mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2025-01-13 04:35:59 +00:00
380 lines
12 KiB
Kotlin
380 lines
12 KiB
Kotlin
---
|
|
language: kotlin
|
|
contributors:
|
|
- ["S Webber", "https://github.com/s-webber"]
|
|
filename: LearnKotlin.kt
|
|
---
|
|
|
|
Kotlin is a statically typed programming language for the JVM, Android and the
|
|
browser. It is 100% interoperable with Java.
|
|
[Read more here.](https://kotlinlang.org/)
|
|
|
|
```kotlin
|
|
// Single-line comments start with //
|
|
/*
|
|
Multi-line comments look like this.
|
|
*/
|
|
|
|
// The "package" keyword works in the same way as in Java.
|
|
package com.learnxinyminutes.kotlin
|
|
|
|
/*
|
|
The entry point to a Kotlin program is a function named "main".
|
|
The function is passed an array containing any command line arguments.
|
|
*/
|
|
fun main(args: Array<String>) {
|
|
/*
|
|
Declaring values is done using either "var" or "val".
|
|
"val" declarations cannot be reassigned, whereas "vars" can.
|
|
*/
|
|
val fooVal = 10 // we cannot later reassign fooVal to something else
|
|
var fooVar = 10
|
|
fooVar = 20 // fooVar can be reassigned
|
|
|
|
/*
|
|
In most cases, Kotlin can determine what the type of a variable is,
|
|
so we don't have to explicitly specify it every time.
|
|
We can explicitly declare the type of a variable like so:
|
|
*/
|
|
val foo: Int = 7
|
|
|
|
/*
|
|
Strings can be represented in a similar way as in Java.
|
|
Escaping is done with a backslash.
|
|
*/
|
|
val fooString = "My String Is Here!"
|
|
val barString = "Printing on a new line?\nNo Problem!"
|
|
val bazString = "Do you want to add a tab?\tNo Problem!"
|
|
println(fooString)
|
|
println(barString)
|
|
println(bazString)
|
|
|
|
/*
|
|
A raw string is delimited by a triple quote (""").
|
|
Raw strings can contain newlines and any other characters.
|
|
*/
|
|
val fooRawString = """
|
|
fun helloWorld(val name : String) {
|
|
println("Hello, world!")
|
|
}
|
|
"""
|
|
println(fooRawString)
|
|
|
|
/*
|
|
Strings can contain template expressions.
|
|
A template expression starts with a dollar sign ($).
|
|
*/
|
|
val fooTemplateString = "$fooString has ${fooString.length} characters"
|
|
println(fooTemplateString) // => My String Is Here! has 18 characters
|
|
|
|
/*
|
|
For a variable to hold null it must be explicitly specified as nullable.
|
|
A variable can be specified as nullable by appending a ? to its type.
|
|
We can access a nullable variable by using the ?. operator.
|
|
We can use the ?: operator to specify an alternative value to use
|
|
if a variable is null.
|
|
*/
|
|
var fooNullable: String? = "abc"
|
|
println(fooNullable?.length) // => 3
|
|
println(fooNullable?.length ?: -1) // => 3
|
|
fooNullable = null
|
|
println(fooNullable?.length) // => null
|
|
println(fooNullable?.length ?: -1) // => -1
|
|
|
|
/*
|
|
Functions can be declared using the "fun" keyword.
|
|
Function arguments are specified in brackets after the function name.
|
|
Function arguments can optionally have a default value.
|
|
The function return type, if required, is specified after the arguments.
|
|
*/
|
|
fun hello(name: String = "world"): String {
|
|
return "Hello, $name!"
|
|
}
|
|
println(hello("foo")) // => Hello, foo!
|
|
println(hello(name = "bar")) // => Hello, bar!
|
|
println(hello()) // => Hello, world!
|
|
|
|
/*
|
|
A function parameter may be marked with the "vararg" keyword
|
|
to allow a variable number of arguments to be passed to the function.
|
|
*/
|
|
fun varargExample(vararg names: Int) {
|
|
println("Argument has ${names.size} elements")
|
|
}
|
|
varargExample() // => Argument has 0 elements
|
|
varargExample(1) // => Argument has 1 elements
|
|
varargExample(1, 2, 3) // => Argument has 3 elements
|
|
|
|
/*
|
|
When a function consists of a single expression then the curly brackets can
|
|
be omitted. The body is specified after a = symbol.
|
|
*/
|
|
fun odd(x: Int): Boolean = x % 2 == 1
|
|
println(odd(6)) // => false
|
|
println(odd(7)) // => true
|
|
|
|
// If the return type can be inferred then we don't need to specify it.
|
|
fun even(x: Int) = x % 2 == 0
|
|
println(even(6)) // => true
|
|
println(even(7)) // => false
|
|
|
|
// Functions can take functions as arguments and return functions.
