learnxinyminutes-docs/julia.html.markdown
2018-08-31 09:45:50 +08:00

873 lines
25 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
language: Julia
contributors:
- ["Leah Hanson", "http://leahhanson.us"]
- ["Pranit Bauva", "https://github.com/pranitbauva1997"]
- ["Daniel YC Lin", "https://github.com/dlintw"]
filename: learnjulia.jl
---
Julia is a new homoiconic functional language focused on technical computing.
While having the full power of homoiconic macros, first-class functions,
and low-level control, Julia is as easy to learn and use as Python.
This is based on Julia 1.0.0
```julia
# Single line comments start with a hash (pound) symbol.
#= Multiline comments can be written
by putting '#=' before the text and '=#'
after the text. They can also be nested.
=#
####################################################
## 1. Primitive Datatypes and Operators
####################################################
# Everything in Julia is an expression.
# There are several basic types of numbers.
typeof(3) # => Int64
typeof(3.2) # => Float64
typeof(2 + 1im) # => Complex{Int64}
typeof(2 // 3) # => Rational{Int64}
# All of the normal infix operators are available.
1 + 1 # => 2
8 - 1 # => 7
10 * 2 # => 20
35 / 5 # => 7.0
10 / 2 # => 5.0 # dividing integers always results in a Float64
div(5, 2) # => 2 # for a truncated result, use div
5 \ 35 # => 7.0
2^2 # => 4 # power, not bitwise xor
12 % 10 # => 2
# Enforce precedence with parentheses
(1 + 3) * 2 # => 8
# Bitwise Operators
~2 # => -3 # bitwise not
3 & 5 # => 1 # bitwise and
2 | 4 # => 6 # bitwise or
xor(2, 4) # => 6 # bitwise xor
2 >>> 1 # => 1 # logical shift right
2 >> 1 # => 1 # arithmetic shift right
2 << 1 # => 4 # logical/arithmetic shift left
# Use the bitstring function to see the binary representation of a number.
bitstring(12345)
# => "0000000000000000000000000000000000000000000000000011000000111001"
bitstring(12345.0)
# => "0100000011001000000111001000000000000000000000000000000000000000"
# Boolean values are primitives
true
false
# Boolean operators
!true # => false
!false # => true
1 == 1 # => true
2 == 1 # => false
1 != 1 # => false
2 != 1 # => true
1 < 10 # => true
1 > 10 # => false
2 <= 2 # => true
2 >= 2 # => true
# Comparisons can be chained
1 < 2 < 3 # => true
2 < 3 < 2 # => false
# Strings are created with "
"This is a string."
# Character literals are written with '
'a'
# Strings are UTF8 encoded. Only if they contain only ASCII characters can
# they be safely indexed.
ascii("This is a string")[1]
# => 'T': ASCII/Unicode U+0054 (category Lu: Letter, uppercase)
# Julia indexes from 1
# Otherwise, iterating over strings is recommended (map, for loops, etc).
# $ can be used for string interpolation:
"2 + 2 = $(2 + 2)" # => "2 + 2 = 4"
# You can put any Julia expression inside the parentheses.
# Another way to format strings is the printf macro from the stdlib Printf.
using Printf
@printf "%d is less than %f\n" 4.5 5.3 # => 5 is less than 5.300000
# Printing is easy
println("I'm Julia. Nice to meet you!") # => I'm Julia. Nice to meet you!
# String can be compared lexicographically
"good" > "bye" # => true
"good" == "good" # => true
"1 + 2 = 3" == "1 + 2 = $(1 + 2)" # => true
####################################################
## 2. Variables and Collections
####################################################
# You don't declare variables before assigning to them.
some_var = 5 # => 5
some_var # => 5
# Accessing a previously unassigned variable is an error
try
some_other_var # => ERROR: UndefVarError: some_other_var not defined
catch e
println(e)
