mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-12-23 09:41:36 +00:00
1066 lines
40 KiB
Markdown
1066 lines
40 KiB
Markdown
---
|
|
language: Java
|
|
contributors:
|
|
- ["Jake Prather", "https://github.com/JakeHP"]
|
|
- ["Jakukyo Friel", "https://weakish.github.io"]
|
|
- ["Madison Dickson", "https://github.com/mix3d"]
|
|
- ["Simon Morgan", "https://sjm.io/"]
|
|
- ["Zachary Ferguson", "https://github.com/zfergus2"]
|
|
- ["Cameron Schermerhorn", "https://github.com/cschermerhorn"]
|
|
- ["Rachel Stiyer", "https://github.com/rstiyer"]
|
|
- ["Michael Dähnert", "https://github.com/JaXt0r"]
|
|
- ["Rob Rose", "https://github.com/RobRoseKnows"]
|
|
- ["Sean Nam", "https://github.com/seannam"]
|
|
- ["Shawn M. Hanes", "https://github.com/smhanes15"]
|
|
filename: LearnJava.java
|
|
---
|
|
|
|
Java is a general-purpose, concurrent, class-based, object-oriented computer
|
|
programming language.
|
|
[Read more here.](https://docs.oracle.com/javase/tutorial/java/)
|
|
|
|
```java
|
|
// Single-line comments start with //
|
|
|
|
/*
|
|
Multi-line comments look like this.
|
|
*/
|
|
|
|
/**
|
|
* JavaDoc comments look like this. Used to describe the Class or various
|
|
* attributes of a Class.
|
|
* Main attributes:
|
|
*
|
|
* @author Name (and contact information such as email) of author(s).
|
|
* @version Current version of the program.
|
|
* @since When this part of the program was first added.
|
|
* @param For describing the different parameters for a method.
|
|
* @return For describing what the method returns.
|
|
* @deprecated For showing the code is outdated or shouldn't be used.
|
|
* @see Links to another part of documentation.
|
|
*/
|
|
|
|
// Import ArrayList class inside of the java.util package
|
|
import java.util.ArrayList;
|
|
// Import all classes inside of java.security package
|
|
import java.security.*;
|
|
// Java to illustrate calling of static members and methods without calling classname
|
|
import static java.lang.Math.*;
|
|
import static java.lang.System.*;
|
|
|
|
public class LearnJava {
|
|
|
|
// In order to run a java program, it must have a main method as an entry
|
|
// point.
|
|
public static void main(String[] args) {
|
|
|
|
///////////////////////////////////////
|
|
// Input/Output
|
|
///////////////////////////////////////
|
|
|
|
/*
|
|
* Output
|
|
*/
|
|
|
|
// Use System.out.println() to print lines.
|
|
System.out.println("Hello World!");
|
|
System.out.println(
|
|
"Integer: " + 10 +
|
|
" Double: " + 3.14 +
|
|
" Boolean: " + true);
|
|
|
|
// To print without a newline, use System.out.print().
|
|
System.out.print("Hello ");
|
|
System.out.print("World");
|
|
|
|
// Use System.out.printf() for easy formatted printing.
|
|
System.out.printf("pi = %.5f", Math.PI); // => pi = 3.14159
|
|
|
|
/*
|
|
* Input
|
|
*/
|
|
|
|
// use Scanner to read input
|
|
// must import java.util.Scanner;
|
|
Scanner scanner = new Scanner(System.in);
|
|
|
|
// read string input
|
|
String name = scanner.next();
|
|
|
|
// read byte input
|
|
byte numByte = scanner.nextByte();
|
|
|
|
// read int input
|
|
int numInt = scanner.nextInt();
|
|
|
|
// read long input
|
|
long numLong = scanner.nextLong();
|
|
|
|
// read float input
|
|
float numFloat = scanner.nextFloat();
|
|
|
|
// read double input
|
|
double numDouble = scanner.nextDouble();
|
|
|
|
// read boolean input
|
|
boolean bool = scanner.nextBoolean();
|
|
|
|
///////////////////////////////////////
|
|
// Variables
|
|
///////////////////////////////////////
|
|
|
|
/*
|
|
* Variable Declaration
|
|
*/
|
|
// Declare a variable using <type> <name>
|
|
int fooInt;
|
|
// Declare multiple variables of the same
|
|
// type <type> <name1>, <name2>, <name3>
|
|
int fooInt1, fooInt2, fooInt3;
|
|
|
|
/*
|
|
* Variable Initialization
|
|
*/
|
|
|
|
// Initialize a variable using <type> <name> = <val>
|
|
int barInt = 1;
|
|
// Initialize multiple variables of same type with same
|
|
// value <type> <name1>, <name2>, <name3>
|
|
// <name1> = <name2> = <name3> = <val>
|
|
int barInt1, barInt2, barInt3;
|
|
barInt1 = barInt2 = barInt3 = 1;
|
|
// Shorthand for multiple declarations
|
|
int barInt4 = 1, barInt5 = 2;
|
|
|
|
|
|
/*
|
|
* Variable types
|
|
*/
|
|
// Byte - 8-bit signed two's complement integer
|
|
// (-128 <= byte <= 127)
|
|
byte fooByte = 100;
|
|
|
|
// If you would like to interpret a byte as an unsigned integer
|
|
// then this simple operation can help
|
|
int unsignedIntLessThan256 = 0xff & fooByte;
|
|
// this contrasts a cast which can be negative.
