mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-12-23 17:41:41 +00:00
539 lines
14 KiB
Markdown
539 lines
14 KiB
Markdown
---
|
||
contributors:
|
||
- ["e99n09", "http://github.com/e99n09"]
|
||
- ["isomorphismes", "http://twitter.com/isomorphisms"]
|
||
translators:
|
||
- ["小柒", "http://weibo.com/u/2328126220"]
|
||
- ["alswl", "https://github.com/alswl"]
|
||
filename: learnr-zh.r
|
||
---
|
||
|
||
R 是一门统计语言。它有很多数据分析和挖掘程序包。可以用来统计、分析和制图。
|
||
你也可以在 LaTeX 文档中运行 `R` 命令。
|
||
|
||
```r
|
||
# 评论以 # 开始
|
||
|
||
# R 语言原生不支持 多行注释
|
||
# 但是你可以像这样来多行注释
|
||
|
||
# 在窗口里按回车键可以执行一条命令
|
||
|
||
|
||
###################################################################
|
||
# 不用懂编程就可以开始动手了
|
||
###################################################################
|
||
|
||
data() # 浏览内建的数据集
|
||
data(rivers) # 北美主要河流的长度(数据集)
|
||
ls() # 在工作空间中查看「河流」是否出现
|
||
head(rivers) # 撇一眼数据集
|
||
# 735 320 325 392 524 450
|
||
length(rivers) # 我们测量了多少条河流?
|
||
# 141
|
||
summary(rivers)
|
||
# Min. 1st Qu. Median Mean 3rd Qu. Max.
|
||
# 135.0 310.0 425.0 591.2 680.0 3710.0
|
||
stem(rivers) # 茎叶图(一种类似于直方图的展现形式)
|
||
#
|
||
# The decimal point is 2 digit(s) to the right of the |
|
||
#
|
||
# 0 | 4
|
||
# 2 | 011223334555566667778888899900001111223333344455555666688888999
|
||
# 4 | 111222333445566779001233344567
|
||
# 6 | 000112233578012234468
|
||
# 8 | 045790018
|
||
# 10 | 04507
|
||
# 12 | 1471
|
||
# 14 | 56
|
||
# 16 | 7
|
||
# 18 | 9
|
||
# 20 |
|
||
# 22 | 25
|
||
# 24 | 3
|
||
# 26 |
|
||
# 28 |
|
||
# 30 |
|
||
# 32 |
|
||
# 34 |
|
||
# 36 | 1
|
||
|
||
|
||
stem(log(rivers)) # 查看数据集的方式既不是标准形式,也不是取log后的结果! 看起来,是钟形曲线形式的基本数据集
|
||
|
||
# The decimal point is 1 digit(s) to the left of the |
|
||
#
|
||
# 48 | 1
|
||
# 50 |
|
||
# 52 | 15578
|
||
# 54 | 44571222466689
|
||
# 56 | 023334677000124455789
|
||
# 58 | 00122366666999933445777
|
||
# 60 | 122445567800133459
|
||
# 62 | 112666799035
|
||
# 64 | 00011334581257889
|
||
# 66 | 003683579
|
||
# 68 | 0019156
|
||
# 70 | 079357
|
||
# 72 | 89
|
||
# 74 | 84
|
||
# 76 | 56
|
||
# 78 | 4
|
||
# 80 |
|
||
# 82 | 2
|
||
|
||
|
||
hist(rivers, col="#333333", border="white", breaks=25) # 试试用这些参数画画 (译者注:给 river 做统计频数直方图,包含了这些参数:数据源,颜色,边框,空格)
|
||
hist(log(rivers), col="#333333", border="white", breaks=25) #你还可以做更多式样的绘图
|
||
|
||
# 还有其他一些简单的数据集可以被用来加载。R 语言包括了大量这种 data()
|
||
data(discoveries)
|
||
plot(discoveries, col="#333333", lwd=3, xlab="Year", main="Number of important discoveries per year")
|
||
# 译者注:参数为(数据源,颜色,线条宽度,X 轴名称,标题)
|
||
plot(discoveries, col="#333333", lwd=3, type = "h", xlab="Year", main="Number of important discoveries per year")
|
||
|
||
|
||
# 除了按照默认的年份排序,我们还可以排序来发现特征
|
||
sort(discoveries)
|
||
# [1] 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
|
||
# [26] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3
|
||
# [51] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4
|
||
# [76] 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 8 9 10 12
|
||
|
||
stem(discoveries, scale=2) # 译者注:茎叶图(数据,放大系数)
|
||
#
|
||
# The decimal point is at the |
|
||
#
|
||
# 0 | 000000000
|
||
# 1 | 000000000000
|
||
# 2 | 00000000000000000000000000
|
||
# 3 | 00000000000000000000
|
||
# 4 | 000000000000
|
||
# 5 | 0000000
|
||
# 6 | 000000
|
||
# 7 | 0000
|
||
# 8 | 0
|
||
# 9 | 0
|
||
# 10 | 0
|
||
# 11 |
|
||
# 12 | 0
|
||
|
||
max(discoveries)
|
||
# 12
|
||
|
||
summary(discoveries)