end
# Variable names start with a letter or underscore.
# After that, you can use letters, digits, underscores, and exclamation points.
SomeOtherVar123! = 6 # => 6
# You can also use certain unicode characters
☃ = 8 # => 8
# These are especially handy for mathematical notation
2 * π # => 6.283185307179586
# A note on naming conventions in Julia:
#
# * Word separation can be indicated by underscores ('_'), but use of
# underscores is discouraged unless the name would be hard to read
# otherwise.
#
# * Names of Types begin with a capital letter and word separation is shown
# with CamelCase instead of underscores.
#
# * Names of functions and macros are in lower case, without underscores.
#
# * Functions that modify their inputs have names that end in !. These
# functions are sometimes called mutating functions or in-place functions.
# Arrays store a sequence of values indexed by integers 1 through n:
a = Int64[] # => 0-element Array{Int64,1}
# 1-dimensional array literals can be written with comma-separated values.
b = [4, 5, 6] # => 3-element Array{Int64,1}: [4, 5, 6]
b = [4; 5; 6] # => 3-element Array{Int64,1}: [4, 5, 6]
b[end] # => 6
# 2-dimensional arrays use space-separated values and semicolon-separated rows.
matrix = [1 2; 3 4] # => 2×2 Array{Int64,2}: [1 2; 3 4]
# Arrays of a particular type
b = Int8[4, 5, 6] # => 3-element Array{Int8,1}: [4, 5, 6]
# Add stuff to the end of a list with push! and append!
push!(a, 1) # => [1]
push!(a, 2) # => [1,2]
push!(a, 4) # => [1,2,4]
push!(a, 3) # => [1,2,4,3]
append!(a, b) # => [1,2,4,3,4,5,6]
# Remove from the end with pop
pop!(b) # => 6
b # => [4,5]
# Let's put it back
push!(b, 6) # => [4,5,6]
b # => [4,5,6]
a[1] # => 1 # remember that Julia indexes from 1, not 0!
# end is a shorthand for the last index. It can be used in any
# indexing expression
a[end] # => 6
# we also have popfirst! and pushfirst!
popfirst!(a) # => 1
a # => [2,4,3,4,5,6]
pushfirst!(a, 7) # => [7,2,4,3,4,5,6]
a # => [7,2,4,3,4,5,6]
# Function names that end in exclamations points indicate that they modify
# their argument.
arr = [5,4,6] # => 3-element Array{Int64,1}: [5,4,6]
sort(arr) # => [4,5,6]
arr # => [5,4,6]
sort!(arr) # => [4,5,6]
arr # => [4,5,6]
# Looking out of bounds is a BoundsError
try
a[0]
# => ERROR: BoundsError: attempt to access 7-element Array{Int64,1} at
# index [0]
# => Stacktrace:
# => [1] getindex(::Array{Int64,1}, ::Int64) at .\array.jl:731
# => [2] top-level scope at none:0
# => [3] ...
# => in expression starting at ...\LearnJulia.jl:180
a[end + 1]
# => ERROR: BoundsError: attempt to access 7-element Array{Int64,1} at
# index [8]
# => Stacktrace:
# => [1] getindex(::Array{Int64,1}, ::Int64) at .\array.jl:731
# => [2] top-level scope at none:0
# => [3] ...
# => in expression starting at ...\LearnJulia.jl:188
catch e
println(e)
end
# Errors list the line and file they came from, even if it's in the standard
# library. You can look in the folder share/julia inside the julia folder to
# find these files.
# You can initialize arrays from ranges
a = [1:5;] # => 5-element Array{Int64,1}: [1,2,3,4,5]
a2 = [1:5] # => 1-element Array{UnitRange{Int64},1}: [1:5]
# You can look at ranges with slice syntax.
a[1:3] # => [1, 2, 3]
a[2:end] # => [2, 3, 4, 5]
# Remove elements from an array by index with splice!
arr = [3,4,5]
splice!(arr, 2) # => 4
arr # => [3,5]
# Concatenate lists with append!
b = [1,2,3]
append!(a, b) # => [1, 2, 3, 4, 5, 1, 2, 3]
a # => [1, 2, 3, 4, 5, 1, 2, 3]