|
|
fun not(f: (Int) -> Boolean): (Int) -> Boolean {
|
|
return {n -> !f.invoke(n)}
|
|
}
|
|
// Named functions can be specified as arguments using the :: operator.
|
|
val notOdd = not(::odd)
|
|
val notEven = not(::even)
|
|
// Lambda expressions can be specified as arguments.
|
|
val notZero = not {n -> n == 0}
|
|
/*
|
|
If a lambda has only one parameter
|
|
then its declaration can be omitted (along with the ->).
|
|
The name of the single parameter will be "it".
|
|
*/
|
|
val notPositive = not {it > 0}
|
|
for (i in 0..4) {
|
|
println("${notOdd(i)} ${notEven(i)} ${notZero(i)} ${notPositive(i)}")
|
|
}
|
|
|
|
// The "class" keyword is used to declare classes.
|
|
class ExampleClass(val x: Int) {
|
|
fun memberFunction(y: Int): Int {
|
|
return x + y
|
|
}
|
|
|
|
infix fun infixMemberFunction(y: Int): Int {
|
|
return x * y
|
|
}
|
|
}
|
|
/*
|
|
To create a new instance we call the constructor.
|
|
Note that Kotlin does not have a "new" keyword.
|
|
*/
|
|
val fooExampleClass = ExampleClass(7)
|
|
// Member functions can be called using dot notation.
|
|
println(fooExampleClass.memberFunction(4)) // => 11
|
|
/*
|
|
If a function has been marked with the "infix" keyword then it can be
|
|
called using infix notation.
|
|
*/
|
|
println(fooExampleClass infixMemberFunction 4) // => 28
|
|
|
|
/*
|
|
Data classes are a concise way to create classes that just hold data.
|
|
The "hashCode"/"equals" and "toString" methods are automatically generated.
|
|
*/
|
|
data class DataClassExample (val x: Int, val y: Int, val z: Int)
|
|
val fooData = DataClassExample(1, 2, 4)
|
|
println(fooData) // => DataClassExample(x=1, y=2, z=4)
|
|
|
|
// Data classes have a "copy" function.
|
|
val fooCopy = fooData.copy(y = 100)
|
|
println(fooCopy) // => DataClassExample(x=1, y=100, z=4)
|
|
|
|
// Objects can be destructured into multiple variables.
|
|
val (a, b, c) = fooCopy
|
|
println("$a $b $c") // => 1 100 4
|
|
|
|
// destructuring in "for" loop
|
|
for ((a, b, c) in listOf(fooData)) {
|
|
println("$a $b $c") // => 1 100 4
|
|
}
|
|
|
|
val mapData = mapOf("a" to 1, "b" to 2)
|
|
// Map.Entry is destructurable as well
|
|
for ((key, value) in mapData) {
|
|
println("$key -> $value")
|
|
}
|
|
|
|
// The "with" function is similar to the JavaScript "with" statement.
|
|
data class MutableDataClassExample (var x: Int, var y: Int, var z: Int)
|
|
val fooMutableData = MutableDataClassExample(7, 4, 9)
|
|
with (fooMutableData) {
|
|
x -= 2
|
|
y += 2
|
|
z--
|
|
}
|
|
println(fooMutableData) // => MutableDataClassExample(x=5, y=6, z=8)
|
|
|
|
/*
|
|
We can create a list using the "listOf" function.
|
|
The list will be immutable - elements cannot be added or removed.
|
|
*/
|
|
val fooList = listOf("a", "b", "c")
|
|
println(fooList.size) // => 3
|
|
println(fooList.first()) // => a
|
|
println(fooList.last()) // => c
|
|
// Elements of a list can be accessed by their index.
|
|
println(fooList[1]) // => b
|
|
|
|
// A mutable list can be created using the "mutableListOf" function.
|
|
val fooMutableList = mutableListOf("a", "b", "c")
|
|
fooMutableList.add("d")
|
|
println(fooMutableList.last()) // => d
|
|
println(fooMutableList.size) // => 4
|
|
|
|
// We can create a set using the "setOf" function.
|
|
val fooSet = setOf("a", "b", "c")
|
|
println(fooSet.contains("a")) // => true
|
|
println(fooSet.contains("z")) // => false
|
|
|
|
// We can create a map using the "mapOf" function.
|
|
val fooMap = mapOf("a" to 8, "b" to 7, "c" to 9)
|
|
// Map values can be accessed by their key.
|
|
println(fooMap["a"]) // => 8
|
|
|
|
/*
|
|
Sequences represent lazily-evaluated collections.
|
|
We can create a sequence using the "generateSequence" function.