|
|
int signedInt = (int) fooByte;
|
|
|
|
// Short - 16-bit signed two's complement integer
|
|
// (-32,768 <= short <= 32,767)
|
|
short fooShort = 10000;
|
|
|
|
// Integer - 32-bit signed two's complement integer
|
|
// (-2,147,483,648 <= int <= 2,147,483,647)
|
|
int bazInt = 1;
|
|
|
|
// Long - 64-bit signed two's complement integer
|
|
// (-9,223,372,036,854,775,808 <= long <= 9,223,372,036,854,775,807)
|
|
long fooLong = 100000L;
|
|
// L is used to denote that this variable value is of type Long;
|
|
// anything without is treated as integer by default.
|
|
|
|
// Note: byte, short, int and long are signed. They can have positive and negative values.
|
|
// There are no unsigned variants.
|
|
// char, however, is 16-bit unsigned.
|
|
|
|
// Float - Single-precision 32-bit IEEE 754 Floating Point
|
|
// 2^-149 <= float <= (2-2^-23) * 2^127
|
|
float fooFloat = 234.5f;
|
|
// f or F is used to denote that this variable value is of type float;
|
|
// otherwise it is treated as double.
|
|
|
|
// Double - Double-precision 64-bit IEEE 754 Floating Point
|
|
// 2^-1074 <= x <= (2-2^-52) * 2^1023
|
|
double fooDouble = 123.4;
|
|
|
|
// Boolean - true & false
|
|
boolean fooBoolean = true;
|
|
boolean barBoolean = false;
|
|
|
|
// Char - A single 16-bit Unicode character
|
|
char fooChar = 'A';
|
|
|
|
// final variables can't be reassigned,
|
|
final int HOURS_I_WORK_PER_WEEK = 9001;
|
|
// but they can be initialized later.
|
|
final double E;
|
|
E = 2.71828;
|
|
|
|
// BigInteger - Immutable arbitrary-precision integers
|
|
//
|
|
// BigInteger is a data type that allows programmers to manipulate
|
|
// integers longer than 64-bits. Integers are stored as an array of
|
|
// bytes and are manipulated using functions built into BigInteger
|
|
//
|
|
// BigInteger can be initialized using an array of bytes or a string.
|
|
BigInteger fooBigInteger = new BigInteger(fooByteArray);
|
|
|
|
// BigDecimal - Immutable, arbitrary-precision signed decimal number
|
|
//
|
|
// A BigDecimal takes two parts: an arbitrary precision integer
|
|
// unscaled value and a 32-bit integer scale
|
|
//
|
|
// BigDecimal allows the programmer complete control over decimal
|
|
// rounding. It is recommended to use BigDecimal with currency values
|
|
// and where exact decimal precision is required.
|
|
//
|
|
// BigDecimal can be initialized with an int, long, double or String
|
|
// or by initializing the unscaled value (BigInteger) and scale (int).
|
|
BigDecimal fooBigDecimal = new BigDecimal(fooBigInteger, fooInt);
|
|
|
|
// Be wary of the constructor that takes a float or double as
|
|
// the inaccuracy of the float/double will be copied in BigDecimal.
|
|
// Prefer the String constructor when you need an exact value.
|
|
BigDecimal tenCents = new BigDecimal("0.1");
|
|
|
|
// Type inference with 'var'
|
|
var x = 100; // int
|
|
var y = 1.90; // double
|
|
var z = 'a'; // char
|
|
var p = "tanu"; // String
|
|
var q = false; // boolean
|
|
|
|
// Strings
|
|
String fooString = "My String Is Here!";
|
|
|
|
// Text blocks
|
|
var textBlock = """
|
|
This is a <Text Block> in Java
|
|
""";
|
|
|
|
// \n is an escaped character that starts a new line
|
|
String barString = "Printing on a new line?\nNo Problem!";
|
|
// \t is an escaped character that adds a tab character
|
|
String bazString = "Do you want to add a tab?\tNo Problem!";
|
|
System.out.println(fooString);
|
|
System.out.println(barString);
|
|
System.out.println(bazString);
|
|
|
|
// String Building
|
|
// #1 - with plus operator
|
|
// That's the basic way to do it (optimized under the hood)
|
|
String plusConcatenated = "Strings can " + "be concatenated " + "via + operator.";
|
|
System.out.println(plusConcatenated);
|
|
// Output: Strings can be concatenated via + operator.
|
|
|
|
// #2 - with StringBuilder
|
|
// This way doesn't create any intermediate strings. It just stores the string pieces, and ties them together
|
|
// when toString() is called.
|
|
// Hint: This class is not thread safe. A thread-safe alternative (with some impact on performance) is StringBuffer.
|
|
StringBuilder builderConcatenated = new StringBuilder();
|
|
builderConcatenated.append("You ");
|
|
builderConcatenated.append("can use ");
|
|
builderConcatenated.append("the StringBuilder class.");
|
|
System.out.println(builderConcatenated.toString()); // only now is the string built
|
|
// Output: You can use the StringBuilder class.
|
|
|
|
// StringBuilder is efficient when the fully constructed String is not required until the end of some processing.
|
|
StringBuilder stringBuilder = new StringBuilder();
|
|
String inefficientString = "";
|
|
for (int i = 0 ; i < 10; i++) {
|
|
stringBuilder.append(i).append(" ");
|
|
inefficientString += i + " ";
|
|
}
|
|
System.out.println(inefficientString);
|
|
System.out.println(stringBuilder.toString());
|
|
// inefficientString requires a lot more work to produce, as it generates a String on every loop iteration.