|
||
# Min. 1st Qu. Median Mean 3rd Qu. Max.
|
||
# 0.0 2.0 3.0 3.1 4.0 12.0
|
||
|
||
|
||
|
||
|
||
#基本的统计学操作也不需要任何编程知识
|
||
|
||
#随机生成数据
|
||
round(runif(7, min=.5, max=6.5))
|
||
# 译者注:runif 产生随机数,round 四舍五入
|
||
# 1 4 6 1 4 6 4
|
||
|
||
# 你输出的结果会和我们给出的不同,除非我们设置了相同的随机种子 random.seed(31337)
|
||
|
||
|
||
#从标准高斯函数中随机生成 9 次
|
||
rnorm(9)
|
||
# [1] 0.07528471 1.03499859 1.34809556 -0.82356087 0.61638975 -1.88757271
|
||
# [7] -0.59975593 0.57629164 1.08455362
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
#########################
|
||
# 基础编程
|
||
#########################
|
||
|
||
# 数值
|
||
|
||
#“数值”指的是双精度的浮点数
|
||
5 # 5
|
||
class(5) # "numeric"
|
||
5e4 # 50000 # 用科学技术法方便的处理极大值、极小值或者可变的量级
|
||
6.02e23 # 阿伏伽德罗常数#
|
||
1.6e-35 # 布朗克长度
|
||
|
||
# 长整数并用 L 结尾
|
||
5L # 5
|
||
#输出5L
|
||
class(5L) # "integer"
|
||
|
||
# 可以自己试一试?用 class() 函数获取更多信息
|
||
# 事实上,你可以找一些文件查阅 `xyz` 以及xyz的差别
|
||
# `xyz` 用来查看源码实现,?xyz 用来看帮助
|
||
|
||
# 算法
|
||
10 + 66 # 76
|
||
53.2 - 4 # 49.2
|
||
2 * 2.0 # 4
|
||
3L / 4 # 0.75
|
||
3 %% 2 # 1
|
||
|
||
# 特殊数值类型
|
||
class(NaN) # "numeric"
|
||
class(Inf) # "numeric"
|
||
class(-Inf) # "numeric" # 在以下场景中会用到 integrate( dnorm(x), 3, Inf ) -- 消除 Z 轴数据
|
||
|
||
# 但要注意,NaN 并不是唯一的特殊数值类型……
|
||
class(NA) # 看上面
|
||
class(NULL) # NULL
|
||
|
||
|
||
# 简单列表
|
||
c(6, 8, 7, 5, 3, 0, 9) # 6 8 7 5 3 0 9
|
||
c('alef', 'bet', 'gimmel', 'dalet', 'he')
|
||
c('Z', 'o', 'r', 'o') == "Zoro" # FALSE FALSE FALSE FALSE
|
||
|
||
# 一些优雅的内置功能
|
||
5:15 # 5 6 7 8 9 10 11 12 13 14 15
|
||
|
||
seq(from=0, to=31337, by=1337)
|
||
# [1] 0 1337 2674 4011 5348 6685 8022 9359 10696 12033 13370 14707
|
||
# [13] 16044 17381 18718 20055 21392 22729 24066 25403 26740 28077 29414 30751
|
||
|
||
letters
|
||
# [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
|
||
# [20] "t" "u" "v" "w" "x" "y" "z"
|
||
|
||
month.abb # "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"
|
||
|
||
|
||
# Access the n'th element of a list with list.name[n] or sometimes list.name[[n]]
|
||
# 使用 list.name[n] 来访问第 n 个列表元素,有时候需要使用 list.name[[n]]
|
||
letters[18] # "r"
|
||
LETTERS[13] # "M"
|
||
month.name[9] # "September"
|
||
c(6, 8, 7, 5, 3, 0, 9)[3] # 7
|
||
|
||
|
||
|
||
# 字符串
|
||
|
||
# 字符串和字符在 R 语言中没有区别
|
||
"Horatio" # "Horatio"
|
||
class("Horatio") # "character"
|
||
substr("Fortuna multis dat nimis, nulli satis.", 9, 15) # "multis "
|
||
gsub('u', 'ø', "Fortuna multis dat nimis, nulli satis.") # "Fortøna møltis dat nimis, nølli satis."