# Check for existence in a list with in
in(1, a) # => true
# Examine the length with length
length(a) # => 8
# Tuples are immutable.
tup = (1, 2, 3) # => (1,2,3)
typeof(tup) # => Tuple{Int64,Int64,Int64}
tup[1] # => 1
try
tup[1] = 3
# => ERROR: MethodError: no method matching
# setindex!(::Tuple{Int64,Int64,Int64}, ::Int64, ::Int64)
catch e
println(e)
end
# Many array functions also work on tuples
length(tup) # => 3
tup[1:2] # => (1,2)
in(2, tup) # => true
# You can unpack tuples into variables
a, b, c = (1, 2, 3) # => (1,2,3)
a # => 1
b # => 2
c # => 3
# Tuples are created even if you leave out the parentheses
d, e, f = 4, 5, 6 # => (4,5,6)
d # => 4
e # => 5
f # => 6
# A 1-element tuple is distinct from the value it contains
(1,) == 1 # => false
(1) == 1 # => true
# Look how easy it is to swap two values
e, d = d, e # => (5,4)
d # => 5
e # => 4
# Dictionaries store mappings
empty_dict = Dict() # => Dict{Any,Any} with 0 entries
# You can create a dictionary using a literal
filled_dict = Dict("one" => 1, "two" => 2, "three" => 3)
# => Dict{String,Int64} with 3 entries:
# => "two" => 2, "one" => 1, "three" => 3
# Look up values with []
filled_dict["one"] # => 1
# Get all keys
keys(filled_dict)
# => Base.KeySet for a Dict{String,Int64} with 3 entries. Keys:
# => "two", "one", "three"
# Note - dictionary keys are not sorted or in the order you inserted them.
# Get all values
values(filled_dict)
# => Base.ValueIterator for a Dict{String,Int64} with 3 entries. Values:
# => 2, 1, 3
# Note - Same as above regarding key ordering.
# Check for existence of keys in a dictionary with in, haskey
in(("one" => 1), filled_dict) # => true
in(("two" => 3), filled_dict) # => false
haskey(filled_dict, "one") # => true
haskey(filled_dict, 1) # => false
# Trying to look up a non-existent key will raise an error
try
filled_dict["four"] # => ERROR: KeyError: key "four" not found
catch e
println(e)
end
# Use the get method to avoid that error by providing a default value
# get(dictionary, key, default_value)
get(filled_dict, "one", 4) # => 1
get(filled_dict, "four", 4) # => 4
# Use Sets to represent collections of unordered, unique values
empty_set = Set() # => Set(Any[])
# Initialize a set with values
filled_set = Set([1, 2, 2, 3, 4]) # => Set([4, 2, 3, 1])
# Add more values to a set
push!(filled_set, 5) # => Set([4, 2, 3, 5, 1])
# Check if the values are in the set
in(2, filled_set) # => true
in(10, filled_set) # => false
# There are functions for set intersection, union, and difference.
other_set = Set([3, 4, 5, 6]) # => Set([4, 3, 5, 6])
intersect(filled_set, other_set) # => Set([4, 3, 5])
union(filled_set, other_set) # => Set([4, 2, 3, 5, 6, 1])
setdiff(Set([1,2,3,4]), Set([2,3,5])) # => Set([4, 1])
####################################################
## 3. Control Flow
####################################################
# Let's make a variable
some_var = 5
# Here is an if statement. Indentation is not meaningful in Julia.
if some_var > 10
println("some_var is totally bigger than 10.")
elseif some_var < 10 # This elseif clause is optional.
println("some_var is smaller than 10.")
else # The else clause is optional too.
println("some_var is indeed 10.")
end
# => prints "some var is smaller than 10"
# For loops iterate over iterables.
# Iterable types include Range, Array, Set, Dict, and AbstractString.
for animal = ["dog", "cat", "mouse"]
println("$animal is a mammal")
# You can use $ to interpolate variables or expression into strings
end
# prints:
# dog is a mammal
# cat is a mammal
# mouse is a mammal
# You can use 'in' instead of '='.
for animal in ["dog", "cat", "mouse"]
println("$animal is a mammal")
end
# prints:
# dog is a mammal
# cat is a mammal
# mouse is a mammal
for pair in Dict("dog" => "mammal", "cat" => "mammal", "mouse" => "mammal")
from, to = pair
println("$from is a $to")
end
# => mouse is a mammal
# => cat is a mammal
# => dog is a mammal
for (k, v) in Dict("dog" => "mammal", "cat" => "mammal", "mouse" => "mammal")
println("$k is a $v")
end
# => mouse is a mammal
# => cat is a mammal
# => dog is a mammal
# While loops loop while a condition is true
let x = 0
while x < 4
println(x)
x += 1 # Shorthand for x = x + 1
end
end
# prints:
# 0
# 1
# 2
# 3
# Handle exceptions with a try/catch block
try
error("help")
catch e
println("caught it $e")
end
# => caught it ErrorException("help")
####################################################
## 4. Functions
####################################################
# The keyword 'function' creates new functions
#function name(arglist)
# body...
#end
function add(x, y)
println("x is $x and y is $y")
# Functions return the value of their last statement
x + y
end
add(5, 6)
# => x is 5 and y is 6
# => 11
# Compact assignment of functions
f_add(x, y) = x + y # => f_add (generic function with 1 method)
f_add(3, 4) # => 7
# Function can also return multiple values as tuple
fn(x, y) = x + y, x - y # => fn (generic function with 1 method)
fn(3, 4) # => (7, -1)
# You can define functions that take a variable number of
# positional arguments
function varargs(args...)