|
|
// Simple concatenation with + is compiled to a StringBuilder and toString()
|
|
// Avoid string concatenation in loops.
|
|
|
|
// #3 - with String formatter
|
|
// Another alternative way to create strings. Fast and readable.
|
|
String.format("%s may prefer %s.", "Or you", "String.format()");
|
|
// Output: Or you may prefer String.format().
|
|
|
|
// Arrays
|
|
// The array size must be decided upon instantiation
|
|
// The following formats work for declaring an array
|
|
// <datatype>[] <var name> = new <datatype>[<array size>];
|
|
// <datatype> <var name>[] = new <datatype>[<array size>];
|
|
int[] intArray = new int[10];
|
|
String[] stringArray = new String[1];
|
|
boolean boolArray[] = new boolean[100];
|
|
|
|
// Another way to declare & initialize an array
|
|
int[] y = {9000, 1000, 1337};
|
|
String names[] = {"Bob", "John", "Fred", "Juan Pedro"};
|
|
boolean bools[] = {true, false, false};
|
|
|
|
// Indexing an array - Accessing an element
|
|
System.out.println("intArray @ 0: " + intArray[0]);
|
|
|
|
// Arrays are zero-indexed and mutable.
|
|
intArray[1] = 1;
|
|
System.out.println("intArray @ 1: " + intArray[1]); // => 1
|
|
|
|
// Other data types worth checking out
|
|
// ArrayLists - Like arrays except more functionality is offered, and
|
|
// the size is mutable.
|
|
// LinkedLists - Implementation of doubly-linked list. All of the
|
|
// operations perform as could be expected for a
|
|
// doubly-linked list.
|
|
// Maps - A mapping of key Objects to value Objects. Map is
|
|
// an interface and therefore cannot be instantiated.
|
|
// The type of keys and values contained in a Map must
|
|
// be specified upon instantiation of the implementing
|
|
// class. Each key may map to only one corresponding value,
|
|
// and each key may appear only once (no duplicates).
|
|
// HashMaps - This class uses a hashtable to implement the Map
|
|
// interface. This allows the execution time of basic
|
|
// operations, such as get and insert element, to remain
|
|
// constant-amortized even for large sets.
|
|
// TreeMap - A Map that is sorted by its keys. Each modification
|
|
// maintains the sorting defined by either a Comparator
|
|
// supplied at instantiation, or comparisons of each Object
|
|
// if they implement the Comparable interface.
|
|
// Failure of keys to implement Comparable combined with failure to
|
|
// supply a Comparator will throw ClassCastExceptions.
|
|
// Insertion and removal operations take O(log(n)) time
|
|
// so avoid using this data structure unless you are taking
|
|
// advantage of the sorting.
|
|
|
|
///////////////////////////////////////
|
|
// Operators
|
|
///////////////////////////////////////
|
|
System.out.println("\n->Operators");
|
|
|
|
int i1 = 1, i2 = 2;
|
|
|
|
// Arithmetic is straightforward
|
|
System.out.println("1+2 = " + (i1 + i2)); // => 3
|
|
System.out.println("2-1 = " + (i2 - i1)); // => 1
|
|
System.out.println("2*1 = " + (i2 * i1)); // => 2
|
|
System.out.println("1/2 = " + (i1 / i2)); // => 0 (int/int returns int)
|
|
System.out.println("1/2.0 = " + (i1 / (double)i2)); // => 0.5
|
|
|
|
// Modulo
|
|
System.out.println("11%3 = " + (11 % 3)); // => 2
|
|
|
|
// Comparison operators
|
|
System.out.println("3 == 2? " + (3 == 2)); // => false
|
|
System.out.println("3 != 2? " + (3 != 2)); // => true
|
|
System.out.println("3 > 2? " + (3 > 2)); // => true
|
|
System.out.println("3 < 2? " + (3 < 2)); // => false
|
|
System.out.println("2 <= 2? " + (2 <= 2)); // => true
|
|
System.out.println("2 >= 2? " + (2 >= 2)); // => true
|
|
|
|
// Boolean operators
|
|
System.out.println("3 > 2 && 2 > 3? " + ((3 > 2) && (2 > 3))); // => false
|
|
System.out.println("3 > 2 || 2 > 3? " + ((3 > 2) || (2 > 3))); // => true
|
|
System.out.println("!(3 == 2)? " + (!(3 == 2))); // => true
|
|
|
|
// Bitwise operators!
|
|
/*
|
|
~ Unary bitwise complement
|
|
<< Signed left shift
|
|
>> Signed/Arithmetic right shift
|
|
>>> Unsigned/Logical right shift
|
|
& Bitwise AND
|
|
^ Bitwise exclusive OR
|
|
| Bitwise inclusive OR
|
|
*/
|
|
|
|
// Increment operators
|
|
int i = 0;
|
|
System.out.println("\n->Inc/Dec-rementation");
|
|
// The ++ and -- operators increment and decrement by 1 respectively.
|
|
// If they are placed before the variable, they increment then return;
|
|
// after the variable they return then increment.