|
||
|
||
|
||
|
||
# 逻辑值
|
||
|
||
# 布尔值
|
||
class(TRUE) # "logical"
|
||
class(FALSE) # "logical"
|
||
# 和我们预想的一样
|
||
TRUE == TRUE # TRUE
|
||
TRUE == FALSE # FALSE
|
||
FALSE != FALSE # FALSE
|
||
FALSE != TRUE # TRUE
|
||
# 缺失数据(NA)也是逻辑值
|
||
class(NA) # "logical"
|
||
#定义NA为逻辑型
|
||
|
||
|
||
|
||
# 因子
|
||
# 因子是为数据分类排序设计的(像是排序小朋友们的年级或性别)
|
||
levels(factor(c("female", "male", "male", "female", "NA", "female"))) # "female" "male" "NA"
|
||
|
||
factor(c("female", "female", "male", "NA", "female"))
|
||
# female female male NA female
|
||
# Levels: female male NA
|
||
|
||
data(infert) # 自然以及引产导致的不育症
|
||
levels(infert$education) # "0-5yrs" "6-11yrs" "12+ yrs"
|
||
|
||
|
||
|
||
# 变量
|
||
|
||
# 有许多种方式用来赋值
|
||
x = 5 # 这样可以
|
||
y <- "1" # 更推荐这样
|
||
TRUE -> z # 这样可行,但是很怪
|
||
|
||
#我们还可以使用强制转型
|
||
as.numeric(y) # 1
|
||
as.character(x) # "5"
|
||
|
||
# 循环
|
||
|
||
# for 循环语句
|
||
for (i in 1:4) {
|
||
print(i)
|
||
}
|
||
|
||
# while 循环
|
||
a <- 10
|
||
while (a > 4) {
|
||
cat(a, "...", sep = "")
|
||
a <- a - 1
|
||
}
|
||
|
||
# 记住,在 R 语言中 for / while 循环都很慢
|
||
# 建议使用 apply()(我们一会介绍)来操作一串数据(比如一列或者一行数据)
|
||
|
||
# IF/ELSE
|
||
|
||
# 再来看这些优雅的标准
|
||
if (4 > 3) {
|
||
print("Huzzah! It worked!")
|
||
} else {
|
||
print("Noooo! This is blatantly illogical!")
|
||
}
|
||
|
||
# =>
|
||
# [1] "Huzzah! It worked!"
|
||
|
||
# 函数
|
||
|
||
# 定义如下
|
||
jiggle <- function(x) {
|
||
x = x + rnorm(1, sd=.1) # 添加一点(正态)波动
|
||
return(x)
|
||
}
|
||
|
||
# 和其他 R 语言函数一样调用
|
||
jiggle(5) # 5±ε. 使用 set.seed(2716057) 后, jiggle(5)==5.005043
|
||
|
||
#########################
|
||
# 数据容器:vectors, matrices, data frames, and arrays
|
||
#########################
|
||
|
||
# 单维度
|
||
# 你可以将目前我们学习到的任何类型矢量化,只要它们拥有相同的类型
|
||
vec <- c(8, 9, 10, 11)
|
||
vec # 8 9 10 11
|
||
# 矢量的类型是这一组数据元素的类型
|
||
class(vec) # "numeric"
|
||
# If you vectorize items of different classes, weird coercions happen
|
||
#如果你强制的将不同类型数值矢量化,会出现特殊值
|
||
c(TRUE, 4) # 1 4
|
||
c("dog", TRUE, 4) # "dog" "TRUE" "4"
|
||
|
||
#我们这样来取内部数据,(R 的下标索引顺序 1 开始)
|
||
vec[1] # 8
|
||
# 我们可以根据条件查找特定数据
|
||
which(vec %% 2 == 0) # 1 3
|
||
# 抓取矢量中第一个和最后一个字符
|
||
head(vec, 1) # 8
|
||
tail(vec, 1) # 11
|
||
#如果下标溢出或不存会得到 NA
|
||
vec[6] # NA
|
||
# 你可以使用 length() 获取矢量的长度
|
||
length(vec) # 4
|
||
|
||
# 你可以直接操作矢量或者矢量的子集
|
||
vec * 4 # 16 20 24 28
|
||
vec[2:3] * 5 # 25 30
|
||
# 这里有许多内置的函数,来表现向量
|
||
mean(vec) # 9.5
|
||
var(vec) # 1.666667
|
||
sd(vec) # 1.290994
|
||
max(vec) # 11
|
||
min(vec) # 8
|
||