return args
# use the keyword return to return anywhere in the function
end
# => varargs (generic function with 1 method)
varargs(1, 2, 3) # => (1,2,3)
# The ... is called a splat.
# We just used it in a function definition.
# It can also be used in a function call,
# where it will splat an Array or Tuple's contents into the argument list.
add([5,6]...) # this is equivalent to add(5,6)
x = (5, 6) # => (5,6)
add(x...) # this is equivalent to add(5,6)
# You can define functions with optional positional arguments
function defaults(a, b, x=5, y=6)
return "$a $b and $x $y"
end
# => defaults (generic function with 3 methods)
defaults('h', 'g') # => "h g and 5 6"
defaults('h', 'g', 'j') # => "h g and j 6"
defaults('h', 'g', 'j', 'k') # => "h g and j k"
try
defaults('h') # => ERROR: MethodError: no method matching defaults(::Char)
defaults() # => ERROR: MethodError: no method matching defaults()
catch e
println(e)
end
# You can define functions that take keyword arguments
function keyword_args(;k1=4, name2="hello") # note the ;
return Dict("k1" => k1, "name2" => name2)
end
# => keyword_args (generic function with 1 method)
keyword_args(name2="ness") # => ["name2"=>"ness", "k1"=>4]
keyword_args(k1="mine") # => ["name2"=>"hello", "k1"=>"mine"]
keyword_args() # => ["name2"=>"hello", "k1"=>4]
# You can combine all kinds of arguments in the same function
function all_the_args(normal_arg, optional_positional_arg=2; keyword_arg="foo")
println("normal arg: $normal_arg")
println("optional arg: $optional_positional_arg")
println("keyword arg: $keyword_arg")
end
# => all_the_args (generic function with 2 methods)
all_the_args(1, 3, keyword_arg=4)
# prints:
# normal arg: 1
# optional arg: 3
# keyword arg: 4
# Julia has first class functions
function create_adder(x)
adder = function (y)
return x + y
end
return adder
end
# => create_adder (generic function with 1 method)
# This is "stabby lambda syntax" for creating anonymous functions
(x -> x > 2)(3) # => true
# This function is identical to create_adder implementation above.
function create_adder(x)
y -> x + y
end
# => create_adder (generic function with 1 method)
# You can also name the internal function, if you want
function create_adder(x)
function adder(y)
x + y
end
adder
end
# => create_adder (generic function with 1 method)
add_10 = create_adder(10) # => (::getfield(Main, Symbol("#adder#11")){Int64})
# (generic function with 1 method)
add_10(3) # => 13
# There are built-in higher order functions
map(add_10, [1,2,3]) # => [11, 12, 13]
filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
# We can use list comprehensions
[add_10(i) for i = [1, 2, 3]] # => [11, 12, 13]
[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
[x for x in [3, 4, 5, 6, 7] if x > 5] # => [6, 7]
####################################################
## 5. Types
####################################################
# Julia has a type system.
# Every value has a type; variables do not have types themselves.
# You can use the `typeof` function to get the type of a value.
typeof(5) # => Int64
# Types are first-class values
typeof(Int64) # => DataType
typeof(DataType) # => DataType
# DataType is the type that represents types, including itself.
# Types are used for documentation, optimizations, and dispatch.
# They are not statically checked.
# Users can define types
# They are like records or structs in other languages.
# New types are defined using the `struct` keyword.
# struct Name
# field::OptionalType
# ...
# end
struct Tiger
taillength::Float64
coatcolor # not including a type annotation is the same as `::Any`
end
# The default constructor's arguments are the properties
# of the type, in the order they are listed in the definition
tigger = Tiger(3.5, "orange") # => Tiger(3.5,"orange")
# The type doubles as the constructor function for values of that type
sherekhan = typeof(tigger)(5.6, "fire") # => Tiger(5.6,"fire")