|
|
System.out.println(i++); // i = 1, prints 0 (post-increment)
|
|
System.out.println(++i); // i = 2, prints 2 (pre-increment)
|
|
System.out.println(i--); // i = 1, prints 2 (post-decrement)
|
|
System.out.println(--i); // i = 0, prints 0 (pre-decrement)
|
|
|
|
///////////////////////////////////////
|
|
// Control Structures
|
|
///////////////////////////////////////
|
|
System.out.println("\n->Control Structures");
|
|
|
|
// If statements are c-like
|
|
int j = 10;
|
|
if (j == 10) {
|
|
System.out.println("I get printed");
|
|
} else if (j > 10) {
|
|
System.out.println("I don't");
|
|
} else {
|
|
System.out.println("I also don't");
|
|
}
|
|
|
|
// While loop
|
|
int fooWhile = 0;
|
|
while (fooWhile < 100) {
|
|
System.out.println(fooWhile);
|
|
// Increment the counter
|
|
// Iterated 100 times, fooWhile 0,1,2...99
|
|
fooWhile++;
|
|
}
|
|
System.out.println("fooWhile Value: " + fooWhile);
|
|
|
|
// Do While Loop
|
|
int fooDoWhile = 0;
|
|
do {
|
|
System.out.println(fooDoWhile);
|
|
// Increment the counter
|
|
// Iterated 100 times, fooDoWhile 0->99
|
|
fooDoWhile++;
|
|
} while (fooDoWhile < 100);
|
|
System.out.println("fooDoWhile Value: " + fooDoWhile);
|
|
|
|
// For Loop
|
|
// for loop structure => for(<start_statement>; <conditional>; <step>)
|
|
for (int fooFor = 0; fooFor < 10; fooFor++) {
|
|
System.out.println(fooFor);
|
|
// Iterated 10 times, fooFor 0->9
|
|
}
|
|
System.out.println("fooFor Value: " + fooFor);
|
|
|
|
// Nested For Loop Exit with Label
|
|
outer:
|
|
for (int i = 0; i < 10; i++) {
|
|
for (int j = 0; j < 10; j++) {
|
|
if (i == 5 && j ==5) {
|
|
break outer;
|
|
// breaks out of outer loop instead of only the inner one
|
|
}
|
|
}
|
|
}
|
|
|
|
// For Each Loop
|
|
// The for loop is also able to iterate over arrays as well as objects
|
|
// that implement the Iterable interface.
|
|
int[] fooList = {1, 2, 3, 4, 5, 6, 7, 8, 9};
|
|
// for each loop structure => for (<object> : <iterable>)
|
|
// reads as: for each element in the iterable
|
|
// note: the object type must match the element type of the iterable.
|
|
for (int bar : fooList) {
|
|
System.out.println(bar);
|
|
//Iterates 9 times and prints 1-9 on new lines
|
|
}
|
|
|
|
// Switch Case
|
|
// A switch works with the byte, short, char, and int data types.
|
|
// It also works with enumerated types (discussed in Enum Types), the
|
|
// String class, and a few special classes that wrap primitive types:
|
|
// Character, Byte, Short, and Integer.
|
|
// Starting in Java 7 and above, we can also use the String type.
|
|
// Note: Do remember that, not adding "break" at end any particular case ends up in
|
|
// executing the very next case(given it satisfies the condition provided) as well.
|
|
int month = 3;
|
|
String monthString;
|
|
switch (month) {
|
|
case 1: monthString = "January";
|
|
break;
|
|
case 2: monthString = "February";
|
|
break;
|
|
case 3: monthString = "March";
|
|
break;
|
|
default: monthString = "Some other month";
|
|
break;
|
|
}
|
|
System.out.println("Switch Case Result: " + monthString);
|
|
|
|
|
|
// Try-with-resources (Java 7+)
|
|
// Try-catch-finally statements work as expected in Java but in Java 7+
|
|
// the try-with-resources statement is also available. Try-with-resources
|
|
// simplifies try-catch-finally statements by closing resources
|
|
// automatically.
|
|
|
|
// In order to use a try-with-resources, include an instance of a class
|
|
// in the try statement. The class must implement java.lang.AutoCloseable.
|
|
try (BufferedReader br = new BufferedReader(new FileReader("foo.txt"))) {
|
|
// You can attempt to do something that could throw an exception.
|
|
System.out.println(br.readLine());
|
|
// In Java 7, the resource will always be closed, even if it throws
|
|
// an Exception.
|
|
} catch (IOException | SQLException ex) {
|
|
// Java 7+ Multi catch block handle both exceptions
|
|
} catch (Exception ex) {
|
|
//The resource will be closed before the catch statement executes.
|
|
System.out.println("readLine() failed.");
|
|
}
|
|
// No need for a finally statement in this case, the BufferedReader is
|
|
// already closed. This can be used to avoid certain edge cases where
|
|
// a finally statement might not be called.
|
|
// To learn more:
|
|
// https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
|
|
|
|
|
|
// Conditional Shorthand
|
|
// You can use the '?' operator for quick assignments or logic forks.
|
|
// Reads as "If (statement) is true, use <first value>, otherwise, use
|
|
// <second value>"
|
|
int foo = 5;
|
|
String bar = (foo < 10) ? "A" : "B";
|
|
System.out.println("bar : " + bar); // Prints "bar : A", because the
|
|
// statement is true.
|
|
// Or simply
|
|
System.out.println("bar : " + (foo < 10 ? "A" : "B"));
|
|
|
|
|
|
////////////////////////////////////////
|
|
// Converting Data Types
|
|
////////////////////////////////////////
|
|
|
|
// Converting data
|
|
|
|
// Convert String To Integer
|
|
Integer.parseInt("123");//returns an integer version of "123"
|
|
|
|
// Convert Integer To String
|
|
Integer.toString(123);//returns a string version of 123
|
|
|
|
// For other conversions check out the following classes:
|
|
// Double
|
|
// Long
|
|
// String
|
|
|
|
///////////////////////////////////////
|
|
// Classes And Functions
|
|
///////////////////////////////////////
|
|
|
|
System.out.println("\n->Classes & Functions");
|
|
|
|
// (definition of the Bicycle class follows)
|
|
|
|
// Use new to instantiate a class
|
|
Bicycle trek = new Bicycle();
|
|
|
|
// Call object methods
|
|
trek.speedUp(3); // You should always use setter and getter methods
|
|
trek.setCadence(100);
|
|
|
|
// toString returns this Object's string representation.
