting Up Spark
from pyspark.sql import SparkSession
spark = SparkSession.builder \
.appName("ExampleApp") \
.getOrCreate()
# Working with DataFrames
data = [("Alice", 30), ("Bob", 40)]
columns = ["Name", "Age"]
df = spark.createDataFrame(data, columns)
df.show()
# +-----+---+
# | Name|Age|
# +-----+---+
# |Alice| 30|
# | Bob| 40|
# +-----+---+
# Transformations and Actions
df_filtered = df.filter(df.Age > 35)
df_filtered.show()
# +----+---+
# |Name|Age|
# +----+---+
# | Bob| 40|
# +----+---+
# SQL Queries
df.createOrReplaceTempView("people")
spark.sql("SELECT * FROM people WHERE Age > 30").show()
# Reading and Writing Files
csv_df = spark.read.csv("path/to/file.csv", header=True, inferSchema=True)
df.write.parquet("output_path")
# RDD Basics
rdd = spark.sparkContext.parallelize([1, 2, 3, 4])
squared_rdd = rdd.map(lambda x: x ** 2)
print(squared_rdd.collect())
# Output: [1, 4, 9, 16]
# Ending the Spark Session
spark.stop()