sum(vec) # 38
|
||
|
||
# 二维(相同元素类型)
|
||
|
||
#你可以为同样类型的变量建立矩阵
|
||
mat <- matrix(nrow = 3, ncol = 2, c(1,2,3,4,5,6))
|
||
mat
|
||
# =>
|
||
# [,1] [,2]
|
||
# [1,] 1 4
|
||
# [2,] 2 5
|
||
# [3,] 3 6
|
||
# 和 vector 不一样的是,一个矩阵的类型真的是 「matrix」,而不是内部元素的类型
|
||
class(mat) # => "matrix"
|
||
# 访问第一行的字符
|
||
mat[1,] # 1 4
|
||
# 操作第一行数据
|
||
3 * mat[,1] # 3 6 9
|
||
# 访问一个特定数据
|
||
mat[3,2] # 6
|
||
# 转置整个矩阵(译者注:变成 2 行 3 列)
|
||
t(mat)
|
||
# =>
|
||
# [,1] [,2] [,3]
|
||
# [1,] 1 2 3
|
||
# [2,] 4 5 6
|
||
|
||
# 使用 cbind() 函数把两个矩阵按列合并,形成新的矩阵
|
||
mat2 <- cbind(1:4, c("dog", "cat", "bird", "dog"))
|
||
mat2
|
||
# =>
|
||
# [,1] [,2]
|
||
# [1,] "1" "dog"
|
||
# [2,] "2" "cat"
|
||
# [3,] "3" "bird"
|
||
# [4,] "4" "dog"
|
||
class(mat2) # matrix
|
||
# Again, note what happened!
|
||
# 注意
|
||
# 因为矩阵内部元素必须包含同样的类型
|
||
# 所以现在每一个元素都转化成字符串
|
||
c(class(mat2[,1]), class(mat2[,2]))
|
||
|
||
# 按行合并两个向量,建立新的矩阵
|
||
mat3 <- rbind(c(1,2,4,5), c(6,7,0,4))
|
||
mat3
|
||
# =>
|
||
# [,1] [,2] [,3] [,4]
|
||
# [1,] 1 2 4 5
|
||
# [2,] 6 7 0 4
|
||
# 哈哈,数据类型都一样的,没有发生强制转换,生活真美好
|
||
|
||
# 二维(不同的元素类型)
|
||
|
||
# 利用 data frame 可以将不同类型数据放在一起
|
||
dat <- data.frame(c(5,2,1,4), c("dog", "cat", "bird", "dog"))
|
||
names(dat) <- c("number", "species") # 给数据列命名
|
||
class(dat) # "data.frame"
|
||
dat
|
||
# =>
|
||
# number species
|
||
# 1 5 dog
|
||
# 2 2 cat
|
||
# 3 1 bird
|
||
# 4 4 dog
|
||
class(dat$number) # "numeric"
|
||
class(dat[,2]) # "factor"
|
||
# data.frame() 会将字符向量转换为 factor 向量
|
||
|
||
# 有很多精妙的方法来获取 data frame 的子数据集
|
||
dat$number # 5 2 1 4
|
||
dat[,1] # 5 2 1 4
|
||
dat[,"number"] # 5 2 1 4
|
||
|
||
# 多维(相同元素类型)
|
||
|
||
# 使用 arry 创造一个 n 维的表格
|
||
# You can make a two-dimensional table (sort of like a matrix)
|
||
# 你可以建立一个 2 维表格(有点像矩阵)
|
||
array(c(c(1,2,4,5),c(8,9,3,6)), dim=c(2,4))
|
||
# =>
|
||
# [,1] [,2] [,3] [,4]
|
||
# [1,] 1 4 8 3
|
||
# [2,] 2 5 9 6
|
||
#你也可以利用数组建立一个三维的矩阵
|
||
array(c(c(c(2,300,4),c(8,9,0)),c(c(5,60,0),c(66,7,847))), dim=c(3,2,2))
|
||
# =>
|
||
# , , 1
|
||
#
|
||
# [,1] [,2]
|
||
# [1,] 2 8
|
||
# [2,] 300 9
|
||
# [3,] 4 0
|
||
#
|
||
# , , 2
|
||
#
|
||
# [,1] [,2]
|
||
# [1,] 5 66
|
||
# [2,] 60 7
|
||
# [3,] 0 847
|
||
|
||
#列表(多维的,不同类型的)
|
||
|
||
# R语言有列表的形式
|
||
list1 <- list(time = 1:40)
|
||
list1$price = c(rnorm(40,.5*list1$time,4)) # 随机
|
||
list1
|
||
|
||
# You can get items in the list like so
|
||
# 你可以这样获得列表的元素
|
||
list1$time
|
||
# You can subset list items like vectors
|
||
# 你也可以和矢量一样获取他们的子集
|
||
list1$price[4]