|
|
System.out.println("trek info: " + trek.toString());
|
|
} // End main method
|
|
|
|
private static class TestInitialization {
|
|
// Double Brace Initialization
|
|
// Before Java 11, the Java Language had no syntax for how to create
|
|
// static Collections in an easy way. Usually you end up like this:
|
|
private static final Set<String> COUNTRIES = new HashSet<String>();
|
|
static {
|
|
COUNTRIES.add("DENMARK");
|
|
COUNTRIES.add("SWEDEN");
|
|
COUNTRIES.add("FINLAND");
|
|
}
|
|
|
|
// There's a nifty way to achieve the same thing,
|
|
// by using something that is called Double Brace Initialization.
|
|
private static final Set<String> COUNTRIES_DOUBLE_BRACE =
|
|
new HashSet<String>() {{
|
|
add("DENMARK");
|
|
add("SWEDEN");
|
|
add("FINLAND");
|
|
}}
|
|
|
|
// The first brace is creating a new AnonymousInnerClass and the
|
|
// second one declares an instance initializer block. This block
|
|
// is called when the anonymous inner class is created.
|
|
// This does not only work for Collections, it works for all
|
|
// non-final classes.
|
|
|
|
|
|
// Another option was to initialize the Collection from an array,
|
|
// using Arrays.asList() method:
|
|
private static final List<String> COUNTRIES_AS_LIST =
|
|
Arrays.asList("SWEDEN", "DENMARK", "NORWAY");
|
|
// This has one catch: the list we get is internally backed by the array,
|
|
// and since arrays can't change their size, the list backed by the array
|
|
// is not resizeable, which means we can't add new elements to it:
|
|
public static void main(String[] args) {
|
|
COUNTRIES.add("FINLAND"); // throws UnsupportedOperationException!
|
|
// However, we can replace elements by index, just like in array:
|
|
COUNTRIES.set(1, "FINLAND");
|
|
System.out.println(COUNTRIES); // prints [SWEDEN, FINLAND, NORWAY]
|
|
}
|
|
// The resizing problem can be circumvented
|
|
// by creating another Collection from the List:
|
|
private static final Set<String> COUNTRIES_SET =
|
|
new HashSet<>(Arrays.asList("SWEDEN", "DENMARK", "NORWAY"));
|
|
// It's perfectly fine to add anything to the Set of COUNTRIES now.
|
|
} // End TestInitialization class
|
|
|
|
private static class TestJava11Initialization {
|
|
// Since Java 11, there is a convenient option to initialize Collections:
|
|
// Set.of() and List.of() methods.
|
|
private static final Set<String> COUNTRIES =
|
|
Set.of("SWEDEN", "DENMARK", "NORWAY");
|
|
// There is a massive catch, though: Lists and Sets initialized like this
|
|
// 1) are immutable
|
|
// 2) can't contain null elements (even check for null elements fails)!
|
|
public static void main(String[] args) {
|
|
COUNTRIES.add("FINLAND"); // throws UnsupportedOperationException
|
|
COUNTRIES.remove("NORWAY"); // throws UnsupportedOperationException
|
|
COUNTRIES.contains(null); // throws NullPointerException
|
|
}
|
|
private static final Set<String> COUNTRIES_WITH_NULL =
|
|
Set.of("SWEDEN", null, "NORWAY"); // throws NullPointerException
|
|
|
|
} // End TestJava11Initialization class
|
|
} // End LearnJava class
|
|
|
|
// You can include other, non-public outer-level classes in a .java file,
|
|
// but it is not good practice. Instead split classes into separate files.
|
|
|
|
// Class Declaration Syntax:
|
|
// <public/private/protected> class <class name> {
|
|
// // data fields, constructors, functions all inside.
|
|
// // functions are called as methods in Java.
|
|
// }
|
|
|
|
class Bicycle {
|
|
|
|
// Bicycle's Fields/Variables
|
|
public int cadence; // Public: Can be accessed from anywhere
|
|
private int speed; // Private: Only accessible from within the class
|
|
protected int gear; // Protected: Accessible from the class and subclasses
|
|
String name; // default: Only accessible from within this package
|
|
static String className; // Static class variable
|
|
|
|
// Static block
|
|
// Java has no implementation of static constructors, but
|
|
// has a static block that can be used to initialize class variables
|
|
// (static variables).
|
|
// This block will be called when the class is loaded.