# These struct-style types are called concrete types
# They can be instantiated, but cannot have subtypes.
# The other kind of types is abstract types.
# abstract Name
abstract type Cat end # just a name and point in the type hierarchy
# Abstract types cannot be instantiated, but can have subtypes.
using InteractiveUtils # defines the subtype and supertype function
# For example, Number is an abstract type
subtypes(Number) # => 2-element Array{Any,1}:
# => Complex
# => Real
subtypes(Cat) # => 0-element Array{Any,1}
# AbstractString, as the name implies, is also an abstract type
subtypes(AbstractString) # => 4-element Array{Any,1}:
# => String
# => SubString
# => SubstitutionString
# => Test.GenericString
# Every type has a super type; use the `supertype` function to get it.
typeof(5) # => Int64
supertype(Int64) # => Signed
supertype(Signed) # => Integer
supertype(Integer) # => Real
supertype(Real) # => Number
supertype(Number) # => Any
supertype(supertype(Signed)) # => Real
supertype(Any) # => Any
# All of these type, except for Int64, are abstract.
typeof("fire") # => String
supertype(String) # => AbstractString
# Likewise here with String
supertype(SubString) # => AbstractString
# <: is the subtyping operator
struct Lion <: Cat # Lion is a subtype of Cat
mane_color
roar::AbstractString
end
# You can define more constructors for your type
# Just define a function of the same name as the type
# and call an existing constructor to get a value of the correct type
Lion(roar::AbstractString) = Lion("green", roar)
# This is an outer constructor because it's outside the type definition
struct Panther <: Cat # Panther is also a subtype of Cat
eye_color
Panther() = new("green")
# Panthers will only have this constructor, and no default constructor.
end
# Using inner constructors, like Panther does, gives you control
# over how values of the type can be created.
# When possible, you should use outer constructors rather than inner ones.
####################################################
## 6. Multiple-Dispatch
####################################################
# In Julia, all named functions are generic functions
# This means that they are built up from many small methods
# Each constructor for Lion is a method of the generic function Lion.
# For a non-constructor example, let's make a function meow:
# Definitions for Lion, Panther, Tiger
function meow(animal::Lion)
animal.roar # access type properties using dot notation
end
function meow(animal::Panther)
"grrr"
end
function meow(animal::Tiger)
"rawwwr"
end
# Testing the meow function
meow(tigger) # => "rawwwr"
meow(Lion("brown", "ROAAR")) # => "ROAAR"
meow(Panther()) # => "grrr"
# Review the local type hierarchy
Tiger <: Cat # => false
Lion <: Cat # => true
Panther <: Cat # => true
# Defining a function that takes Cats
function pet_cat(cat::Cat)
println("The cat says $(meow(cat))")
end
# => pet_cat (generic function with 1 method)
pet_cat(Lion("42")) # => The cat says 42
try
pet_cat(tigger) # => ERROR: MethodError: no method matching pet_cat(::Tiger)
catch e
println(e)
end
# In OO languages, single dispatch is common;
# this means that the method is picked based on the type of the first argument.
# In Julia, all of the argument types contribute to selecting the best method.
# Let's define a function with more arguments, so we can see the difference
function fight(t::Tiger, c::Cat)
println("The $(t.coatcolor) tiger wins!")
end
# => fight (generic function with 1 method)
fight(tigger, Panther()) # => The orange tiger wins!
fight(tigger, Lion("ROAR")) # => The orange tiger wins!
# Let's change the behavior when the Cat is specifically a Lion
fight(t::Tiger, l::Lion) = println("The $(l.mane_color)-maned lion wins!")
# => fight (generic function with 2 methods)
fight(tigger, Panther()) # => The orange tiger wins!
fight(tigger, Lion("ROAR")) # => The green-maned lion wins!