|
||
|
||
#########################
|
||
# apply()函数家族
|
||
#########################
|
||
|
||
# 还记得 mat 么?
|
||
mat
|
||
# =>
|
||
# [,1] [,2]
|
||
# [1,] 1 4
|
||
# [2,] 2 5
|
||
# [3,] 3 6
|
||
# Use apply(X, MARGIN, FUN) to apply function FUN to a matrix X
|
||
# 使用(X, MARGIN, FUN)将函数 FUN 应用到矩阵 X 的行 (MAR = 1) 或者 列 (MAR = 2)
|
||
# That is, R does FUN to each row (or column) of X, much faster than a
|
||
# R 在 X 的每一行/列使用 FUN,比循环要快很多
|
||
apply(mat, MAR = 2, myFunc)
|
||
# =>
|
||
# [,1] [,2]
|
||
# [1,] 3 15
|
||
# [2,] 7 19
|
||
# [3,] 11 23
|
||
# 还有其他家族函数 ?lapply, ?sapply
|
||
|
||
# 不要被吓到,虽然许多人在此都被搞混
|
||
# plyr 程序包的作用是用来改进 apply() 函数家族
|
||
|
||
install.packages("plyr")
|
||
require(plyr)
|
||
?plyr
|
||
|
||
#########################
|
||
# 载入数据
|
||
#########################
|
||
|
||
# "pets.csv" 是网上的一个文本
|
||
pets <- read.csv("https://learnxinyminutes.com/pets.csv")
|
||
pets
|
||
head(pets, 2) # 前两行
|
||
tail(pets, 1) # 最后一行
|
||
|
||
# 以 .csv 格式来保存数据集或者矩阵
|
||
write.csv(pets, "pets2.csv") # 保存到新的文件 pets2.csv
|
||
# set working directory with setwd(), look it up with getwd()
|
||
# 使用 setwd() 改变工作目录,使用 getwd() 查看当前工作目录
|
||
|
||
# 尝试使用 ?read.csv 和 ?write.csv 来查看更多信息
|
||
|
||
#########################
|
||
# 画图
|
||
#########################
|
||
|
||
# 散点图
|
||
plot(list1$time, list1$price, main = "fake data") # 译者注:横轴 list1$time,纵轴 wlist1$price,标题 fake data
|
||
# 回归图
|
||
linearModel <- lm(price ~ time, data = list1) # 译者注:线性模型,数据集为list1,以价格对时间做相关分析模型
|
||
linearModel # 拟合结果
|
||
# 将拟合结果展示在图上,颜色设为红色
|
||
abline(linearModel, col = "red")
|
||
# 也可以获取各种各样漂亮的分析图
|
||
plot(linearModel)
|
||
|
||
# 直方图
|
||
hist(rpois(n = 10000, lambda = 5), col = "thistle") # 译者注:统计频数直方图
|
||
|
||
# 柱状图
|
||
barplot(c(1,4,5,1,2), names.arg = c("red","blue","purple","green","yellow"))
|
||
|
||
# 可以尝试着使用 ggplot2 程序包来美化图片
|
||
install.packages("ggplot2")
|
||
require(ggplot2)
|
||
?ggplot2
|
||
```
|
||
|
||
## 获得 R
|
||
|
||
* 从 [http://www.r-project.org/](http://www.r-project.org/) 获得安装包和图形化界面
|
||
* [RStudio](http://www.rstudio.com/ide/) 是另一个图形化界面
|