|
|
static {
|
|
className = "Bicycle";
|
|
}
|
|
|
|
// Constructors are a way of creating classes
|
|
// This is a constructor
|
|
public Bicycle() {
|
|
// You can also call another constructor:
|
|
// this(1, 50, 5, "Bontrager");
|
|
gear = 1;
|
|
cadence = 50;
|
|
speed = 5;
|
|
name = "Bontrager";
|
|
}
|
|
// This is a constructor that takes arguments
|
|
public Bicycle(int startCadence, int startSpeed, int startGear,
|
|
String name) {
|
|
this.gear = startGear;
|
|
this.cadence = startCadence;
|
|
this.speed = startSpeed;
|
|
this.name = name;
|
|
}
|
|
|
|
// Method Syntax:
|
|
// <public/private/protected> <return type> <function name>(<args>)
|
|
|
|
// Java classes often implement getters and setters for their fields
|
|
|
|
// Method declaration syntax:
|
|
// <access modifier> <return type> <method name>(<args>)
|
|
public int getCadence() {
|
|
return cadence;
|
|
}
|
|
|
|
// void methods require no return statement
|
|
public void setCadence(int newValue) {
|
|
cadence = newValue;
|
|
}
|
|
public void setGear(int newValue) {
|
|
gear = newValue;
|
|
}
|
|
public void speedUp(int increment) {
|
|
speed += increment;
|
|
}
|
|
public void slowDown(int decrement) {
|
|
speed -= decrement;
|
|
}
|
|
public void setName(String newName) {
|
|
name = newName;
|
|
}
|
|
public String getName() {
|
|
return name;
|
|
}
|
|
|
|
//Method to display the attribute values of this Object.
|
|
@Override // Inherited from the Object class.
|
|
public String toString() {
|
|
return "gear: " + gear + " cadence: " + cadence + " speed: " + speed +
|
|
" name: " + name;
|
|
}
|
|
} // end class Bicycle
|
|
|
|
// PennyFarthing is a subclass of Bicycle
|
|
class PennyFarthing extends Bicycle {
|
|
// (Penny Farthings are those bicycles with the big front wheel.
|
|
// They have no gears.)
|
|
|
|
public PennyFarthing(int startCadence, int startSpeed) {
|
|
// Call the parent constructor with super
|
|
super(startCadence, startSpeed, 0, "PennyFarthing");
|
|
}
|
|
|
|
// You should mark a method you're overriding with an @annotation.
|
|
// To learn more about what annotations are and their purpose check this
|
|
// out: http://docs.oracle.com/javase/tutorial/java/annotations/
|
|
@Override
|
|
public void setGear(int gear) {
|
|
this.gear = 0;
|
|
}
|
|
}
|
|
|
|
// Object casting
|
|
// Since the PennyFarthing class is extending the Bicycle class, we can say
|
|
// a PennyFarthing is a Bicycle and write :
|
|
// Bicycle bicycle = new PennyFarthing();
|
|
// This is called object casting where an object is taken for another one. There
|
|
// are lots of details and deals with some more intermediate concepts here:
|
|
// https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html
|
|
|
|
// Interfaces
|
|
// Interface declaration syntax
|
|
// <access-level> interface <interface-name> extends <super-interfaces> {
|
|
// // Constants
|
|
// // Method declarations
|
|
// }
|
|
|
|
// Example - Food:
|
|
public interface Edible {
|
|
public void eat(); // Any class that implements this interface, must
|
|
// implement this method.
|
|
}
|
|
|
|
public interface Digestible {
|
|
public void digest();
|
|
// Since Java 8, interfaces can have default method.
|
|
public default void defaultMethod() {
|
|
System.out.println("Hi from default method ...");
|
|
}
|
|
}
|
|
|
|
// We can now create a class that implements both of these interfaces.
|
|
public class Fruit implements Edible, Digestible {
|
|
@Override
|
|
public void eat() {
|
|
// ...
|
|
}
|
|
|
|
@Override
|
|
public void digest() {
|
|
// ...
|
|
}
|
|
}
|
|
|
|
// In Java, you can extend only one class, but you can implement many
|
|
// interfaces. For example:
|
|
public class ExampleClass extends ExampleClassParent implements InterfaceOne,
|
|
InterfaceTwo {
|
|
@Override
|
|
public void InterfaceOneMethod() {
|
|
}
|
|
|
|
@Override
|
|
public void InterfaceTwoMethod() {
|
|
}
|
|
|
|
}
|
|
|
|
// Abstract Classes
|
|
|
|
// Abstract Class declaration syntax
|
|
// <access-level> abstract class <abstract-class-name> extends
|
|
// <super-abstract-classes> {
|
|
// // Constants and variables
|
|
// // Method declarations
|
|
// }
|
|
|
|
// Abstract Classes cannot be instantiated.
|
|
// Abstract classes may define abstract methods.
|
|
// Abstract methods have no body and are marked abstract
|
|
// Non-abstract child classes must @Override all abstract methods
|
|
// from their super-classes.
|
|
// Abstract classes can be useful when combining repetitive logic
|
|
// with customised behavior, but as Abstract classes require
|
|
// inheritance, they violate "Composition over inheritance"
|
|
// so consider other approaches using composition.
|
|
// https://en.wikipedia.org/wiki/Composition_over_inheritance
|
|
|
|
public abstract class Animal
|
|
{
|
|
private int age;
|
|
|
|
public abstract void makeSound();
|
|
|
|
// Method can have a body
|
|
public void eat()
|
|
{
|
|
System.out.println("I am an animal and I am Eating.");
|
|
// Note: We can access private variable here.
|
|
age = 30;
|
|
}
|
|
|
|
public void printAge()
|
|
{
|
|
System.out.println(age);
|
|
}
|
|
|
|
// Abstract classes can have main method.
|
|
public static void main(String[] args)
|
|
{
|
|
System.out.println("I am abstract");
|
|
}
|
|
}
|
|
|
|
class Dog extends Animal
|
|
{
|
|
// Note still have to override the abstract methods in the
|
|
// abstract class.