|
|
*/
|
|
val fooSequence = generateSequence(1, { it + 1 })
|
|
val x = fooSequence.take(10).toList()
|
|
println(x) // => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
|
|
|
// An example of using a sequence to generate Fibonacci numbers:
|
|
fun fibonacciSequence(): Sequence<Long> {
|
|
var a = 0L
|
|
var b = 1L
|
|
|
|
fun next(): Long {
|
|
val result = a + b
|
|
a = b
|
|
b = result
|
|
return a
|
|
}
|
|
|
|
return generateSequence(::next)
|
|
}
|
|
val y = fibonacciSequence().take(10).toList()
|
|
println(y) // => [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
|
|
|
|
// Kotlin provides higher-order functions for working with collections.
|
|
val z = (1..9).map {it * 3}
|
|
.filter {it < 20}
|
|
.groupBy {it % 2 == 0}
|
|
.mapKeys {if (it.key) "even" else "odd"}
|
|
println(z) // => {odd=[3, 9, 15], even=[6, 12, 18]}
|
|
|
|
// A "for" loop can be used with anything that provides an iterator.
|
|
for (c in "hello") {
|
|
println(c)
|
|
}
|
|
|
|
// "while" loops work in the same way as other languages.
|
|
var ctr = 0
|
|
while (ctr < 5) {
|
|
println(ctr)
|
|
ctr++
|
|
}
|
|
do {
|
|
println(ctr)
|
|
ctr++
|
|
} while (ctr < 10)
|
|
|
|
/*
|
|
"if" can be used as an expression that returns a value.
|
|
For this reason the ternary ?: operator is not needed in Kotlin.
|
|
*/
|
|
val num = 5
|
|
val message = if (num % 2 == 0) "even" else "odd"
|
|
println("$num is $message") // => 5 is odd
|
|
|
|
// "when" can be used as an alternative to "if-else if" chains.
|
|
val i = 10
|
|
when {
|
|
i < 7 -> println("first block")
|
|
fooString.startsWith("hello") -> println("second block")
|
|
else -> println("else block")
|
|
}
|
|
|
|
// "when" can be used with an argument.
|
|
when (i) {
|
|
0, 21 -> println("0 or 21")
|
|
in 1..20 -> println("in the range 1 to 20")
|
|
else -> println("none of the above")
|
|
}
|
|
|
|
// "when" can be used as a function that returns a value.
|
|
var result = when (i) {
|
|
0, 21 -> "0 or 21"
|
|
in 1..20 -> "in the range 1 to 20"
|
|
else -> "none of the above"
|
|
}
|
|
println(result)
|
|
|
|
/*
|
|
We can check if an object is a particular type by using the "is" operator.
|
|
If an object passes a type check then it can be used as that type without
|
|
explicitly casting it.
|
|
*/
|
|
fun smartCastExample(x: Any) : Boolean {
|
|
if (x is Boolean) {
|
|
// x is automatically cast to Boolean
|
|
return x
|
|
} else if (x is Int) {
|
|
// x is automatically cast to Int
|
|
return x > 0
|
|
} else if (x is String) {
|
|
// x is automatically cast to String
|
|
return x.isNotEmpty()
|
|
} else {
|
|
return false
|
|
}
|
|
}
|
|
println(smartCastExample("Hello, world!")) // => true
|
|
println(smartCastExample("")) // => false
|
|
println(smartCastExample(5)) // => true
|
|
println(smartCastExample(0)) // => false
|
|
println(smartCastExample(true)) // => true
|
|
|
|
// Smartcast also works with when block
|
|
fun smartCastWhenExample(x: Any) = when (x) {
|
|
is Boolean -> x
|
|
is Int -> x > 0
|
|
is String -> x.isNotEmpty()
|
|
else -> false
|
|
}
|
|
|
|
/*
|
|
Extensions are a way to add new functionality to a class.
|
|
This is similar to C# extension methods.
|
|
*/
|
|
fun String.remove(c: Char): String {
|
|
return this.filter {it != c}
|
|
}
|
|
println("Hello, world!".remove('l')) // => Heo, word!
|
|
|
|
println(EnumExample.A) // => A
|
|
println(ObjectExample.hello()) // => hello
|
|
}
|
|
|
|
// Enum classes are similar to Java enum types.
|
|
enum class EnumExample {
|
|
A, B, C
|
|
}
|
|
|
|
/*
|
|
The "object" keyword can be used to create singleton objects.
|
|
We cannot instantiate it but we can refer to its unique instance by its name.
|
|
This is similar to Scala singleton objects.
|
|
*/
|
|
object ObjectExample {
|
|
fun hello(): String {
|
|
return "hello"
|
|
}
|
|
}
|
|
|
|
fun useObject() {
|
|
ObjectExample.hello()
|
|
val someRef: Any = ObjectExample // we use objects name just as is
|
|
}
|
|
|
|
```
|
|
|
|
### Further Reading
|
|
|
|
* [Kotlin tutorials](https://kotlinlang.org/docs/tutorials/)
|
|
* [Try Kotlin in your browser](http://try.kotlinlang.org/)
|
|
* [A list of Kotlin resources](http://kotlin.link/)
|