# We don't need a Tiger in order to fight
fight(l::Lion, c::Cat) = println("The victorious cat says $(meow(c))")
# => fight (generic function with 3 methods)
fight(Lion("balooga!"), Panther()) # => The victorious cat says grrr
try
fight(Panther(), Lion("RAWR"))
# => ERROR: MethodError: no method matching fight(::Panther, ::Lion)
# => Closest candidates are:
# => fight(::Tiger, ::Lion) at ...
# => fight(::Tiger, ::Cat) at ...
# => fight(::Lion, ::Cat) at ...
# => ...
catch e
println(e)
end
# Also let the cat go first
fight(c::Cat, l::Lion) = println("The cat beats the Lion")
# => fight (generic function with 4 methods)
# This warning is because it's unclear which fight will be called in:
try
fight(Lion("RAR"), Lion("brown", "rarrr"))
# => ERROR: MethodError: fight(::Lion, ::Lion) is ambiguous. Candidates:
# => fight(c::Cat, l::Lion) in Main at ...
# => fight(l::Lion, c::Cat) in Main at ...
# => Possible fix, define
# => fight(::Lion, ::Lion)
# => ...
catch e
println(e)
end
# The result may be different in other versions of Julia
fight(l::Lion, l2::Lion) = println("The lions come to a tie")
# => fight (generic function with 5 methods)
fight(Lion("RAR"), Lion("brown", "rarrr")) # => The lions come to a tie
# Under the hood
# You can take a look at the llvm and the assembly code generated.
square_area(l) = l * l # square_area (generic function with 1 method)
square_area(5) # => 25
# What happens when we feed square_area an integer?
code_native(square_area, (Int32,), syntax = :intel)
# .text
# ; Function square_area {
# ; Location: REPL[116]:1 # Prologue
# push rbp
# mov rbp, rsp
# ; Function *; {
# ; Location: int.jl:54
# imul ecx, ecx # Square l and store the result in ECX
# ;}
# mov eax, ecx
# pop rbp # Restore old base pointer
# ret # Result will still be in EAX
# nop dword ptr [rax + rax]
# ;}
code_native(square_area, (Float32,), syntax = :intel)
# .text
# ; Function square_area {
# ; Location: REPL[116]:1
# push rbp
# mov rbp, rsp
# ; Function *; {
# ; Location: float.jl:398
# vmulss xmm0, xmm0, xmm0 # Scalar single precision multiply (AVX)
# ;}
# pop rbp
# ret
# nop word ptr [rax + rax]
# ;}
code_native(square_area, (Float64,), syntax = :intel)
# .text
# ; Function square_area {
# ; Location: REPL[116]:1
# push rbp
# mov rbp, rsp
# ; Function *; {
# ; Location: float.jl:399
# vmulsd xmm0, xmm0, xmm0 # Scalar double precision multiply (AVX)
# ;}
# pop rbp
# ret
# nop word ptr [rax + rax]
# ;}
# Note that julia will use floating point instructions if any of the
# arguments are floats.
# Let's calculate the area of a circle
circle_area(r) = pi * r * r # circle_area (generic function with 1 method)
circle_area(5) # 78.53981633974483
code_native(circle_area, (Int32,), syntax = :intel)
# .text
# ; Function circle_area {
# ; Location: REPL[121]:1
# push rbp
# mov rbp, rsp
# ; Function *; {
# ; Location: operators.jl:502
# ; Function *; {
# ; Location: promotion.jl:314
# ; Function promote; {
# ; Location: promotion.jl:284
# ; Function _promote; {
# ; Location: promotion.jl:261
# ; Function convert; {
# ; Location: number.jl:7
# ; Function Type; {
# ; Location: float.jl:60
# vcvtsi2sd xmm0, xmm0, ecx # Load integer (r) from memory
# movabs rax, 497710928 # Load pi
# ;}}}}}
# ; Function *; {
# ; Location: float.jl:399
# vmulsd xmm1, xmm0, qword ptr [rax] # pi * r
# vmulsd xmm0, xmm1, xmm0 # (pi * r) * r
# ;}}
# pop rbp
# ret
# nop dword ptr [rax]
# ;}
code_native(circle_area, (Float64,), syntax = :intel)
# .text
# ; Function circle_area {
# ; Location: REPL[121]:1
# push rbp
# mov rbp, rsp
# movabs rax, 497711048
# ; Function *; {
# ; Location: operators.jl:502
# ; Function *; {
# ; Location: promotion.jl:314
# ; Function *; {
# ; Location: float.jl:399
# vmulsd xmm1, xmm0, qword ptr [rax]
# ;}}}
# ; Function *; {
# ; Location: float.jl:399
# vmulsd xmm0, xmm1, xmm0
# ;}
# pop rbp
# ret
# nop dword ptr [rax + rax]
# ;}
```
## Further Reading
You can get a lot more detail from the [Julia Documentation](https://docs.julialang.org/)
The best place to get help with Julia is the (very friendly) [Discourse forum](https://discourse.julialang.org/).