|
|
@Override
|
|
public void makeSound()
|
|
{
|
|
System.out.println("Bark");
|
|
// age = 30; ==> ERROR! age is private to Animal
|
|
}
|
|
|
|
// NOTE: You will get an error if you used the
|
|
// @Override annotation here, since java doesn't allow
|
|
// overriding of static methods.
|
|
// What is happening here is called METHOD HIDING.
|
|
// Check out this SO post: http://stackoverflow.com/questions/16313649/
|
|
public static void main(String[] args)
|
|
{
|
|
Dog pluto = new Dog();
|
|
pluto.makeSound();
|
|
pluto.eat();
|
|
pluto.printAge();
|
|
}
|
|
}
|
|
|
|
// Final Classes
|
|
|
|
// Final Class declaration syntax
|
|
// <access-level> final <final-class-name> {
|
|
// // Constants and variables
|
|
// // Method declarations
|
|
// }
|
|
|
|
// Final classes are classes that cannot be inherited from and are therefore a
|
|
// final child. In a way, final classes are the opposite of abstract classes
|
|
// because abstract classes must be extended, but final classes cannot be
|
|
// extended.
|
|
public final class SaberToothedCat extends Animal
|
|
{
|
|
// Note still have to override the abstract methods in the
|
|
// abstract class.
|
|
@Override
|
|
public void makeSound()
|
|
{
|
|
System.out.println("Roar");
|
|
}
|
|
}
|
|
|
|
// Final Methods
|
|
public abstract class Mammal()
|
|
{
|
|
// Final Method Syntax:
|
|
// <access modifier> final <return type> <function name>(<args>)
|
|
|
|
// Final methods, like, final classes cannot be overridden by a child
|
|
// class, and are therefore the final implementation of the method.
|
|
public final boolean isWarmBlooded()
|
|
{
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Java Records are a concise way to define immutable data carrier classes, automatically
|
|
// generating boilerplate code like constructors, equals(), hashCode()and toString().
|
|
// This automatically creates an immutable class Person with fields name and age.
|
|
public record Person(String name, int age) {}
|
|
Person p = new Person("Alice", 30);
|
|
|
|
// Enum Type
|
|
//
|
|
// An enum type is a special data type that enables for a variable to be a set
|
|
// of predefined constants. The variable must be equal to one of the values
|
|
// that have been predefined for it. Because they are constants, the names of
|
|
// an enum type's fields are in uppercase letters. In the Java programming
|
|
// language, you define an enum type by using the enum keyword. For example,
|
|
// you would specify a days-of-the-week enum type as:
|
|
public enum Day {
|
|
SUNDAY, MONDAY, TUESDAY, WEDNESDAY,
|
|
THURSDAY, FRIDAY, SATURDAY
|
|
}
|
|
|
|
// We can use our enum Day like that:
|
|
public class EnumTest {
|
|
// Variable Enum
|
|
Day day;
|
|
|
|
public EnumTest(Day day) {
|
|
this.day = day;
|
|
}
|
|
|
|
public void tellItLikeItIs() {
|
|
switch (day) {
|
|
case MONDAY:
|
|
System.out.println("Mondays are bad.");
|
|
break;
|
|
case FRIDAY:
|
|
System.out.println("Fridays are better.");
|
|
break;
|
|
case SATURDAY:
|
|
case SUNDAY:
|
|
System.out.println("Weekends are best.");
|
|
break;
|
|
default:
|
|
System.out.println("Midweek days are so-so.");
|
|
break;
|
|
}
|
|
}
|
|
|
|
public static void main(String[] args) {
|
|
EnumTest firstDay = new EnumTest(Day.MONDAY);
|
|
firstDay.tellItLikeItIs(); // => Mondays are bad.
|
|
EnumTest thirdDay = new EnumTest(Day.WEDNESDAY);
|
|
thirdDay.tellItLikeItIs(); // => Midweek days are so-so.
|
|
}
|
|
}
|
|
|
|
// Enum types are much more powerful than we show above.
|
|
// The enum body can include methods and other fields.
|
|
// You can see more at https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
|
|
|
|
// Getting Started with Lambda Expressions
|
|
//
|
|
// New to Java version 8 are lambda expressions. Lambdas are more commonly found
|
|
// in functional programming languages, which means they are methods which can
|
|
// be created without belonging to a class, passed around as if it were itself
|
|
// an object, and executed on demand.
|
|
//
|
|
// Final note, lambdas must implement a functional interface. A functional
|
|
// interface is one which has only a single abstract method declared. It can
|
|
// have any number of default methods. Lambda expressions can be used as an
|
|
// instance of that functional interface. Any interface meeting the requirements
|
|
// is treated as a functional interface. You can read more about interfaces
|
|
// above.
|
|
//
|
|
import java.util.Map;
|
|
import java.util.HashMap;
|
|
import java.util.function.*;
|
|
import java.security.SecureRandom;
|
|
|
|
public class Lambdas {
|
|
public static void main(String[] args) {
|
|
// Lambda declaration syntax:
|
|
// <zero or more parameters> -> <expression body or statement block>
|
|
|
|
// We will use this hashmap in our examples below.
|
|
Map<String, String> planets = new HashMap<>();
|
|
planets.put("Mercury", "87.969");
|
|
planets.put("Venus", "224.7");
|
|
planets.put("Earth", "365.2564");
|
|
planets.put("Mars", "687");
|
|
planets.put("Jupiter", "4,332.59");
|
|
planets.put("Saturn", "10,759");
|
|
planets.put("Uranus", "30,688.5");
|
|
planets.put("Neptune", "60,182");
|
|
|
|
// Lambda with zero parameters using the Supplier functional interface
|
|
// from java.util.function.Supplier. The actual lambda expression is
|
|
// what comes after numPlanets =.
|
|
Supplier<String> numPlanets = () -> Integer.toString(planets.size());
|
|
System.out.format("Number of Planets: %s\n\n", numPlanets.get());
|
|
|
|
// Lambda with one parameter and using the Consumer functional interface
|
|
// from java.util.function.Consumer. This is because planets is a Map,
|
|
// which implements both Collection and Iterable. The forEach used here,
|
|
// found in Iterable, applies the lambda expression to each member of
|
|
// the Collection. The default implementation of forEach behaves as if:
|
|
/*
|
|
for (T t : this)
|
|
action.accept(t);
|
|
*/
|
|
|
|
// The actual lambda expression is the parameter passed to forEach.
|
|
planets.keySet().forEach((p) -> System.out.format("%s\n", p));
|
|
|
|
// If you are only passing a single argument, then the above can also be
|
|
// written as (note absent parentheses around p):
|
|
planets.keySet().forEach(p -> System.out.format("%s\n", p));
|
|
|
|
// Tracing the above, we see that planets is a HashMap, keySet() returns
|
|
// a Set of its keys, forEach applies each element as the lambda
|
|
// expression of: (parameter p) -> System.out.format("%s\n", p). Each
|
|
// time, the element is said to be "consumed" and the statement(s)
|
|
// referred to in the lambda body is applied. Remember the lambda body
|
|
// is what comes after the ->.
|
|
|
|
// The above without use of lambdas would look more traditionally like:
|
|
for (String planet : planets.keySet()) {
|
|
System.out.format("%s\n", planet);
|
|
}
|
|
|
|
// This example differs from the above in that a different forEach
|
|
// implementation is used: the forEach found in the HashMap class
|
|
// implementing the Map interface. This forEach accepts a BiConsumer,
|
|
// which generically speaking is a fancy way of saying it handles
|
|
// the Set of each Key -> Value pairs. This default implementation
|
|
// behaves as if:
|
|
/*
|
|
for (Map.Entry<K, V> entry : map.entrySet())
|
|
action.accept(entry.getKey(), entry.getValue());
|
|
*/
|
|
|
|
// The actual lambda expression is the parameter passed to forEach.
|
|
String orbits = "%s orbits the Sun in %s Earth days.\n";
|
|
planets.forEach((K, V) -> System.out.format(orbits, K, V));
|
|
|
|
// The above without use of lambdas would look more traditionally like:
|
|
for (String planet : planets.keySet()) {
|
|
System.out.format(orbits, planet, planets.get(planet));
|
|
}
|
|
|
|
// Or, if following more closely the specification provided by the
|
|
// default implementation:
|
|
for (Map.Entry<String, String> planet : planets.entrySet()) {
|
|
System.out.format(orbits, planet.getKey(), planet.getValue());
|
|
}
|
|
|
|
// These examples cover only the very basic use of lambdas. It might not
|
|
// seem like much or even very useful, but remember that a lambda can be
|
|
// created as an object that can later be passed as parameters to other
|
|
// methods.
|
|
}
|
|
}
|
|
```
|
|
|
|
## Further Reading
|
|
|
|
The links provided here below are just to get an understanding of the topic, feel free to Google and find specific examples.
|
|
|
|
### Official Oracle Guides
|
|
|
|
* [Java Tutorial Trail from Sun / Oracle](https://docs.oracle.com/javase/tutorial/index.html)
|
|
* [Java Access level modifiers](https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html)
|
|
* [Object-Oriented Programming Concepts](https://docs.oracle.com/javase/tutorial/java/concepts/index.html):
|
|
* [Inheritance](https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html)
|
|
* [Polymorphism](https://docs.oracle.com/javase/tutorial/java/IandI/polymorphism.html)
|
|
* [Abstraction](https://docs.oracle.com/javase/tutorial/java/IandI/abstract.html)
|
|
* [Exceptions](https://docs.oracle.com/javase/tutorial/essential/exceptions/index.html)
|
|
* [Interfaces](https://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html)
|
|
* [Generics](https://docs.oracle.com/javase/tutorial/java/generics/index.html)
|
|
* [Java Code Conventions](https://www.oracle.com/technetwork/java/codeconvtoc-136057.html)
|
|
* New features in Java 8:
|
|
* [Lambda expressions (functional programming)](https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html)
|
|
* [Date and time API (java.time package)](http://www.oracle.com/technetwork/articles/java/jf14-date-time-2125367.html)
|
|
|
|
### Online Practice and Tutorials
|
|
|
|
* [Codingbat.com](http://codingbat.com/java)
|
|
* [Codewars - Java Katas](https://www.codewars.com/?language=java)
|
|
* [University of Helsinki - Object-Oriented programming with Java](http://moocfi.github.io/courses/2013/programming-part-1/)
|
|
|
|
### Books
|
|
|
|
* [Head First Java](http://www.headfirstlabs.com/books/hfjava/)
|
|
* [Thinking in Java](https://www.amazon.com/Thinking-Java-4th-Bruce-Eckel/dp/0131872486/)
|
|
* [Objects First with Java](https://www.amazon.com/Objects-First-Java-Practical-Introduction/dp/0132492660)
|
|
* [Java The Complete Reference](https://www.amazon.com/gp/product/0071606300)
|